Skip to main content
Log in

Sample clean-up methods, immunoaffinity chromatography and solid phase extraction, for determination of deoxynivalenol and deepoxy deoxynivalenol in swine serum

  • Original Paper
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Concentrations of deoxynivalenol (DON) and deepoxy deoxynivalenol (DOM-1) in animal blood are important parameters for studies in toxicology and biological detoxification of DON. Clean-up methods, using either immunoaffinity chromatography (IAC) or solid phase extraction (SPE), were compared in order to determine the free form of DON or DOM-1 and the sum amount (free form plus glucuronide conjugated form of DON or DOM-1), respectively, in swine serum. Detection was achieved by high performance liquid chromatography with ultraviolet detection (HPLC-UV). Compared with the SPE-HPLC method, the IAC-HPLC method provided lower quantitation limit (DON: 18 vs 42 ng/ml; DOM-1: 21 vs 30 ng/ml) and higher recoveries (DON: 93.4–102.7% vs 63.7–85.3%; DOM-1: 85.5–91.1% vs 68.0–82.6%). Compared with previously published methods, the developed IAC-HPLC method removed analytical interferences from swine serum in one quick and easy step, and eliminated steps of extraction with organic solvent and/or pre-purification using SPE cartridges. This IAC-HPLC method was used to analyze swine serum samples collected from pigs that were evaluated in a feeding trial of a microbiological detoxification of DON. No DON or DOM-1 were detected in serum samples from pigs given a toxin-free diet or a microbial control diet. In serum samples from pigs given a DON diet (5 mg/kg of DON), free form DON and sum free DON + conjugated DON were 38.8 ± 13.7 and 49.8 ± 14.1 ng/ml, respectively. In serum samples from those given a detoxified-DON diet (DON was transformed to DOM-1), free form DOM-1 was detected but not quantified, and the sum DOM-1 was found as 47.5 ± 6.3 ng/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bily AC, Reid LM, Savard ME, Reddy R, Blackwell BA, Campbell CM, Krantis A, Durst T, Philogène BJR, Arnason JT, Regnault-Roger C (2004) Analysis of Fusarium graminearum mycotoxins in different biological matrices by LC/MS. Mycopathologia 157:117–126. doi:10.1023/B:MYCO.0000012218.27359.ec

    Article  PubMed  CAS  Google Scholar 

  • Cahill LM, Kruger SC, McAlice BT, Ramsey CS, Prioli R, Kohn B (1999) Quantification of deoxynivalenol in wheat using an immunoaffinity column and liquid chromatography. J Chromatogr A 859:23–28. doi:10.1016/S0021-9673(99)00846-8

    Article  PubMed  CAS  Google Scholar 

  • Cote LM, Beasley VR, Bratich PM, Swanson SP, Shivaprasad HL, Buck WB (1985) Sex-related reduced weight gains in growing swine fed diets containing deoxynivalenol. J Anim Sci 61:942–950

    PubMed  CAS  Google Scholar 

  • Dänicke S, Brüssow KP, Valenta H, Ueberschär KH, Tiemann U, Schollenberger M (2005) On the effects of graded levels of Fusarium toxin contaminated wheat in diets for gilts on feed intake, growth performance and metabolism of deoxynivalenol and zearalenone. Mol Nutr Food Res 49:932–943. doi:10.1002/mnfr.200500050

    Article  PubMed  Google Scholar 

  • Döll S, Dänicke S, Ueberschär KH, Valenta H, Schnurrbusch U, Ganter M, Klobasa F, Flachowsky G (2003) Effects of graded levels of Fusarium toxin contaminated maize in diets for female weaned piglets. Arch Anim Nutr 57:311–334. doi:10.1080/00039420310001607680

    Article  Google Scholar 

  • Döll S, Goyarts T, Tiemann U, Dänicke S (2007) Practically relevant concentrations of deoxynivalenol in diets for growing-finishing pigs offered as mash or pellets. Arch Anim Nutr 61:247–265. doi:10.1080/17450390701431698

    Article  PubMed  Google Scholar 

  • Eriksen GS, Pettersson H, Lindberg JE (2003) Absorption, metabolism and excretion of 3-acetyl don in pigs. Arch Anim Nutr 57:335–345. doi:10.1080/00039420310001607699

    Article  CAS  Google Scholar 

  • Federal Register (1995) “Definition and procedure for determination of the Method Detection Limit” 40 CFR Part 136, Appendix B, Revision 1.11 http://www.setonresourcecenter.com/CFR/40CFR/P136_008.HTM

  • Fuchs E, Binder EM, Heidler D, Krska R (2002) Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Addit Contam 19:379–386. doi:10.1080/02652030110091154

    Article  PubMed  CAS  Google Scholar 

  • Glaser JA, Foerst DL, McKee GD, Qyave SA, Budde WL (1981) Trace analyses for wastewaters. Environ Sci Technol 15:1426–1435. doi:10.1021/es00094a002

    Article  CAS  Google Scholar 

  • Goyarts T, Dänicke S (2006) Bioavailability of the Fusarium toxin deoxynivalenol (DON) from naturally contaminated wheat for the pig. Toxicol Lett 163:171–182. doi:10.1016/j.toxlet.2005.10.007

    Article  PubMed  CAS  Google Scholar 

  • He J, Yang R, Zhou T, Tsao R, Young JC, Zhu H, Li X-Z, Boland GJ (2007) Purification of deoxynivalenol from Fusarium graminearum rice culture and mouldy corn by high-speed counter-current chromatography. J Chromatogr A 1151:187–192. doi:10.1016/j.chroma.2007.01.112

    Article  PubMed  CAS  Google Scholar 

  • Hedman R, Pettersson H, Lindberg JE (1997) Absorption and metabolism of nivalenol in pigs. Arch Anim Nutr 50:13–24. doi:10.1080/17450399709386115

    Article  CAS  Google Scholar 

  • Janes W, Schuster M (2001) Determination of deoxynivalenol (DON) in blood, bile, urine and excrement samples from swine using immunoaffinity chromatography and LC-UV-detection. Mycotoxin Res 17:88–95. doi:10.1007/BF02946131

    Article  CAS  Google Scholar 

  • Lattanzio VMT, Solfrizzo M, Powers S, Visconti A (2007) Simultaneous determination of aflatoxins, ochratoxin A and Fusarium toxins in maize by liquid chromatography/tandem mass spectrometry after multitoxin immunoaffinity cleanup. Rapid Commun Mass Spectrom 21:3253–3261. doi:10.1002/rcm.3210

    Article  PubMed  CAS  Google Scholar 

  • Li X-Z, Zhu J, de Lange CFM, Zhou T, He J, Yu H, Gong J, Zhu H, Young JC (2008) Microbial detoxification of deoxynivalenol (DON) demonstrated in a swine feeding trial. The 2008 CIFST Conference. Charlottetown, PEI, May 25–27, 2008. https://secure.cifst.ca/default.asp?id=1127

  • Nelson PE (2002) Fusarium-Paul E. Nelson Memorial Symposium. The American Phytopathological Society, St. Paul

  • Pestka JJ (2007) Deoxynivalenol: toxicity, mechanisms and animal health risks. Anim Feed Sci Technol 137:283–298. doi:10.1016/j.anifeedsci.2007.06.006

    Article  CAS  Google Scholar 

  • Pestka J, Smolinski A (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health Part B 8:39–69

    CAS  Google Scholar 

  • Prelusky DB, Trenholm HL (1991) Tissue distribution of deoxynivalenol in swine dosed intravenously. J Agric Food Chem 39:748–751. doi:10.1021/jf00004a026

    Article  CAS  Google Scholar 

  • Seeling K, Dänicke S, Valenta H, Van Egmond HP, Schothorst RC, Jekel AA, Lebzien P, Schollenberger M, Razzazi-Fazeli E, Flachowsky G (2006) Effects of Fusarium toxin-contaminated wheat and feed intake level on the biotransformation and carry-over of deoxynivalenol in dairy cows. Food Addit Contam 23:1008–1020. doi:10.1080/02652030600723245

    Article  PubMed  CAS  Google Scholar 

  • Swanson SP, Terwel L, Corley RA, Buck WB (1982) Gas chromatographic method for the determination of diacetoxyscirpenol in swine plasma and urine. J Chromatogr A 248:456–460. doi:10.1016/S0021-9673(00)85057-8

    Article  CAS  Google Scholar 

  • Valenta H, Dänicke S (2005) Study on the transmission of deoxynivalenol and deepoxy-deoxynivalenol into eggs of laying hens using a high-performance liquid chromatography-ultraviolet method with clean-up by immunoaffinity columns. Mol Nutr Food Res 49:779–785. doi:10.1002/mnfr.200500012

    Article  PubMed  CAS  Google Scholar 

  • Valenta H, Dänicke S, Döll S (2003) Analysis of deoxynivalenol and deepoxy-deoxynivalenol in animal tissue by liquid chromatography after clean-up with an immunoaffinity column. Mycotoxin Res 19:51–55. doi:10.1007/BF02940093

    Article  CAS  Google Scholar 

  • Wu X, Murphy P, Cunnick J, Hendrich S (2007) Synthesis and characterization of deoxynivalenol glucuronide: its comparative immunotoxicity with deoxynivalenol. Food Chem Toxicol 45:1846–1855. doi:10.1016/j.fct.2007.03.018

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Zhou T, Yu H, Zhu H, Gong J (2007) Degradation of trichothecene mycotoxins by chicken intestinal microbes. Food Chem Toxicol 45:136–143. doi:10.1016/j.fct.2006.07.028

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Julia Zhu from the University of Guelph and Honghui Zhu from the AAFC for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Li, XZ. & Zhou, T. Sample clean-up methods, immunoaffinity chromatography and solid phase extraction, for determination of deoxynivalenol and deepoxy deoxynivalenol in swine serum. Mycotox Res 25, 89–94 (2009). https://doi.org/10.1007/s12550-009-0013-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-009-0013-3

Keywords

Navigation