Skip to main content
Log in

Middle Miocene trace fossils from the Tenes area (NW Algeria) and their palaeoenvironmental implications

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

The Miocene succession (Allala River Sandstones and Tenes Blue Marls Formation) that crops out in the Tenes area, situated in the northeast of the Lower Chelif Basin in NW-Algeria, contains a low-diversity assemblage of trace fossils. Fifteen (15) ichnogenera were identified: Arenicolites, Beaconites, Cylindrichnus, Diplocraterion, Macaronichnus, Ophiomorpha, Palaeophycus, Parahaentzschelinia, Planolites, Rosselia, Skolithos, Taenidium, Teichichnus, Thalassinoides and Zoophycos. Ethologically, these ichnogenera chiefly display dwelling and feeding activities. The presence of thick, deep-tier, scattered, mainly vertical dwelling burrows attributed to the Skolithos ichnofacies indicates high energy conditions, normal oxygenation and soft substrate. Moreover, elements of the Cruziana ichnofacies show more varied behavioural strategies and higher inchnodiversity with the dominance of horizontal burrows of deposit-feeders. This ichnological study supports the palaeoenvironmental interpretation based on sedimentological analysis of a wave-dominated siliciclastic platform (backshore to offshore), allowing a more precise zonation of the shoreface zone (middle/upper and lower shoreface). In addition, this study allows evaluation of variable degrees of storm influence in response to the contrasting palaeogeomorphology of the coastline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Adserà, P. (2018). Distinctive morphological features Skolithos linearis from the Eocene of the Aínsa-Jaca Basin (South-Central Pyrenees). Batalleria, 26, 4-10.

    Google Scholar 

  • Alpert, S. P. (1974). Systematic Review of the Genus Skolithos. Journal of Paleontology, 48, 661-669.

    Google Scholar 

  • Bann, K. L., & Fielding, C. R. (2004). An integrated ichnological and sedimentological comparison of non-deltaic shoreface and subaqueous delta deposits in Permian reservoir units of Australia, In D. McIlroy (Ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society London Special Publication, 228, 273-310.

  • Belaústegui, Z., & de Gibert, J. M. (2013). Bow-shaped, concentrically laminated polychaete burrows: A Cylindrichnus concentricus ichnofabric from the Miocene of Tarragona, NE Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 381-382, 119-127.

    Article  Google Scholar 

  • Belkebir, L., Bessedik, M., Ameur-Chehbeur, A., & Anglada, R. (1996). Le Miocène des bassins nord-occidentaux d’Algérie: biostratigraphie et eustatisme. (pp. 553-561). In Géologie de l’Afrique et de l’Atlantique Sud: Actes Colloques Angers 1994. Pau: Edition Elf Aquitaine 16.

  • Bendella M. (2012). Evolution des traces fossiles dans l’espace (Tell, Atlas, Sahara) et dans le temps en Algérie occidentale: inventaire et mise en évidence des évènements anoxiques (pp. 1-161). PhD thesis. University Oran, Algérie.

  • Bendella, M., & Ouali Mehadji, A. (2014). Depositional environment and ichnology (Nereites ichnofacies) of the Late Devonian Sahara region (SW Algeria). Arabian Journal of Geosciences, 8, 5303-5316.

    Article  Google Scholar 

  • Bendella, M., Benyoucef, M., Cherif, A., & Benhamou, M. (2011). Ichnology and sedimentology of the Argiles de Saïda formation (Callovo-Oxfordian) of the Djebel Brame (Tiaret, Algeria). Bulletin de la Société géologique de France, 5, 417-425.

    Article  Google Scholar 

  • Bessedik, M., Belkebir, L., & Mansour, B. (2002). Le Miocène supérieur du bassin du Bas Chélif: attribution biostratigraphique à partir des foraminifères planctoniques. Mémoire du Service Géologique de l’Algérie, 11, 187-194.

    Google Scholar 

  • Bluck, B. J. (1967). Sedimentation of beach gravels: examples from South Wales. Journal of Sedimentary Petrology, 37, 128-156.

    Google Scholar 

  • Bluck, B. J. (1999). Clast assembling, bed-forms and structure in gravel beaches. Transactions of the Royal Society of Edinburgh: Earth Sciences, 89, 291–332.

    Article  Google Scholar 

  • Bottjer, D. J., Droser, M. L., & Jablonski, D. (1988). Palaeoenvironmental trends in the history of trace fossils. Nature, 333 (6170), 252–255.

    Article  Google Scholar 

  • Boyd, C., & McIlroy, D. (2017). Three-dimensional morphology of Beaconites capronus from Northeast. England. Ichnos, 24(4), 250–258.

    Article  Google Scholar 

  • Bradshaw, M. A. (2010). Devonian trace fossils of the Horlick Formation, Ohio Range, Antarctica: systematic description and palaeoenvironmental interpretation. Ichnos, 17, 58-114.

    Article  Google Scholar 

  • Brives, A. (1913). Carte géologique au 1/50 000 de Ténès - Cap Tenes. Service Géolgique de l’Algérie.

  • Bromley, R. G. (1991). Zoophycos: strip mine, refuse dump, cache or sewage farm? Lethaia, 24, 460-462.

    Article  Google Scholar 

  • Bromley, R. G., & Ekdale, A. A. (1998). Ophiomorpha irregulaire (trace fossil): redescription from the Cretaceous of the Book Cliffs and Wasatch Plateau, Utah. Journal of Paleontology, 72, 773-778

    Article  Google Scholar 

  • Bromley, R. G., & Frey, R. W. (1974). Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha. Bulletin of the Geological Society of Denmark, 23, 311-335.

    Google Scholar 

  • Bromley, R. G., & Hanken, N. M. (2003). Structure and function of large, lobed Zoophycos, Pliocene of Rhodes, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology, 192, 79-100.

    Article  Google Scholar 

  • Bromley, R. G., Ekdale, A. A., & Richter, B. (1999). New Taenidium (trace fossil) in the Upper Cretaceous chalk of northwestern Europe. Bulletin of the Geological Society of Denmark, 46, 47-51.

    Article  Google Scholar 

  • Buatois, L. A., & Mángano, M. G. (1993). Trace fossils from a Carboniferous turbidic lake: implications for the recognition of an additional nonmarine ichnofacies. Ichnos, 2, 217-224.

    Article  Google Scholar 

  • Buatois, L. A., & Mángano, M. G. (2011). Ichnology: Organism-Substrate Interactions in Space and Time (pp. 1-358). Cambridge: Cambridge University Press,

    Book  Google Scholar 

  • Buatois, L. A., Mángano, M. G., & Sylvester, Z. (2001). A diverse deep-marine Ichnofauna from the Eocene Tarcau sandstone of the Eastern Carpathians, Romania. Ichnos, 8, 23-62.

    Article  Google Scholar 

  • Carmona, N. B., Buatois, L. A., Mángano, M. G., & Bromley, R. G. (2008). Ichnology of the Lower Miocene Chenque Formation, Patagonia, Argentina: animal-substrate interactions and the Modern Evolutionary Fauna. Ameghiniana, 45, 93-122.

    Google Scholar 

  • Cassan, G. (1968). Foraminifères planctoniques du stratotype du Cartennien (Tenes) Algérie. Committee Mediterranean Neogene Stratigraphy. Proc. IV Session, Bologne, 1967, Giornale di geologia 2, XXXV, fasc. II, 377-386.

    Google Scholar 

  • Catuneanu, O., & Zecchin, M. (2013). High-resolution sequence stratigraphy of clastic shelves II: controls on sequence development. Marine and Petroleum Geology, 39, 26-38

    Article  Google Scholar 

  • Chamberlain, C. K. (1971). Morphology and ethology of trace fossils from the Ouachita Mountains, southeast Oklahoma. Journal of Paleontology, 45, 212-246.

    Google Scholar 

  • Clifton, H. E., & Thompson, J. K. (1978). Macaronichnus segregatis: a feeding structure of shallow marine polychaetes. Journal of Sedimentary Petrology, 48(4), 1293-1302

    Google Scholar 

  • Cornish, F. G. (1986). The Trace-Fossil Diplocraterion: Evidence of Animal-Sediment Interactions in Cambrian Tidal Deposits. Palaios, 1, 478-491.

    Article  Google Scholar 

  • Crimes, T. P. (1992). Changes in the trace fossil biota across the Proterozoic-Phanerozoic boundary. Journal of the Geological Society, 149, 637-646.

    Article  Google Scholar 

  • Crimes, T. P., Goldring, R., Homewood, P., Stuijvenberg, J. V., & Winkler, W. (1981). Trace fossil assemblages of deep-sea fan deposits, Gurnigel and Schlieren flysch (Cretaceous-Eocene), Switzerland. Eclogae Geologicae Helvetiae, 74, 953-995.

    Google Scholar 

  • Dam, G. (1990). Taxonomy of trace fossils from the shallow marine Lower Jurassic Neill Klinter Formation, East Greenland. Bulletin of the Geological Society of Denmark, 38, 119-144.

    Article  Google Scholar 

  • Dashtgard, S. E., & Gingras, M. K. (2012). Marine invertebrate neoichnology. In D. Knaust, & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology 64, 273-295.

  • Dashtgard, S. E., Maceachern, J. A., Frey, S. E., & Gingras, M. K. (2012). Tidal effects on the shoreface: Towards a conceptual framework. Sedimentary Geology, 279, 4-61.

    Article  Google Scholar 

  • Dashtgard, S. E., Vaucher, R., Yang, B., & Dalrymple, R.W. (2021) Hutchison medallist 1. Wave-dominated to tide-dominated coastal systems: a unifying model for tidal shorefaces and re-finement of the coastal-environments classification scheme. Geoscience Canada, 48, 5– 22.

    Article  Google Scholar 

  • Delteil, J. (1974). Tectonique de la chaîne alpine en Algérie d’après l’étude du Tell oriental (Mont de la Mina, Beni Chougrane, Dahra) (pp. 1-294). PhD thesis. University of Nice, France.

  • Ekdale, A. A. (1992). Muckraking and mudslinging: The joys of deposit-feeding. Short Courses in Paleontology, 5, 145–171.

    Article  Google Scholar 

  • Ekdale, A. A., & Bromley, R. G. (2012). Eolian environments. In D. Knaust, & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology 64, 419-437.

  • Ekdale, A. A., & Lewis, D. W. (1991). The New Zealand Zoophycos revisited: Morphology, ethology, and paleoecology. Ichnos, 1, 183-194.

    Article  Google Scholar 

  • Ekdale, A. A., Bromley, R. G., & Pemberton, S. G. (1984). Ichnology: Trace fossils in sedimentology and stratigraphy. Society of Economic Paleontologists and Mineralogists 15, 1-317, Tulsa, Oklahoma.

  • Ekdale, A. A., Bromley, R. G., & Loope, D. B. (2007). Ichnofacies of an ancient erg: A climatically influenced trace fossil association in the Jurassic Navajo Sandstone, Southern Utah, USA. In W. Miller III (Ed.), Trace fossils: Concepts, problems, prospects (pp. 562-564), Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • El-Sabbagh, A., El-Hedeny, M., & Al Farraj, S. (2017). Thalassinoides in the middle Miocene succession at Siwa oasis, northwestern Egypt. Proceedings of the Geologists' Association, 128, 222-233.

    Article  Google Scholar 

  • Fenêt, B. (1975). Recherches sur l’alpinisation de la bordure septentrionale du Bouclier africain à partir de l’étude d’un élément de l’orogène nord-maghrébin: les monts du Djebel Tessala et les massifs du littoral de l’Oranais (pp. 1-301). PhD thesis. University of Nice, France.

  • Fillion, D., & Pickerill, R. K. (1984). Systematic ichnology of the Middle Ordovician Trenton Group, St. Lawrence lowland, eastern Canada. Maritime Sediments and Atlantic Geology, 20, 1-41.

    Google Scholar 

  • Fleming, C. A. (1973). "Fossil cuff-links": a new Miocene tract: fossil of the genus Diplocraterion from New Zealand. Tohoku University Science Reports, Special Volume 6 (Hatai Memorial Volume), 415-418.

  • Frey, R. W., & Bromley. R. G. (1985). Ichnology of American chalks: the Selma Group (Upper Cretaceous), western Alabama. Canadian Journal of Earth Sciences, 22, 801-828.

    Article  Google Scholar 

  • Frey, R. W., Curran, H. A., & Pemberton, S. G. (1984). Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. Journal of Paleontology, 58, 333-350.

    Google Scholar 

  • Frey, S. E., & Dashtgard, S. E. (2011). Sedimentology, ichnology and hydrodynamics of strait-margin, sand and gravel beaches and shorefaces: Juan de Fuca Strait, British Columbia, Canada. Sedimentology, 58(6), 1326-1346.

    Article  Google Scholar 

  • Frey, R. W., & Howard, J. D. (1985). Trace fossils from the Panther Member, Star Point Formation (Upper Cretaceous), Coal Creek Canyon, Utah. Journal of Paleontology, 59, 370-404.

    Google Scholar 

  • Frey, R. W., & Howard, J. D. (1990). Trace fossils and depositional sequences in a clastic shelf setting, Upper Cretaceous of Utah. Journal of Paleontology, 64, 803-820.

    Article  Google Scholar 

  • Frey, R. W., Howard, J. D., & Pryor, W. A. (1978). Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 23, 199-229.

    Article  Google Scholar 

  • Fürsich, F. T. (1974). On Diplocraterion Torell 1870 and the significance of morphological features in vertical, spreiten-bearing, U-shaped trace fossils. Journal of Paleontology, 48, 952-962.

    Google Scholar 

  • Fürsich, F. T. (1975). Trace fossils as environmental indicators in the Corallian of England and Normandy. Lethaia, 8, 151-172.

    Article  Google Scholar 

  • Fürsich, F.T., Wilmsen, M., & Seyed-Emami, K. (2006). Ichnology of Lower Jurassic beach deposits in the Shemshak Formation at Shahmirzad, southeastern Alborz Mountains, Iran. Facies, 52, 599-610.

    Article  Google Scholar 

  • Gaillard, C., Hennebert, M., & Olivero, D. (1999). Lower Carboniferous Zoophycos from the Tournai area (Belgium): environmental and ethologic significance. Geobios, 32, 513-524.

    Article  Google Scholar 

  • Gani, M. R., Bhattacharya, J. P., & Maceachern, J. A. (2007). Using ichnology to determine relative influence of waves, storms, tides, and rivers in deltaic deposits: examples from Cretaceous Western Interior Seaway, U.S.A. In J. A MacEachern, K. L Bann, M. K Gingras, et al (Eds.), Applied ichnology. Society of Economic Paleontologists and Mineralogists, 52, 209-225.

  • Gerard, J. R. F., & Bromley, R. G. (2008). Ichnofabrics in Clastic Sediments: Applications to Sedimentological Core Studies (pp. 1-97). Gerard J. R. F. (Ed.).

  • Giannetti, A. (2010). Influence of climate, sea-level changes and tectonics on ichnoassemblages distribution in a carbonate dominated, deep-marine environment (Upper Paleocene, Zumaya section). Palaeogeography, Palaeoclimatology, Palaeoecology, 285, 104-118.

    Article  Google Scholar 

  • Gingras M. K., & MacEachern J. A. (2012). Tidal ichnology of shallow-water clastic settings, In R.A Davis Jr., & R. W. Dalrymple (Eds.), Principles of Tidal Sedimentology (pp. 57-77). Dordrecht, Heidelberg: Springer.

  • Gingras, M. K., Pemberton, S. G., Saunders, T. D. A., & Clifton, H. E. (1999). The ichnology of modern and Pleistocene brackish-water deposits at Willapa Bay, Washington: variability in estuarine settings. Palaios, 14, 352-374.

    Article  Google Scholar 

  • Glangeaud, L. (1932). Etude géologique de la région littorale de la province d'Alger (pp. 1-617). Bulletin du Service de la Carte géolgique de l’Algérie.

  • Głuszek, A. (1998). Trace fossils from Late Carboniferous storm deposits, Upper Silesia Coal Basin, Poland. Acta Palaeontologica Polonica, 43, 517-546.

    Google Scholar 

  • Goldring, R. (1964). Trace fossils and the sedimentary surface in shallow water marine sediments. Developments in Sedimentology, 1, 136-143.

    Article  Google Scholar 

  • Goldring, R. (1996). The sedimentological significance of concentrically laminated burrows from Lower Cretaceous Ca-bentonites, Oxfordshire. Journal of the Geological Society, 153, 255–263.

    Article  Google Scholar 

  • Hammersburg, S. R., Hasiotis, S. T., & Robison, R. A. (2018). Ichnotaxonomy of the Cambrian Spence Shale Member of the Langston Formation, Wellsville Mountains, Northern Utah, USA. Paleonotological Contributions, 20, 1-66.

    Google Scholar 

  • Hofmann, R., Mángano, M. G., Elicki, O., & Shinaq, R. (2012). Paleoecologic and biostratigraphic significance of trace fossils from shallow-marginal-marine environment from the middle Cambrian (Stage 5) of Jordan. Journal of Paleontology, 86, 831- 955.

    Article  Google Scholar 

  • Howard, J. D., & Frey, R. W. (1984). Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east-central Utah. Canadian Journal of Earth Sciences, 21, 200-219.

    Article  Google Scholar 

  • Keighley, D. G., & Pickerill, R. K. (1995). The ichnotaxa Palaeophycus and Planolites: historical perspectives and recommendations. Ichnos, 3, 301-309.

    Article  Google Scholar 

  • Knaust, D. (2004). Cambro-Ordovician trace fossils from the SW-Norwegian Caledonides. Geological Journal, 39, 1-24.

    Article  Google Scholar 

  • Knaust, D. (2015). Siphonichnidae (new ichnofamily) attributed to the burrowing activity of bivalves: ichnotaxonomy, behaviour and palaeoenvironmental implications. Earth-Science Reviews, 150, 497-519.

    Article  Google Scholar 

  • Knaust, D. (2017). Atlas of trace fossils in well core: Appearance, taxonomy and interpretation (pp. 1-209). Cham: Springer, Switzerland.

  • Knaust, D. (2018a). Teichichnus zigzag Frey and Bromley, 1985: a probable echiuran or holothurian burrow from the Jurassic offshore Norway. Paläontologische Zeitschrift, 92, 617-632. https://doi.org/https://doi.org/10.1007/s12542-018-0413-9.

    Article  Google Scholar 

  • Knaust, D. (2018b). The ichnogenus Teichichnus Seilacher, 1955. Earth-Science Reviews, 177, 386-403. https://doi.org/https://doi.org/10.1016/j.earscirev.2017.11.023.

    Article  Google Scholar 

  • Knaust, D. (2021). Rosselichnidae ifam. nov.: burrows with concentric, spiral or eccentric lamination. Papers in Palaeontology, 7, 1847-1875.

    Article  Google Scholar 

  • Knaust, D., Thomas, R. D. K., & Curvan, H. A. (2018). Skolithos linearis Haldeman, 1840 at its early Cambrian type locality, Chickies Rock, Pennsylvania: Analysis and designation of a neotype. Earth-Science Reviews, 185, 15-3.

    Article  Google Scholar 

  • Lepvrier, C., & Magné, J. (1975). Le Néogène «postnappes» du Tell septentrional à l’Ouest d’Alger. Bulletin du la Société Géologique de France, 7, 612-619.

    Article  Google Scholar 

  • Locklair, R. E., & Savrda, C. E. (1998). Ichnology of rhythmically bedded Demopolis Chalk (Upper Cretaceous, Alabama): Implications for paleoenvironment, depositional cycle origins, and tracemaker behavior. Palaios, 13, 423-438.

    Article  Google Scholar 

  • Löwemark, L., Lin, H-L., & Sarnthein, M. (2006). Temporal variations of the trace fossil Zoophycos in a 425 ka long sediment record from the South China Sea: Implications for the ethology of the Zoophycos-producer. Geological Magazine, 143, 105-114.

    Article  Google Scholar 

  • Lucas, S. G., & Lerner, A. J. (2006). Invertebrate ichnofossil assemblages of the Upper Triassic Redonda Formation at Mesa Redonda, east-central New Mexico. New Mexico Museum of Natural History and Science Bulletin 37, 122-127.

    Google Scholar 

  • MacDonald, D. I. M. (1982). Palaeontology and ichnology of the Cumberland Bay Formation, South Georgia. British Antarctic Survey Bulletin, 57, 1-14.

    Google Scholar 

  • MacEachern, J. A., & Bann, K. L. (2008). The role of ichnology in refining shallow marine facies models. In G. J. Hampson, R. J. Steel, P. B. Burgess, & R. W. Dalrymple (Eds.), Recent advances in models of siliciclastic shallow-marine stratigraphy. Tulsa, USA: Society for Sedimentary Geology (SEPM) 90, 73-116.

  • MacEachern, J. A., & Gingras, M. K. (2007). Recognition of brackish-water trace fossil suites in the Cretaceous Western Interior Seaway of Alberta, Canada. In R.G. Bromley, L. A. Buatois, M. G. Mángano, J. F. Genise, & R. N. Melchor (Eds.), Sediment-Organism Interactions: a Multifaceted Ichnology. SEPM Special Publication, 89, 149-194.

  • MacEachern, J. A., & Pemberton, S. G. (1992). Ichnological aspects of Cretaceous shoreface successions and shoreface variability in the Western Interior Seaway of North America. In S. G. Pemberton (Ed.), Applications of Ichnology to Petroleum Exploration. SEPM, Core Workshop, 17,. 57-84.

  • MacEachern, J. A., Zaitlin, B. A., & Pemberton, S. G. (1999). A sharp-based sandstone of the Viking Formation, Joffre Field, Alberta, Canada, criteria for recognition of transgressively incised shoreface complexes. Journal of Sedimentary Research, 69, 876-892.

    Article  Google Scholar 

  • Mángano, M. G., & Buatois, L. A. (2004). Ichnology of Carboniferous tide-influenced environments and tidal flat variability in the North American Midcontinent. In D. McIlroy (Ed.), The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society Special Publication, 228, 157-178.

  • Mángano, M. G., Buatois, L. A., & Muñiz Guinea, F. (2005). Ichnology of the Alfarcito Member (Santa Rosita Formation) of northwest Argentina: animalsubstrate interactions in a lower Paleozoic wave-dominated shallow sea. Ameghiniana, 42, 641-668.

    Google Scholar 

  • Martinsson, A. (1970). Taphonomy of trace fossils. In T. P. Crimes, & J. C. Harper (Eds.), Trace fossils (pp. 323-330). Liverpool: Seel House Press.

    Google Scholar 

  • Massari, F., & Parea, G. C. (1988). Progradation of gravel beach sequences in a moderate- to high-energy, microtidal marine environment. Sedimentology, 35, 881-913.

    Article  Google Scholar 

  • McCann, T., & Pickerill, R. K. (1988). Flysch trace fossils from the Cretaceous Kodiak Formation of Alaska. Journal of Paleontology, 62, 330-348.

    Article  Google Scholar 

  • McIlroy, D. (2007). Lateral variability in shallow marine ichnofabrics; implications for the ichnofabric analysis method. Journal of the Geological Society of London, 164, 359-369.

    Article  Google Scholar 

  • Nagy, J., Tovar, F. J. R., & Reolid, M. (2016). Environmental significance of Ophiomorpha in a transgressive-regressive sequence of the Spitsbergen Paleocene. Polar Research, 35, 24192.

    Article  Google Scholar 

  • Nasiri, Y., Reza, M.-H., Mahboubi, A., Olivero, D., & Mosaddegh, H. (2018). Zoophycos ichnogenus distribution and paleoenvironmental analysis: examples from the Mississippian Mobarak Formation (Alborz Basin, Iran). Historical Biology, 32, 848-867.

    Article  Google Scholar 

  • Nemra, A. (2020). Lithostratigraphie, environnements sédimentaires et aspect génétique des concrétions calcaires des terrains miocènes de la région de Ténès (bordure nord orientale du bassin du Bas Chélif, Algérie nord-ouest) (pp. 1-223). PhD thesis. University of Oran 2, Algeria.

  • Nemra, A., Ouali Mehadji, A., Munnecke, A., Belkhedim, S., & Belkbir, L. (2019). Carbonate concretions in Miocene mudrocks in NW Algeria: Types, geochemistry, and origins. Facies, 65 (17).

  • Neurdin-Trescartes, J. (1992). Le remplissage sédimentaire du basin néogène du Chélif, modèle de référence de basins intramontagneux. PhD thesis. Université Pau et pays de l’Adour, France.

  • Olivero, D. (2003). Early Jurassic to Late Cretaceous evolution of Zoophycos in the French Subalpine Basin (southeastern France). Palaeogeography, Palaeoclimatology, Palaeoecology, 192, 59-78.

    Article  Google Scholar 

  • Olivero, D., & Gaillard, C. (1996). Palaeoecology of Jurassic Zoophycos from south-eastern France. Ichnos, 4, 249-260.

    Article  Google Scholar 

  • Olivero, D., & Gaillard, C. (2007). A constructional model for Zoophycos. In W. Miller III Elsevier (Ed.), Trace fossils: concepts, problems, prospects (pp. 466-477). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Pemberton, S. G., & Frey, R. W. (1982). Trace fossil nomenclature and the Planolites Palaeophycus dilemma. Journal of Paleontology, 56, 843-881.

    Google Scholar 

  • Pemberton, S. G., & Frey, R. W. (1984). Ichnology of storm-influenced shallow marine sequence: Cardium Formation (Upper Cretaceous) at Seebe, Alberta. In D. F. Scott, & D. J. Glass (Eds.), The Mesozoic of Middle North America. Canadian Society of Petroleum Geologists, Memoir 9, 281-304.

  • Pemberton, S. G., Van Wagoner, J. C., & Wach, G. D. (1992). Ichnofacies of a wave dominated shoreline. In S. G. Pemberton (Ed.), Application of ichnology to petroleum exploration. Society of Economic Paleontologists and Mineralogists Core Workshop, 17, 339-382.

  • Pemberton, S. G., Spila, M. V., Pulham, A. J., Saunders, T., Maceachern, J. A., Robbins, D., & Sinclair, I. (2001). Ichnology and sedimentology of shallow and marginal marine systems: Ben Nevis and Avalon Reservoirs, Jeanne D’Arc Basin. Geological Association of Canada, 15, 1-353.

    Google Scholar 

  • Pemberton, S. G., MacEachern, J. A., Dashtgard, S. E., Bann, K. L., Gingras, M. K., & Zonneveld, J. P. (2012). Shorefaces. In D. Knaust & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, 64, 563-604.

  • Perrodon, A. (1957). Etude géologique des basins néogènes sublittoraux de l’Algérie occidentale. Bulletin du Service de la Carte géolgique de l’Algérie, 12, 1-328.

    Google Scholar 

  • Pervesler, P., & Uchman, A. (2004). Ichnofossils from the type area of the Grund formation (Miocene, Lower Badenian) in Northern Lower Austria (Molasse Basin). Geologica Carpathica, 55, 103-110.

    Google Scholar 

  • Pieńkowski, G. (1985). Early Liassic trace fossil assemblages from the Holy Cross Mountains, Poland: Their distribution and marginal marine environments. In H. A Curran (Ed.), Biogenic structures: Their use in interpreting depositional Environments. Society of Economic Paleontologists and Mineralogists, Special Publication, 35, 37-51.

  • Pollard, J. E., Goldring, R., & Buck, S. G. (1993). Ichnofabrics containing Ophiomorpha: significance in shallow-water facies interpretation. Journal of the Geological Society of London, 150, 149-164.

    Article  Google Scholar 

  • Rajkonwar, C., Ralte, V. Z., Lianthangpuii, P. C., Tiwari, R. P., & Patel, S. J. (2014). Miocene ichnofossils from upper Bhuban Succession, Bhuban Formation (Surma Group), Mizoram, India. Journal of the Palaeontological Society of India, Special Publication, 5, 247-255.

    Google Scholar 

  • Reading, H. G., & Collinson, J. D. (1996). Clastic coasts. In H. G. Reading (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy (pp. 154–231). Oxford: Blackwell Science.

    Google Scholar 

  • Reineck, H.-E. (1963). Sedimentgefüge im Bereich der sudlichen Nordsee. Abhandlungen der Senckenbergische Naturforschende Gesellschaft, 505, 1-138.

    Google Scholar 

  • Riahi, S., Uchman, A., Stow, D., Soussi, M., & Lattrache, K. B. I. (2014). Deep-sea trace fossils of the Oligocene–Miocene Numidian Formation, northern Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology, 414, 155-177.

    Article  Google Scholar 

  • Sanders, D. (2000). Rocky shore-gravelly beach transition, and storm/post-storm changes of a Holocene gravelly beach (Kos Island, Aegean Sea): stratigraphic significance. Facies, 42, 227-244.

    Article  Google Scholar 

  • Sarkar, S., Ghosh, S. K., & Chakraborty, C. (2009). Ichnology of a Late Palaeozoic ice-marginal shallow marine succession: Talchir Formation, Satpura Gondwana basin, central India. Palaeogeography, Palaeoclimatology, Palaeoecology, 283, 28-45.

    Article  Google Scholar 

  • Schlirf, M., & Uchman, A. (2005). Revision of the ichnogenus Sabellarifex Richter, 1921 and its relationship to Skolithos Haldeman, 1840 and Polykladichnus Fürsich, 1981. Journal of Systematic Palaeontology, 3, 115-131.

    Article  Google Scholar 

  • Scott, J. J., Buatois, L. A., & Mángano, M. G. (2012). Lacustrine environments. In D. Knaust, & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology 64, 379-419.

  • Seike, K., Yanagishima, S., Nara, M., & Sasaki, T. (2011). Large Macaronichnus in modern shoreface sediments: Identification of the producer, the mode of formation, and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 311, 224-229.

    Article  Google Scholar 

  • SN REPAL (1952) Le basin néogène du Chélif. Publication du XIXe Congrès géologique international d’Alger, Alger 16 (1èresérie), 1-56.

  • Taylor, A. M., & Goldring, R. (1993). Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150(1), 141–148.

    Article  Google Scholar 

  • Tiwari, R. P., Rajkonwar, C., Lalchawimawii, Malsawma, P. L. J., Ralte, V. Z., & Patel, S. J. (2011). Trace fossils from Bhuban Formation, Surma Group (Lower to Middle Miocene) of Mizoram India and their palaeoenvironmental significance. Journal of Earth System Science, 120, 1127-1143.

    Article  Google Scholar 

  • Tonkin, N. S. (2012) Deltas. In D. Knaust, R. G. Bromley (Eds.) Trace fossils as indicators of sedimentary environments, 64, 507 – 528.

  • Uchman, A. (1995). Taxonomy and palaeoecology of flysch trace fossils: the Marnosoarenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria, 15, 3-115.

    Google Scholar 

  • Uchman, A. (1998). Taxonomy and ethology of flysch trace fossils: revision of the Marian Ksiazkiewicz collection and studies of complementary material. Annales Societatis Geologorum Poloniae, 68, 105-218.

    Google Scholar 

  • Uchman, A., & Demircan, H. (1999). A Zoophycos group trace fossil from Miocene flysch in southern Turkey: evidence for a U-shaped causative burrow. Ichnos, 6, 251-259.

    Article  Google Scholar 

  • Uchman, A., & Krenmayr, H. G. (1995). Trace fossils from the lower Miocene (Ottnangian) molasse deposits of Upper Austria. Paläontologische Zeitschrift, 69, 503-524.

    Article  Google Scholar 

  • Uchman, A., & Wetzel, A. (2012). Deep-sea fans. In R. G. Bromley, & D. Knaust, (Eds.), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, 64, 643-671.

  • Uchman, A., Pika-Biolzi, M., & Hochuli, P. A. (2004). Oligocene trace fossils from temporary flood plain ponds: an example from the freshwater molasses of Switzerland. Eclogae Geologicae Helvetiae, 97, 133-148.

    Article  Google Scholar 

  • Uchman, A., Hanken, N-M., Nielson, J. K., Grundvag, S-A., & Piasecki, S. (2016). Depositional environment, ichnological features and oxygenation of Permian to earliest Triassic marine sediments in central Spitsbergen, Svalbard, Polar Research, 35, 24782.

    Article  Google Scholar 

  • Vail, P. R. (1987). Seismic stratigraphy interpretation procedure. In A. W. Bally (Ed.) Atlas of Seismic Stratigraphy. American Association of Petroleum Geologists Studies in Geology 27, 1–10.

  • Vinn, O., & Toom, U. (2018). First description of rare Teichichnus burrows from carbonate rocks of the Lower Paleozoic of Estonia. Carnets de Géologie, 18, 305-312.

    Article  Google Scholar 

  • Virtasalo, J. J., Kotilainen, A. T., & Gingras, M. K. (2006). Trace fossils as indicators of environmental change in Holocene sediments of the Archipelago Sea, northern Baltic Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 453-467.

    Article  Google Scholar 

  • Wetzel, A. (2008). Recent bioturbation in the deep South China Sea: a uniformitarian ichnologic approach. Palaios, 23, 601-615.

    Article  Google Scholar 

  • Wetzel, A., & Werner, F. (1981). Morphology and ecological signifcance of Zoophycos in deep-sea sediments of NW Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 32, 185-212.

    Article  Google Scholar 

  • Zecchin, M. (2007). The architectural variability of small-scale cycles in shelf and ramp clastic systems: the controlling factors. Earth-Science Reviews, 84, 21-55.

    Article  Google Scholar 

  • Zhang, L.-J., Buatois, L. A., Gabriela Mángano, M., Qi, Y.-A., Zhang, X., Sun, S., & Tai, C. (2017). Early Triassic estuarine depauperate Cruziana Ichnofacies from the Sichuan area of South China and its implications for the biotic recovery in brackish-water settings after the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 351-360.

    Article  Google Scholar 

  • Zhang, L., Fan, R., & Gong, Y. (2015). Zoophycos macro-evolution since 541 Ma. Scientific Reports, 5, 14954.

    Article  Google Scholar 

Download references

Acknowledgements

Our grateful thanks go to the Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT) for funding this work. The authors wish to thank our colleagues for their help during the field work. We are also grateful to Sören Jensen (University of Extremadura, Spain) and an anonymous reviewer for their very constructive comments that helped us to improve the manuscript. We are also grateful to the Editor-in-Chief Dieter Uhl for his constructive remarks. Alan Lord (Senckenberg Research Institute and Natural History Museum Frankfurt) is very much acknowledged for improving the English.

Funding

Salim Belkhedim acknowledges financial support from the Deutscher Akademischer Austauschdienst (DAAD, funding n° 57588362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkrim Nemra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemra, A., Tellal, J., Knaust, D. et al. Middle Miocene trace fossils from the Tenes area (NW Algeria) and their palaeoenvironmental implications. Palaeobio Palaeoenv (2023). https://doi.org/10.1007/s12549-023-00594-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12549-023-00594-y

Keywords

Navigation