The late Miocene Beli Breg Basin (Bulgaria): palaeoecology and climate reconstructions based on pollen data

Abstract

Late Miocene sediments from the Beli Breg Coal Basin, Western Bulgaria, were investigated using spore-pollen analysis. Based on palynological characteristics, we describe dynamics and development of vegetation in the studied basin. The main types of palaeocoenoses are distinguished. The fossil flora is characterised by a variable structure of plant communities and diversity of dominant species. In general, the warm temperate representatives of the genera Quercus, Castanea, Corylopsis, Ulmus, and Carya dominated the composition of mixed mesophytic forest palaeocoenoses. Climate data reconstructed using the Coexistence Approach method show that the climate was of a moderately warm type, with a mean annual temperature of ca. 16 °C and temperatures ca. 4 °C by mean in the winter season, thus providing very favourable climatic conditions for the distribution of warm temperate vegetation. The established values for precipitation of about 1000 mm annually indicate the presence not only of a warm but also humid climate, with low seasonality and relatively short dry period.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Akgün, F., Kayseri, M. S., & Akkiraz, M. S. (2007). Palaeoclimatic evolution and vegetational changes during the late Oligocene-Miocene period in Western and Central Anatolia (Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 253(1–2), 56–90.

    Article  Google Scholar 

  2. Akkiraz, M. S., Kayseri, M. S., & Akgün, F. (2008). Palaeoecology of coal-bearing Eocene sediments in Central Anatolia (Turkey) based on quantitative palynological data. Turkish Journal of Earth Sciences, 17, 317–360.

    Google Scholar 

  3. Alçiçek, H., & Jiménez-Moreno, G. (2013). Late Miocene to Pliocene fluvio-lacustrine system in Karacasu Basin (SW Anatolia, Turkey): Depositional, palaeogeographic and palaeoclimatic implications. Sedimentary Geology, 291, 62–83.

    Article  Google Scholar 

  4. Bertini, A. (1994). Messinian-Zanclean vegetation and climate in North-Central Italy. Historical Biology, 9, 3–10.

    Article  Google Scholar 

  5. Bertini, A. (2002). Palynological evidence of upper Neogene environments in Italy. Acta Universitatis Carolinae, Geologica, 46, 15–25.

    Google Scholar 

  6. Bertini, A. (2006). The northern Apennines palynological record as a contribute for the reconstruction of the Messinian palaeoenvironments. Sedimentary Geology, 188-189, 235–258.

    Article  Google Scholar 

  7. Bertini, A. (2010). Pliocene to Pleistocene palynoflora and vegetation in Italy – State of the art. Quaternary International, 225, 5–24.

    Article  Google Scholar 

  8. Biltekin, D., Popescu, S.-M., Suc, J.-P., Quézel, P., Jiménez-Moreno, G., Yavuz, N., & Çağatay, M. N. (2015). Anatolia: A long-time plant refuge area documented by pollen records over the last 23 million years. Review of Palaeobotany and Palynology, 215, 1–22.

  9. Bozukov, V., Utescher, T., Ivanov, D., Tsenov, B., Ashraf, A. R., & Mosbrugger, V. (2011). New results for the macroflora of the Beli Breg Lignite Basin, West Bulgaria. Phytologia Balcanica, 17(1), 3–19.

    Google Scholar 

  10. Bruch, A. A., & Gabrielyan, I. (2002). Quantitative data of the Neogene climatic development in Armenia and Nakhichevan. Acta Universitatis Carolinae, Geologica, 46, 41–48.

    Google Scholar 

  11. Bruch, A. A., & Kovar-Eder, J. (2003). Climatic evaluation of the flora from Oberdorf (Styria, Austria, Early Miocene) based on the Coexistence Approach. Phytologia Balcanica, 9(2), 175–185.

  12. Bruch, A. A., Fauquette, S., & Bertini, A. (2002). Quantitative climate reconstructions on Miocene palynofloras of the Velona Basin (Tuscany, Italy). Acta Universitatis Carolinae, Geologica, 46, 27–37.

    Google Scholar 

  13. Bruch, A. A., Utescher, T., Olivares, C. A., Dolakova, N., Ivanov, D., & Mosbrugger, V. (2004). Middle and Late Miocene spatial temperature patterns and gradients in Europe — Preliminary results based on palaeobotanical climate reconstructions. Courier Forschungsinstitut Senckenberg, 249, 15–27.

    Google Scholar 

  14. Bruch, A. A., Utescher, T., Mosbrugger, V., Gabrielyan, I., & Ivanov, D. (2006). Late Miocene climate in the circum-Alpine realm — A quantitative analysis of terrestrial palaeofloras. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 270–280.

    Article  Google Scholar 

  15. Bruch, A. A., Uhl, D., & Mosbrugger, V. (2007). Miocene climate in Europe — Patterns and evolution: A first synthesis of NECLIME. Palaeogeography, Palaeoclimatology, Palaeoecology, 253(1–2), 1–7.

    Article  Google Scholar 

  16. Bruch, A. A., Utescher, T., & Mosbrugger, V. (2011). Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 202–211.

    Article  Google Scholar 

  17. Casas-Gallego, M., Marza, A., & Tudor, E. (2020). Palaeovegetation and palaeoclimate evolution during the late Miocene to early Pliocene of SE Romania. Geological Journal. https://doi.org/10.1002/gj.3734.

  18. Durak, S. D. Ü., & Akkiraz, M. S. (2016). Late Oligocene-early Miocene palaeoecology based on pollen data from the Kalkım-Gönen Basin (Northwest Turkey). Geodinamica Acta, 28, 295–310.

    Article  Google Scholar 

  19. Fauquette, S., & Bertini, A. (2003). Quantification of the northern Italy Pliocene climate from pollen data: Evidence for a very peculiar climate pattern. Boreas, 32(2), 361–369.

    Article  Google Scholar 

  20. Fauquette, S., Guiot, J., & Suc, J.-P. (1998). A method for climatic reconstruction of the Mediterranean Pliocene using pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 144(1–2), 183–201.

    Article  Google Scholar 

  21. Fauquette, S., Suc, J.-P., Bertini, A., Popescu, S.-M., Warny, S., Bachiri Taoufiq, N., Perez Villa, M.-J., Chikhi, H., Feddi, N., Subally, D., Clauzon, G., & Ferrier, J. (2006). How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology, 238(1–4), 281–301.

    Article  Google Scholar 

  22. Fauquette, S., Suc, J.-P., Jiménez-Moreno, G., Micheels, A., Jost, A., Favre, E., Bachiri-Taoufiq, N., Bertini, A., Clet-Pellerin, M., Diniz, F., Farjanel, G., Feddi, N., & Zheng, Z. (2007). Latitudinal climatic gradients in the Western European and Mediterranean regions from the Mid-Miocene (c. 15 Ma) to the Mid-Pliocene (c. 3.5 Ma) as quantified from pollen data. Geological Society Special Publication, 481–502.

  23. Feurdean, A., & Vasiliev, I. (2019). The contribution of fire to the late Miocene spread of grasslands in eastern Eurasia (Black Sea region). Scientific Reports, 9(1), 6750.

    Article  Google Scholar 

  24. Forrest, M., Eronen, J. T., Utescher, T., Knorr, G., Stepanek, C., Lohmann, G., & Hickler, T. (2015). Climate-vegetation modelling and fossil plant data suggest low atmospheric CO2 in the late Miocene. Climate of the Past, 11, 1701–1732.

    Article  Google Scholar 

  25. François, L., Utescher, T., Favre, E., Henrot, A.-J., Warnant, P., Micheels, A., Erdei, B., Suc, J.-P., Cheddadi, R., & Mosbrugger, V. (2011). Modelling Late Miocene vegetation in Europe: Results of the CARAIB model and comparison with palaeovegetation data. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 359–378.

    Article  Google Scholar 

  26. Henrot, A. J., Utescher, T., Erdei, B., Dury, M., Hamon, N., Ramstein, G., Krapp, M., Herold, N., Goldner, A., Favre, E., Munhoven, G., & François, L. (2017). Middle Miocene climate and vegetation models and their validation with proxy data. Palaeogeography, Palaeoclimatology, Palaeoecology, 467, 95–119.

    Article  Google Scholar 

  27. Hristova, V., & Ivanov, D. (2014). Late Miocene vegetation and climate reconstruction based on pollen data from the Sofia Basin (West Bulgaria). Palaeoworld, 23(3–4), 357–369.

    Article  Google Scholar 

  28. Ivanov, D. (2010). Palaeoclimate reconstructions for the late Miocene in the Southeast Bulgaria using pollen data from the Tundzha Basin. In G. Christofides, N. Kantiranis, D.S. Kostopoulus, & A.A. Chatzipetros (Eds.) Proceedings of the XIX CBGA Congress (pp. 269–278). Thessaloniki, Greece: Scientific Annals, School of Geology, Aristotle University of Thessaloniki, Special Volume 100.

  29. Ivanov, D. (2015). Climate and vegetation change during the late Miocene in Southwest Bulgaria based on pollen data from the Sandanski Basin. Review of Palaeobotany and Palynology, 221, 128–137.

    Article  Google Scholar 

  30. Ivanova, D., & Koleva-Rekalova E. (2004). Agglutinated foraminifers in the framework of southwestern Bulgarian palaeoenvironmental evolution during the Late Jurassic and Early Cretaceous. In M. Bubik, & M.A. Kaminski (Eds.) Proceedings of the Sixth International Workshop on Agglutinated Foraminifera. Grzybowski Foundation, spec. Publ., 8, 217–227.

  31. Ivanov, D., & Lazarova, M. (2005). Late Miocene flora from Tundzha Basin. Preliminary palynological data. Comptes Rendus de l'Académie Bulgare des Sciences, 58(7), 799–804.

    Google Scholar 

  32. Ivanov, D., & Lazarova, M. (2019). Past climate and vegetation in Southeast Bulgaria — A study based on the late Miocene pollen record from the Tundzha Basin. Journal of Palaeogeography, 8(1), 43–67.

    Article  Google Scholar 

  33. Ivanov, D., & Worobiec, E. (2017). Middle Miocene (Badenian) vegetation and climate dynamics in Bulgaria and Poland based on pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 467, 83–94.

    Article  Google Scholar 

  34. Ivanova, D., Stoykova, K., & Lakova, I. (2000). New microfossil data on the age relationship between Slivnitsa and Salash Formation in Dragoman region, Western Bulgaria. Comptes Rendus de l'Académie Bulgare des Sciences, 53(4), 71–74.

    Google Scholar 

  35. Ivanov, D., Ashraf, A. R., Mosbrugger, V., & Palamarev, E. (2002). Palynological evidence for Miocene climate change in the Forecarpathian Basin (Central Paratethys, NW Bulgaria). Palaeogeography, Palaeoclimatology, Palaeoecology, 178(1–2), 19–37.

  36. Ivanov, D., Ashraf, A. R., Utescher, T., Mosbrugger, V., & Slavomirova, E. (2007a). Late Miocene vegetation and climate of the Balkan region: Palynology of the Beli Breg Coal Basin sediments. Geologica Carpathica, 58(4), 367–381.

    Google Scholar 

  37. Ivanov, D., Bozukov, V., & Koleva-Rekalova, E. (2007b). Late Miocene flora from SE Bulgaria: Vegetation, landscape and climate reconstruction. Phytologia Balcanica, 13(3), 281–292.

    Google Scholar 

  38. Ivanov, D. A., Ashraf, A. R., & Mosbrugger, V. (2007c). Late Oligocene and Miocene climate and vegetation in the Eastern Paratethys area (northeast Bulgaria), based on pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 255(3–4), 342–360.

  39. Ivanov, D., Djorgova, N., & Slavomirova, E. (2010). Palynological subdivision of Late Miocene sediments from Karlovo Basin, Central Bulgaria. Phytologia Balcanica, 16(1), 23–42.

    Google Scholar 

  40. Ivanov, D., Utescher, T., Mosbrugger, V., Syabryaj, S., Djordjević-Milutinović, D., & Molchanoff, S. (2011). Miocene vegetation and climate dynamics in eastern and central Paratethys (southeastern Europe). Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 262–275.

    Article  Google Scholar 

  41. Ivanov, D., Utescher, T., Ashraf, A. R., Mosbrugger, V., Bozukov, V., Djorgova, N., & Slavomirova, E. (2012). Late Miocene palaeoclimate and ecosystem dynamics in southwestern Bulgaria a study based on pollen data from the Gotse-Delchev Basin. Turkish Journal of Earth Sciences, 2, 187–211.

  42. Ivanov, D., Tsenov, B., Utescher, T., Kováčová, M., Mosbrugger, V., & Ashraf, A. R. (2019). Climate reconstructions based on Miocene leaf flora from NW Bulgaria: Comparing leaf physiognomy and nearest living relative approach. Phytologia Balcanica, 25(2), 137–146.

    Google Scholar 

  43. Jiménez-Moreno, G. (2006). Progressive substitution of a subtropical forest for a temperate one during the middle Miocene climate cooling in Central Europe according to palynological data from cores Tengelic-2 and Hidas-53 (Pannonian Basin, Hungary). Review of Palaeobotany and Palynology, 142, 1–14.

    Article  Google Scholar 

  44. Jiménez-Moreno, G., & Suc, J.-P. (2007). Middle Miocene latitudinal climatic gradient in Western Europe: Evidence from pollen records. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 208–225.

    Article  Google Scholar 

  45. Jiménez-Moreno, G., Rodriguez-Tovar, F. J., Pardo-Iguzquiza, E., Fauquette, S., Suc, J.-P., & Muller, P. (2005). High-resolution palynological analysis in late early-middle Miocene core from the Pannonian Basin, Hungary: Climatic changes, astronomical forcing and eustatic fluctuations in the Central Paratethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(1), 73–97.

  46. Jiménez-Moreno, G., Aziz, H. A., Rodriguez-Tovar, F. J., Pardo-Iguzquiza, E., & Suc, J.-P. (2007a). Palynological evidence for astronomical forcing in early Miocene lacustrine deposits from Rubielos de Mora Basin (NE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 252(3), 601–616.

    Article  Google Scholar 

  47. Jiménez-Moreno, G., Fauquette, S., Suc, J.-P., & Aziz, H. A. (2007b). Early Miocene repetitive vegetation and climatic changes in the lacustrine deposits of the Rubielos de Mora Basin (Teruel, NE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 250(1), 101–113.

    Article  Google Scholar 

  48. Jiménez-Moreno, G., Popescu, S.-M., Ivanov, D., & Suc, J.-P. (2007c). Neogene flora, vegetation and climate dynamics in southeastern Europe and the northeastern Mediterranean. In M. Williams, A. M. Haywood, F. J. Gregory, & D. N. Schmidt (Eds.) Deep-time perspectives on climate change: Marrying the signal from computer models and biological proxies (pp. 503–516). London: The Micropalaeontological Society, Geological Society, Special Publications.

  49. Jiménez-Moreno, G., Fauquette, S., & Suc, J.-P. (2008a). Vegetation, climate and palaeoaltitude reconstructions of the eastern Alps during the Miocene based on pollen records from Austria, Central Europe. Journal of Biogeography, 35(9), 1638–1649.

    Article  Google Scholar 

  50. Jiménez-Moreno, G., Mandic, O., Harzhauser, M., Pavelic, D., & Vranjkovic, A. (2008b). Vegetation and climate dynamics during the early middle Miocene from Lake Sinj (Dinaride Lake system, SE Croatia). Review of Palaeobotany and Palynology, 152(3–4), 270–278.

    Google Scholar 

  51. Jiménez-Moreno, G., de Leeuw, A., Mandic, O., Harzhauser, M., Pavelic, D., Krijgsman, W., & Vranjkovic, A. (2009). Integrated stratigraphy of the Early Miocene lacustrine deposits of Pag Island (SW Croatia): Palaeovegetation and environmental changes in the Dinaride Lake system. Palaeogeography, Palaeoclimatology, Palaeoecology, 280, 193–206.

    Article  Google Scholar 

  52. Kayseri-Özer, M. S. (2017). Cenozoic vegetation and climate change in Anatolia — A study based on the IPR-vegetation analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 467, 37–68.

    Article  Google Scholar 

  53. Kayseri-Özer, M. S., Karadenizli, L., Akgün, F., Oyal, N., Saraç, G., Şen, Ş., Tunoğlu, C., & Tuncer, A. (2017). Palaeoclimatic and palaeoenvironmental interpretations of the late Oligocene, late Miocene-early Pliocene in the Çankırı-Çorum Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 467, 16–36.

    Article  Google Scholar 

  54. Kayseri-Özer, M.S., Atalar, M., & Kováčová, M. (2019). Palaeovegetation evolution of the Çankırı Basin during the Mio-Pliocene (Central Anatolia) based on the IPR analysis method. In L. W. van den Hoek Ostende, S. Mayda, & T. Kaya (Eds.) Taking the Orient Express? The role of Anatolia in mediterranean Neogene palaeobiogeography palaeobiodiversity and palaeoenvironment, 99(4), 571–590.

  55. Konjarov, G. (1932). Die Braunkohlen Bulgariens. Sofia: Royal Printing House. [in Bulgarian, German abstract]

  56. Kováčová, M., Doláková, N., & Kováč, M. (2011). Miocene vegetation pattern and climate change in the northwestern Central Paratethys domain (Czech and Slovak Republic). Geologica Carpathica, 62(3), 251–266.

  57. Kvaček, Z., Velitzelos, D., & Velitzelos, E. (2002). Late Miocene flora of Vegora, Macedonia, N. Greece: University of Athens.

    Google Scholar 

  58. Kvaček, Z., Kováč, M., Kovar-Eder, J., Doláková, N., Jechorek, H., Parashiv, V., Kováčová, M., & Sliva, Ľ. (2006). Miocene evolution of the landscape and vegetation in the Central Paratethys. Geologica Carpathica, 57(4), 295–310.

  59. Laskar, J. (1990). The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones. Icarus, 88(2), 266–291. https://doi.org/10.1016/0019-1035(90)90084-M.

    Article  Google Scholar 

  60. Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., & Levrard, B. (2004). A longterm numerical solution for the insolation quantities of the earth. Astronomy and Astrophysics, 428, 261–285.

    Article  Google Scholar 

  61. Maisch, M. W. (2014). Mammalian remains (Mammalia: Perrissodactyla, Proboscidea) from the late Miocene Kaisiynitsa Formation of the Beli Breg Basin (Bulgaria). Neues Jahrbuch für Geologie und Paläontologie (Abhandlungen), 272(1), 109–114.

  62. Meulenkamp, J. E., & Sissingh, W. (2003). Tertiary palaeogeography and tectonostratigraphic evolution of the northern and southern peri-Tethys platforms and the intermediate domains of the African–Eurasian convergent plate boundary zone. Palaeogeography, Palaeoclimatology, Palaeoecology, 196, 209–228.

    Article  Google Scholar 

  63. Meulenkamp, J. E., Kovac, M., & Cicha, I. (1996). On late Oligocene to Pliocene depocentre migrations and the evolution of the Carpathian-Pannonian system. Tectonophysics, 266, 301–317.

    Article  Google Scholar 

  64. Mosbrugger, V., & Utescher, T. (1997). The Coexistence Approach — a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 134(1–4), 61–86.

    Article  Google Scholar 

  65. Mosbrugger, V., Utescher, T., & Dilcher, D. L. (2005). Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences, 102(42), 14964–14969.

    Article  Google Scholar 

  66. Nikolov, I. (1985). Catalogue of the localities of Tertiary mammals in Bulgaria. Palaeontology, Stratigraphy and Litholology, 21, 43–62.

  67. Nix, H. (1982). Environmental determinants of biogeography and evolution in Terra Australis. In W. R. Barker & P. J. M. Greenslade (Eds.) Evolution of the Flora and fauna of arid Australia (pp. 47–66). Frewville: Peacock Publishing.

  68. Ognjanova-Rumenova, N., & Yaneva, M. (2000). Preliminary data on the palaeoecological development of Beli Brjag Basin, SW Bulgaria. (pp. 160–161). In Abstracts Geological Conference. Sofia: Bulgarian Geological Society.

  69. Palamarev, E. (1972). Die Gattung Tectochara im Pliozänbecken der Grube “Bolschewik”. Izvestiya na Botanicheskaya Institut (Sofia) 22, 127-133. [in Bulgarian with German abstract]

  70. Palamarev, E. (1989). Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. Plant Systematics and Evolution, 162, 93–107.

  71. Palamarev, E., & Ivanov, D. (1998). Über einige Besonderheiten der tertiären Floren in Bulgarien und ihre Bedeutung für die Entwicklungsgeschichte der Pflanzenwelt in Europa. Acta Palaeobotanica, 38, 147–165.

    Google Scholar 

  72. Palamarev, E., & Ivanov, D. (2001). Charakterzüge der Vegetation des Sarmatien (Mittel- bis Obermiozän) im südlichen Teil des Dazischen Beckens (Südost Europa). Palaeontographica B, 259, 209–220.

    Google Scholar 

  73. Palamarev, E., & Ivanov, D. (2004). Badenian vegetation of Bulgaria: Biodiversity, palaeoecology and palaeoclimate. Courier Forschungsinstitut Senckenberg, 249, 63–69.

    Google Scholar 

  74. Palamarev, E., & Kitanov, G. (1988). The fossil macroflora of the Beli Brjag Coal-Basin. In 100th Anniversary of Acad. Nikolaj A. Stojanov (pp.183-206). Sofia: Publishing House of Bulgarian Academy of Sciences. [in Bulgarian with English abstract]

  75. Palamarev, E., Ivanov, D., & Bozukov, V. (1999). Paläoflorenkomplexe im Zentralbalkanischen Raum und ihre Entwicklungsgeschichte von der Wende Oligozän/Miozän bis ins Villafranchien. Flora Tertiaria Mediterranea, 6(5), 1–99.

    Google Scholar 

  76. Palamarev, E., Bozukov, V., & Ivanov, D. (2002). Late Neogene floras from Bulgaria: Vegetation and palaeoclimate estimates. Acta Universitatis Carolinae, Geologica, 46, 57–63.

    Google Scholar 

  77. Popescu, S.-M. (2001). Repetitive changes in early Pliocene vegetation revealed by high resolution pollen analysis: Revised cyclostratigraphy of southwestern Romania. Review of Palaeobotany and Palynology, 120, 181–202.

    Article  Google Scholar 

  78. Popescu, S.-M., Krijgsman, W., Suc, J.-P., Clauzon, G., Mărunţeanu, M., & Nica, T. (2006). Pollen record and integrated high-resolution chronology of the early Pliocene Dacic Basin (southwestern Romania). Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 78–90.

    Article  Google Scholar 

  79. Popova, S., Utescher, T., Gromyko, D. V., Mosbrugger, V., Herzog, E., & François, L. (2013). Vegetation change in Siberia and the northeast of Russia during the Cenozoic cooling: A study based on diversity of plant functional types. Palaios, 28, 418–432.

    Article  Google Scholar 

  80. Popova, S., Utescher, T., Gromyko, D. V., Bruch, A. A., Henrot, A.-J., & Mosbrugger, V. (2017). Cenozoic vegetation gradients in the mid- and higher latitudes of Central Eurasia and climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 467, 69–82.

    Article  Google Scholar 

  81. Popova, S., Utescher, T., Gromyko, D. V., Mosbrugger, V., & François, L. (2019). Dynamics and evolution of Turgay-type vegetation in Western Siberia throughout the early Oligocene to earliest Miocene - a study based on diversity of plant functional types in the carpological record: Oligocene vegetation of western Siberia. Journal of Systematics and Evolution, 57(2), 129–141.

    Article  Google Scholar 

  82. Popov, S. V., Shcherba, I. G., Ilyina, L. B., Nevesskaya, L. A., Paramonova, N. P., Khondkarian, S. O., & Magyar, I. (2006). Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 238(1–4), 91–106.

    Article  Google Scholar 

  83. Rögl, F. (1998). Palaeogeographic considerations for Mediterranean and paratethys seaways (Oligocene to Miocene). Annalen des Naturhistorischen Museums in Wien (A), 99, 279–310.

  84. Rögl, F. (1999). Mediterranean and paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica, 50, 339–349.

    Google Scholar 

  85. Sacchi, M., & Müller, P. (2004). Orbital cyclicity and astronomical calibration of the upper Miocene continental succession cored at the Iharosbereny-I well site, Western Pannonian basin, Hungary. In Cyclostratigraphy: Approaches and Case Histories, 275-294, https://doi.org/10.2110/pec.04.81.0275.

  86. Steenbrink, J., Hilgen, F., Krijgsman, W., Wijbrans, J. R., & Meulenkamp, J. E. (2006). Late Miocene to early Pliocene depositional history of the intramontane Florina-Ptolemais-Servia Basin, NW Greece: Interplay between orbital forcing and tectonics. Palaeogeography, Palaeoclimatology, Palaeoecology, 238(1), 151–178.

    Article  Google Scholar 

  87. Stringmeteo. (2018). Climate data for reference Bulgarian stations (1961–1990, Monthly weather-fore-cast of NIMH). https://www.stringmeteo.com/synop/bg_climate.php?m1=7&m2=8&station. Accessed 8 Nov 2018. [in Bulgarian]

  88. Suc, J.-P. (1984). Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature, 307, 429–432.

    Article  Google Scholar 

  89. Syabryaj, S., Utescher, T., Molchanoff, S., & Bruch, A. A. (2007). Vegetation and palaeoclimate in the Miocene of Ukraine. Palaeogeography, Palaeoclimatology, Palaeoecology, 253(1–2), 153–168.

    Article  Google Scholar 

  90. Traiser, C., Klotz, S., Uhl, D., & Mosbrugger, V. (2005). Environmental signals from leaves — A physiognomic analysis of European vegetation. New Phytologist, 166, 465–484.

    Article  Google Scholar 

  91. Traiser, C., Uhl, D., Klotz, S., & Mosbrugger, V. (2007). Leaf physiognomy and palaeoenvironmental estimates – An alternative technique based on an European calibration. Acta Palaeobotanica, 47(1), 181–201.

    Google Scholar 

  92. Uhl, D., Mosbrugger, V., Bruch, A. A., & Utescher, T. (2003). Reconstructing palaeotemperatures using leaf floras – Case studies for a comparison of Leaf Margin Analysis and the coexistence approach. Review of Palaeobotany and Palynology, 126, 49–64.

  93. Uhl, D., Bruch, A., Traiser, C., & Klotz, S. (2006). Palaeoclimate estimates for the middle Miocene Schrotzburg flora (S Germany): A multi-method approach. International Journal of Earth Sciences, 95(6), 1071–1085.

    Article  Google Scholar 

  94. Uhl, D., Klotz, S., Traiser, C., Thiel, C., Utescher, T., Kowalski, E., & Dilcher, D. L. (2007a). Cenozoic paleotemperatures and leaf physiognomy – A European perspective. Palaeogeography, Palaeoclimatology, Palaeoecology, 248, 24–31.

    Article  Google Scholar 

  95. Uhl, D., Traiser, C., Griesser, U., & Denk, T. (2007b). Fossil leaves as palaeoclimate proxies in the Palaeogene of Spitsbergen (Svalbard). Acta Palaeobotanica, 47(1), 89–107.

    Google Scholar 

  96. Utescher, T., & Mosbrugger, V. (1990-2018). The Palaeoflora Database at http://www.palaeoflora.de.

  97. Utescher, T., & Mosbrugger, V. (2007). Eocene vegetation patterns reconstructed from plant diversity — A global perspective. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3–4), 243–271. https://doi.org/10.1016/j.palaeo.2006.10.022.

    Article  Google Scholar 

  98. Utescher, T., Djordjevic-Milutinovic, D., Bruch, A., & Mosbrugger, V. (2007). Palaeoclimate and vegetation change in Serbia during the last 30 ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 253(1–2), 141–152. https://doi.org/10.1016/j.epsl.2017.05.019.

    Article  Google Scholar 

  99. Utescher, T., Ivanov, D., Harzhauser, M., Bozukov, V., Ashraf, A. R., Rolf, C., Urbat, M., & Mosbrugger, V. (2009a). Cyclic climate and vegetation change in the late Miocene of Western Bulgaria. Palaeogeography, Palaeoclimatology, Palaeoecology, 272(1–2), 99–114.

    Article  Google Scholar 

  100. Utescher, T., Mosbrugger, V., Ivanov, D., & Dilcher, D. L. (2009b). Present-day climatic equivalents of European Cenozoic climates. Earth and Planetary Science Letters, 284(3–4), 544–552.

    Article  Google Scholar 

  101. Utescher, T., Böhme, M., & Mosbrugger, V. (2011a). The Neogene of Eurasia: Spatial gradients and temporal trends — The second synthesis of NECLIME. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 196–201.

    Article  Google Scholar 

  102. Utescher, T., Bruch, A. A., Micheels, A., Mosbrugger, V., & Popova, S. (2011b). Cenozoic climate gradients in Eurasia — A palaeo-perspective on future climate change? Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 351–358.

    Article  Google Scholar 

  103. Utescher, T., Böhme, M., Hickler, T., Liu, Y.-S.(C.), Mosbrugger, V., & Portmann, F. (2013). Continental climate and vegetation patterns in North America and Western Eurasia before and after the closure of the Central American Seaway. In GSA 125th Anniversary Annual Meeting. Denver. Abstracts with Programs. Geological Society of America 45(7), 302.

  104. Utescher, T., Bruch, A. A., Erdei, B., François, L., Ivanov, D., Jacques, F. M. B., Kern, A. K., & Liu, Y.-S.(C.), Mosbrugger, V., & Spicer, R.A. (2014). The coexistence approach — Theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeography, Palaeoclimatology, Palaeoecology, 410, 58–73.

    Article  Google Scholar 

  105. Utescher, T., Bondarenko, O. V., & Mosbrugger, V. (2015). The Cenozoic cooling – Continental signals from the Atlantic and Pacific side of Eurasia. Earth and Planetary Science Letters, 415, 121–133.

    Article  Google Scholar 

  106. Utescher, T., Dreist, A., Henrot, A.-J., Hickler, T., Liu, Y.-S., & (C.), Mosbrugger, V., Portmann, F. T., & Salzmann, U. (2017). Continental climate gradients in North America and Western Eurasia before and after the closure of the Central American Seaway. Earth and Planetary Science Letters, 472, 120–130.

    Article  Google Scholar 

  107. Vasiliev, I., Karakitsios, V., Bouloubassi, I., Agiadi, K., Kontakiotis, G., Antonarakou, A., Triantaphyllou, M., Gogou, A., Kafousia, N., de Rafélis, M., Zarkogiannis, S., Kaczmar, F., Parinos, C., & Pasadakis, N. (2018). Large sea surface temperature, salinity, and productivity-preservation changes preceding the onset of the Messinian salinity crisis in the eastern Mediterranean Sea. Paleoceanography and Paleoclimatology, 34, 182–202.

    Article  Google Scholar 

  108. Vatsev, M., & Zdravkov, A. (2004). On the stratigraphy of the Neogene sediments from Beli Breg Basin, West Sredna Gora zone (Preliminary results). In Annual Scientific Conference “Geology 2004” (pp. 95-96). Sofia: Bulgarian Geological Society.

  109. Velev, S. (1997). Contemporary air temperature and precipitation fluctuations in Bulgaria. In M. Jordanova, & D. Donchev (Eds.) Geography of Bulgaria (pp. 145–150). Sofia: Publishing House Bulgarian Academy Sciences. [in Bulgarian with English abstract]

  110. Wilf, P. (1997). When are leaves good thermometers? A new case for Leaf Margin Analysis. Paleobiology, 23, 373–390.

  111. Wolfe, J. A. (1993). A method of obtaining climatic parameters from leaf assemblages. U.S. Geological Survey Bulletin, 2040, 1–71.

    Google Scholar 

  112. Yavuz, N., Culha, G., Demirer, Ş. S., Utescher, T., & Aydın, A. (2017). Pollen, ostracod and stable isotope records of palaeoenvironment and climate: Upper Miocene and Pliocene of the Çankırı Basin (Central Anatolia, Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 467, 149–165.

    Article  Google Scholar 

  113. Yovchev, Y. S. (1960). Mineral resources of P. R. Bulgaria. Coals and bituminous clays. Sofia: Tehnika. [in Bulgarian]

  114. Zagorchev, I., Kostadinov, V., Chunev, D., Dimitrova, R., Sapunov, I., Tchoumatchenko, P., & Yanev, S. (1995). Explanatory notes to the geological map of Bulgaria, Scale 1: 100,000. Vlasotnitze and Breznik map sheet (pp. 1–72). Sofia: Geological and Geophysical Corporation. [in Bulgarian, English abstract]

  115. Zdravkov, A., & Kortenski, J. (2003). Petrology and depositional environment of the coals from Beli Breg Basin, Bulgaria. In Abstracts Annual Scientific Conference 2003. Sofia: Bulgarian Geological Society. Sofia. https://www.bgd.gea.uni-sofia.bg/summanual_2003_6.htm#39.

  116. Zdravkov, A., & Kortenski, J. (2004). Maceral composition and depositional environment of the coals from Beli Breg Basin, Bulgaria. Review of the Bulgarian Geological Society, 65, 157–166.

Download references

Acknowledgements

Our sincere thanks go to Marianna Kováčová and Funda Akgün (reviewers), and Angela Bruch (guest-editor) who greatly improved the paper by their comments and suggestions.

Funding

This work was supported by the Project 436 Bul. 113/139/0-1/AS 103/3-1 (DFG, Germany) and by the National Science Program “Environmental Protection and Reduction of Risks of Adverse Events and Natural Disasters”, approved by the Resolution of the Council of Ministers № 577/17.08.2018 and supported by the Ministry of Education and Science (MES) of Bulgaria (Agreement № D01- 230/06.12.2018 and № DO1-322/18.12.2019). It is a contribution to the International Network Programme NECLIME (www.neclime.de).

Author information

Affiliations

Authors

Contributions

All authors read and approved final manuscript.

Corresponding author

Correspondence to Dimiter Ivanov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue “Palaeobotanical contributions in honour of Volker Mosbrugger”

Supplementary Information

ESM 1

(XLSX 21 kb)

ESM 2

(XLSX 12 kb)

ESM 3

(XLSX 40 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ivanov, D., Utescher, T., Djorgova, N. et al. The late Miocene Beli Breg Basin (Bulgaria): palaeoecology and climate reconstructions based on pollen data. Palaeobio Palaeoenv 101, 79–102 (2021). https://doi.org/10.1007/s12549-020-00475-8

Download citation

Keywords

  • Balkans
  • Coexistence approach
  • Pollen
  • Palynology
  • Plant functional types
  • Palaeoecology
  • Palaeoclimate