Skip to main content
Log in

Chemotaxonomic diagnostics: combining sucrose-water agar with TLC to discriminate Fusarium graminearum 3-acetyl-DON and 15-acetyl-DON chemotypes

  • Original Paper
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Twelve randomly-selected isolates of Fusarium graminearum that produce 3-acetyl-deoxynivalenol (3-ADON) or 15-acetyl-deoxynivalenol (15-ADON) were screened by thin-layer chromatography (TLC) for their ability to produce ADON and zearalenone (ZEA) mycotoxins when grown on water agar containing different concentrations of sucrose. The results showed the ability of the F. graminearum 3-ADON chemotype population to produce DON and ZEA at a lower concentration range of sucrose (5-7%) compared with the 15-ADON chemotype (30-40%). The former distinction allows for sucrose-water agar to be employed as a rapid and simple differential medium, where two separate sucrose-gradient concentrations discriminate 3-ADON from 15-ADON populations. In the light of the shift in sugar concentrations occurring during the process of grain formation and maturation, the difference in mycotoxin production between the two populations is discussed with respect to predicting Fusarium head blight (FHB) epidemiology and accumulation of DON and ZEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bai G, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161

    Article  PubMed  CAS  Google Scholar 

  • Barros G, García D, Oviedo S, Ramirez ML, Torres A, Chulze S (2008) Deoxynivalenol and nivalenol analysis in soybean and soy flour. World Mycotox J 1:263–266

    Article  CAS  Google Scholar 

  • Davis ND, Diener UL (1968) Growth and aflatoxin production by Aspergillus parasiticus from various carbon sources. Appl Microbiol 16:158–159

    PubMed  CAS  Google Scholar 

  • Davis ND, Diener UL, Agnihotri VP (1967) Production of aflatoxins B1 and G1 in chemically defined medium. Mycopath Mycol Appl 31:251–256

    Article  CAS  Google Scholar 

  • Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Int J Food Microbiol 119:47–50

    Article  PubMed  CAS  Google Scholar 

  • Frisvad JC (1985) Creatine sucrose agar, a differential medium for the mycotoxin producing terverticillate Penicillium species. Lett Appl Microbiol 1:109–113

    Article  Google Scholar 

  • Frisvad JC (1989) The use of high-performance liquid chromatography and diode array detection in fungal chemotaxonomy based on profiles of secondary metabolites. Bot J Linn Soc 99:81–95

    Article  Google Scholar 

  • Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240

    Article  PubMed  CAS  Google Scholar 

  • Gale LR, Harrison SA, Ward T, O’Donnell K, Milus EA, Gale SW, Kistler HC (2011) Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 101:124–134

    Article  PubMed  CAS  Google Scholar 

  • Goswami RS, Kistler HC (2004) Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology 95:1397–1404

    Article  Google Scholar 

  • Greenhalgh R, Hanson AW, Miller JD, Taylor A (1984) Production and X-ray crystal structure of 3-acetoxy-7,15-dihydroxy-12,13-epoxytrichothec-9-en-8-one. J Agric Food Chem 32:945–948

    Article  CAS  Google Scholar 

  • Hidy PH, Baldwin RS, Greasham RL, Keith CL, McMullen JR (1977) Zearalenone and some derivatives: production and biological activity. Adv Appl Microbiol 22:59–82

    Article  PubMed  CAS  Google Scholar 

  • Ichinoe M, Kurata H, Sugiura Y, Ueno Y (1983) Chemotaxonomy of Gibberella zeae with special reference to production of trichothecenes and zearalenone. Appl Environ Microbiol 46:1364–1369

    PubMed  CAS  Google Scholar 

  • Ji L, Cao K, Hu T, Wang S (2007) Determination of deoxynivalenol and nivalenol chemotypes of Fusarium graminearum isolates from China by PCR assay. J Phytopathol 155:505–512

    Article  CAS  Google Scholar 

  • Jiao F, Kawakami A, Nakajima T (2008) Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. FEMS Microbiol Lett 285:212–219

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Oh D-W, Kim H-S, Lee J, Kim Y-H, Yun S-H, Lee Y-W (2001) Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl Environ Microbiol 67:2966–2972

    Article  PubMed  CAS  Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell, Iowa

    Google Scholar 

  • Mi G, Chen F, Zhang F (2009) Grain filling rate is limited by insufficient sugar supply in the large-grain wheat cultivar. J Plant Breeding Crop Sci 1:60–64

    CAS  Google Scholar 

  • Miller JD, Blackwell BA (1986) Biosynthesis of 3- acetyldeoxynivalenol and other metabolites by Fusarium culmorum HLX 1503 in a stirred jar fermentor. Can J Bot 64:1–5

    Article  CAS  Google Scholar 

  • Miller JD, Greenhalgh R (1985) Nutrient effects on the biosynthesis of trichothecenes and other metabolites by Fusarium graminearum. Mycologia 77:130–136

    Article  CAS  Google Scholar 

  • Nicolaisen M, Justesen AF, Thrane U, Skouboe P, Holmstrøm K (2005) An oligonucleotide microarray for the identification and differentiation of trichothecene producing and non-producing Fusarium species occurring on cereal grain. J Microbiol Meth 62:57–69

    Article  CAS  Google Scholar 

  • Nielsen KF, Thrane U (2001) Fast methods for screening of trichothecenes in fungal cultures using gas chromatography-tandem mass spectrometry. J Chromatogr A 929:75–87

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell KHC, Tacke BK, Casper HH (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci USA 97:7905–7910

    Article  PubMed  Google Scholar 

  • Puri KD, Zhong S (2010) The 3ADON population of Fusarium graminearum found in North Dakota is more aggressive and produces a higher level of DON than the prevalent 15ADON population in spring wheat. Phytopathology 100:1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Ortiz R, Mehta BJ, Avalos J, Carmen Limón M (2010) Stimulation of bikaverin production by sucrose and by salt starvation in Fusarium fujikuroi. Appl Microbiol Biotech 85:1991–2000

    Article  Google Scholar 

  • Ronne H (1995) Glucose repression in fungi. Trends Genet 11:12–17

    Article  PubMed  CAS  Google Scholar 

  • Schaafsma AW (2007) Climatic models to predict occurrence of Fusarium toxins in wheat and maize. Int J Food Microbiol 119:116–125

    Article  PubMed  CAS  Google Scholar 

  • Sinha RC, Savard ME (1996) Comparison of immunoassay and gas chromatography methods for the detection of the mycotoxin deoxynivalenol in grain samples. Can J Plant Pathol 18:233–236

    Article  CAS  Google Scholar 

  • Tanaka H, Takino M, Sugita-Konishi Y, Tanaka T, Toriba A, Hayakawa K (2009) Determination of nivalenol and deoxynivalenol by liquid chromatography/atmospheric pressure photoionization mass spectrometry. Rapid Commun Mass Spectrom 23:3119–3124

    Article  PubMed  CAS  Google Scholar 

  • Thrane U (1990) Grouping Fusarium section Discolor isolates by statistical analysis of quantitative high performance liquid chromatographic data on secondary metabolite production. J Microbiol Methods 12:23–39

    Article  CAS  Google Scholar 

  • Thrane U, Hansen U (1995) Chemical and physiological characterization of taxa in the Fusarium sambucinum complex. Mycopathologia 129:183–190

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y, Sato N, Ishii K, Sakai K, Tsunoda H, Enomoto M (1973) Biological and chemical detection of trichothecene mycotoxins of Fusarium species. Appl Microbiol 25:699–704

    PubMed  CAS  Google Scholar 

  • Usleber E, Martlbauer E, Dietrich R, Terplan G (1991) Direct enzyme-linked immunosorbent assays for the detection of the 8-ketotrichothecene mycotoxins deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol in buffer solutions. J Agric Food Chem 39:2091–2095

    Article  CAS  Google Scholar 

  • Usleber E, Schneider E, Märtlbauer E, Terplan G (1993) Two formats of enzyme immunoassay for 15-acetyldeoxynivalenol applied to wheat. J Agric Food Chem 41:2019–2023

    Article  CAS  Google Scholar 

  • Vasavada AB, Hsieh PH (1987) Production of 3-acetyldeoxynivalenol by Fusarium graminearum R2118 in submerged cultures. Appl Microbiol Biotech 26:517–521

    Article  CAS  Google Scholar 

  • Von der Ohe C, Gauthier V, Tamburic-Ilincic L, Brule-Babel A, FerJnando WGD, Clear R, Ward TJ, Miedaner T (2010) A comparison of aggressiveness and deoxynivalenol production between Canadian Fusarium graminearum isolates with 3-acetyl and 15-acetyldeoxynivalenol chemotypes in field-grown spring wheat. Eur J Plant Path 127:407–417

    Article  CAS  Google Scholar 

  • Voigt CA, Scheidt BV, Gácser A, Kassner H, Lieberei R, Schafer W, Salomon S (2007) Enhanced mycotoxin production of alipase-deficient Fusarium graminearum mutant correlates to toxin-related gene expression. Eur J Plant Pathol 117:1–12

    Article  CAS  Google Scholar 

  • Wang J-H, Li H-P, Qu B, Zhang J-B, Huang T, Chen F-F, Liao Y-C (2008) Develoment of a generic PCR detection of 3-acetyldeoxynivalenol-, 15-acetyldeoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum clade. Int J Mol Sci 9:2495–2504

    Article  PubMed  CAS  Google Scholar 

  • Ward TJ, Clear RM, Rooney AP, O’Donnell K, Gaba D, Patrick S, Starkey DE, Gilbert J, Geiser DM, Nowicki TW (2008) An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fsuarium graminearum in North America. Fungal Genet Biol 45:473–484

    Article  PubMed  Google Scholar 

  • Yli-Mattila T, Gagkaeva T, Ward TJ, Aoki T, Kistler HC, O’Donnell K (2009) A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia 101:841–52

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grant and Saskatchewan Agriculture and Food (SAF)—Agriculture Development Fund (ADF) to V.V. The author would like to thank Dr. Allen (AAFC), Dr. Tekauz (AAFC) and Dr. Ilincic-Tamburic (University of Guelph) for different Fusarium graminearum isolates, P. Daida and Y.K. Goh for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Vujanovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vujanovic, V., Ben Mansour, M. Chemotaxonomic diagnostics: combining sucrose-water agar with TLC to discriminate Fusarium graminearum 3-acetyl-DON and 15-acetyl-DON chemotypes. Mycotoxin Res 27, 295–301 (2011). https://doi.org/10.1007/s12550-011-0107-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-011-0107-6

Keywords