Palynofacies as a palaeoenvironment and hydrocarbon source potential assessment tool: An example from the Cretaceous of north Western Desert, Egypt


Optical examination employing transmitted light and UV-fluorescence microscopy of palynological preparations of eighteen cutting samples representing the Alam El Bueib Member (Hautervian-Barremian), Kharita/lower Bahariya (Cenomanian), and Abu Roash (Turonian-Santonian) formations collected from the Faghur Hj5-1 well, north Western Desert, Egypt, allows the identification of three different palynological assemblages from the studied rock units. These assemblages are mainly non-marine but apparently marine at the base of the Alam El Bueib Member, as evidenced by dinocyst occurrence. In addition, the presence of the Pediastrum and chlorophycean algae ecozone, recognised in previous works, is a good datum for the Abu Roash Formation in the north Western Desert of Egypt. Three associations of palynofacies linked to lithofacies changes are recognised and employed in identification of depositional environments. The Alam El Bueib samples yielded mixed kerogen assemblages of non-marine and marine organic facies. The Kharita/lower Bahariya interval is mostly barren, possibly due to prevailing sandstone lithofacies, except for one sample at its upper part which contains a diverse palynological assemblage. The overlying Abu Roash Formation has a homogeneous kerogen composition comprising mainly granular fluorescent AOM and algae as well as rare palynomorphs. Qualitative as well as quantitative variations of palynofacies allow the reconstruction of the depositional environment. The obtained data have the potential for discriminating spatial and redox status differences and providing also information about terrestrial/freshwater influxes. Results support the model that the Alam El Bueib Member was deposited in a marginal dysoxic-anoxic to distal suboxic-anoxic basin. The Kharita/lower Bahariya unit in the studied well was deposited under marginal dysoxic-anoxic conditions whereas the overlying Abu Roash Formation in a distal suboxic-anoxic basin. Palynofacies results also show that the studied material comprises two distinct facies of kerogen. First, Type II > I kerogen (AOM-rich) is overwhelmingly dominant in the Abu Roash Formation and a few samples from the Alam El Bueib Member which are presumed highly oil-prone, whereas Type III kerogen (phytoclast-rich) is particularly common in the Alam El Bueib Member and Kharita/lower Bahariya unit which are considered gas-prone. Thermal maturity determinations obtained from colour changes of smooth-walled palynomorphs reveal that Alam El Bueib samples belong to immature to mature stages; however, Kharita/lower Bahariya and Abu Roash samples are within the immature phase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Abdel-Kireem, M. R., Schrank, E., Samir, A. M., & Ibrahim, M. I. A. (1996). Cretaceous palaeoecology, palaeogeography and palaeoclimatology of the northern Western Desert, Egypt. Journal of African Earth Sciences, 22, 93–112.

    Article  Google Scholar 

  2. Awad, M. Z. (1994). Stratigraphic, palynological and paleoecological studies in the East-Central Sudan (Khartoum and Kosti Basins), Late Jurassic to Mid-Tertiary. Berliner geowissenschaftliche Abhandlungen, 161, 1–163.

    Google Scholar 

  3. Batten, D. J. (1982). Palynofacies and salinity in the Purbeck and Wealden of southern England. In F. T. Banner & A. R. Lord (Eds.), Aspects of Micropalaeontology (pp. 278–309). London: George Allen & Unwin Publishers.

    Google Scholar 

  4. Batten, D. J. (1983). Identification of amorphous sedimentary organic matter by transmitted light microscopy. In J. Brooks (Ed.), Petroleum Geochemistry and Exploration of Europe (Vol. 12, pp. 275–287). London: The Geological Society.

  5. Batten, D. J. (1996). Palynofacies and palaeoenvironmental interpretation. In J. Jansonius & D. C. McGregor (Eds.), Palynology: Principles and Applications (Vol. 3, pp. 1011–1064). Dallas (TX): AASP Foundation.

  6. Beadnell, H. J. L. (1902). The Cretaceous region of Abu Roash, near the Pyramids of Giza. Egyptian Survey Department, 48 pp.

  7. Brenac, P., & Richards, K. (2001). Pediastrum as a guide fossil in sequence stratigraphy. In D.K. Goodman & R.T. Clarke (Eds.), Proceedings of the IX International Palynological Congress (pp. 239–241). Houston (TX): AASP Foundation.

  8. Carvalho, M. A., Mendonca Filho, J. G., & Menezes, T. R. (2006). Paleoenvironmental reconstruction based on palynofacies analysis of the Aptian-Albian succession of the Sergipe Basin, northeastern Brazil. Marine Micropaleontolology, 59, 56–81.

    Article  Google Scholar 

  9. Dolson, J. C., Shann, M. V., Matbouly, S. I., Hammouda, H., & Rashed, R. M. (2000). Egypt in the twenty-first century: Petroleum potential in offshore trends. GeoArabia, 6(2), 211–230.

    Google Scholar 

  10. Doyle, J. A., Jardiné, S., & Doerenkamp, A. (1982). Afropollis, a new genus of early angiosperm pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of northern Gondwana. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 6, 39–117.

    Google Scholar 

  11. Einsele, G. (1992). Sedimentary Basins: Evolution, facies, and sediment budget (pp. 1-628). Berlin: Springer.

  12. El Akkad, S. & Issawi, B. (1963). Geology and iron ore deposits of Baharyia Oasis. United Arab Republic Geological Survey and Mineral Research Dept. Paper no. 18, 301 p.

  13. El Atfy, H., Anan, T., & El-Soughier, M. I. (2017). Paleoecologic and stratigraphic significance of the freshwater algae Pediastrum in the Upper Cretaceous (Turonian) marine deposits, north Western Desert, Egypt. Paläontologische Zeitschrift, 91, 273–281.

  14. El Atfy, H., Ghassal, B., Maher, A., Hosny, A., Mostafa, A., & Littke, R. (2019a). Palynological and organic geochemical studies of the Upper Jurassic-Lower Cretaceous successions, Western Desert, Egypt: Implications for paleoenvironment and hydrocarbon source rock potential. International Journal of Coal Geology, 211, 103207.

    Article  Google Scholar 

  15. El Atfy, H., Mostafa, A., Maher, A., Mahfouz, K., & Hosny, A. (2019b). Early Cretaceous biostratigraphy and palaeoenviornment of the northern Western Desert, Egypt: An integrated palynological and micropalaeontological approach. Palaeontographica Abteilung B, 299, 103–132.

    Article  Google Scholar 

  16. El Beialy, S. Y. (1994). Palynological investigations of Cretaceous sediments in the Abu Gharadiq oil field, western desert, Egypt. Newsletters on Stratigraphy, 31, 71–84.

  17. El Beialy, S. Y., El Atfy, H. S., Zavada, M. S., El Khoriby, E. M., & Abu-Zied, R. H. (2010). Palynological, palynofacies, paleoenvironmental and organic geochemical studies on the Upper Cretaceous succession of the GPTSW-7 well, North Western Desert, Egypt. Marine and Petroleum Geology, 27, 370–385.

  18. El Beialy, S., El-Soughier, M., Abdel Mohsen, S., & El Atfy, H. (2011). Palynostratigraphy and paleoenvironmental significance of the Cretaceous succession in the Gebel Rissu-1 well, north Western Desert, Egypt. Journal of African Earth Sciences, 59, 215–226.

    Article  Google Scholar 

  19. El Diasty, W. S. H., El Beialy, S. Y., Abo Ghonaim, A. A., Mostafa, A. R., & El Atfy, H. (2014). Palynology, palynofacies and petroleum potential of the Upper Cretaceous-Eocene Matulla, Brown limestone and Thebes formations, Belayim oilfields, Central Gulf of Suez, Egypt. Journal of African Earth Sciences, 95, 155–167.

    Article  Google Scholar 

  20. Ghassal, B. I., Littke, R., El Atfy, H., Sindern, S., Scholtysik, G., El Beialy, S., El Khoriby, E. (2018). Source rock potential and depositional environment of Upper Cretaceous sedimentary rocks, Abu Gharadig Basin, Western Desert, Egypt: An integrated palynological, organic and inorganic geochemical study. International Journal of Coal Geology, 186, 14–40.

  21. Götz, A.E. & Ruckwied, K. (2014). Palynological records of the early Permian postglacial climate amelioration (Karoo Basin, South Africa). In E. Kustatscher, L. W. van den Hoek Ostende, & H. Kerp (Eds.) Green planet – 400 million years of terrestrial floras. Papers in honour of JHA van Konijnenburg-van Cittert. Palaeobiodiversity and Palaeoenvironment, 94(2), 229–235.

  22. Hantar, G. (1990). North Western Desert. In R. Said (Ed.) The geology of Egypt (pp. 293–319). Rotterdam: A.A. Balkema.

  23. Harding, I. C. (1986). An Early Cretaceous dinocyst assemblage from the Wealden of southern England. Special Papers in Palaeontology, 35, 95–109.

  24. Hartkopf-Fröder, C., Königshof, P., Littke, R., & Schwarzbauer, J. (2015). Optical thermal maturity parameters and organic geochemical alteration at low grade diagenesis to anchimetamorphism: A review. International Journal of Coal Geology, 150-151, 74–119.

    Article  Google Scholar 

  25. Herngreen, G. F. W., Kedves, M., Rovnina, L. V., & Smirnova, S. B. (1996). Cretaceous palynofloral provinces: a review. In J. Jansonius & D.C. McGregor (Eds.), Palynology: Principles and Applications (Vol. 3, pp. 1157–1188. Dallas (TX): AASP Foundation.

  26. Ibrahim, M. I. A., Aboul Ela, N. M., & Kholeif, S. E. (1997). Paleoecology, palynofacies, thermal maturation and hydrocarbon source-rock potential of the Jurassic-Lower Cretaceous sequence in the subsurface of the north Eastern Desert, Egypt. Qatar University Science Journal, 17, 153–172.

    Google Scholar 

  27. Ibrahim, M. I. A., Dilcher, D., & Kholeif, S. (2009). Palynomorph succession and paleoenvironment in the Upper Cretaceous Abu Gharadig oil field, Northwestern Desert, Egypt. Micropaleontology, 55, 525–558.

    Google Scholar 

  28. Jain, K. P., & Millepied, P. (1975). Cretaceous microplankton from Senegal Basin, W. Africa, part II. Systematics and biostratigraphy. Geophytology, 5, 26–171.

    Google Scholar 

  29. Jan du Chêne, R. E., De Klasz, I., & Archibong, E. E. (1978). Biostratigraphic study of the borehole Ojo-1, SW Nigeria, with special emphasis on the Cretaceous microflora. Revue de Micropaléontologie, 21, 123–139.

  30. Jardiné, S., & Magloire, L. (1965). Palynologie et stratigraphie du Crétacé des Bassins du Sénégal et de Côte d’Ivoire. Mémoires du Bureau de Recherche Géologiques et Minières, 32, 187–245.

    Google Scholar 

  31. Keeley, M. L. (1994). Phanerozoic evolution of the basins of northern Egypt and adjacent areas. Geologische Rundschau, 83, 728–742.

    Article  Google Scholar 

  32. Khalda. (1990). Composite well log and location map of Faghur Hj5-1 well. Egypt: Khalda Petroleum Company.

  33. Lawal, O., & Moullade, M. (1986). Palynological biostratigraphy of Cretaceous sediments in the Upper Benue Basin, N.E. Nigeria. Revue de Micropaléontologie, 29, 61–83.

  34. Lindström, S., & Erlström, M. (2011). The Jurassic–Cretaceous transition of the Fårarp-1 core, southern Sweden: Sedimentological and phytological indications of climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 308, 445–475.

    Article  Google Scholar 

  35. Lupia, R., Lidgard, S., & Crane, P. R. (1999). Comparing palynological abundance and diversity: Implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology, 25, 305–340.

    Article  Google Scholar 

  36. Mahmoud, M.S., & Moawad, A.M.M. (1999). Miospore and dinocyst biostratigraphy and paleoecology of the Middle Cretaceous (Albian–early Cenomanian) sequence of the Ghoroud-IX borehole, northern Western Desert, Egypt. 1st International Conference on the Geology of Africa 1 (pp. 1–13). Assiut, Egypt.

  37. Mahmoud, M. S., Soliman, H. A., & Deaf, A. S. (2007). Early Cretaceous (Aptian-Albian) palynology of the Kabrit-1 borehole, onshore northern Gulf of Suez, Egypt. Revista Española de Micropaleontología, 39, 169–187.

    Google Scholar 

  38. Mahmoud, M. S., Deaf, A. S., Tamam, M. A., & Khalaf, M. M. (2017). Palynofacies analysis and palaeoenvironmental reconstruction of the Upper Cretaceous sequence drilled by the Salam-60 well, Shushan Basin: Implications on the regional depositional environments and hydrocarbon exploration potential of north-western Egypt. Revue de Micropaléontologie, 60, 449–467.

  39. Mahmoud, M. S., Deaf, A. S., Tamam, M. A., & Khalaf, M. M. (2019). Revised (miospores-based) stratigraphy of the Lower Cretaceous succession of the Minqar-IX well, Shushan Basin, north Western Desert, Egypt: Biozonation and correlation approach. Journal of African Earth Sciences, 151, 18–35.

    Article  Google Scholar 

  40. Marshall, J. E. A., & Yule, B. L. (1999). Spore colour measurement. In T. P. Jones & N. P. Rowe (Eds.) Fossil plants and spores: Modern techniques (pp. 165–168). London: The Geological Society.

  41. Masran, T. C., & Pocock, S. A. J. (1981). The classification of plant-derived particulate organic matter in sedimentary rocks. In J. Brooks (Ed.) Organic maturation studies and fossil fuel exploration (pp. 145–176). London: Academic Press.

  42. Mebradu, S. (1982). Stratigraphic palynology of Obi (Lafia), Plateau State of Nigeria. Review of Palaeobotany and Palynology, 36, 317–323.

    Article  Google Scholar 

  43. Morgan, R. (1978). Albian to Senonian palynology of site 364, Angola Basin. In H. M. Bolli, W. B. F. Ryan, B. K. McKnight, H. Kagami, M. Melguen, et al. (Eds.) Initial Reports of the Deep Sea Drilling Project 40, 915–951.

  44. Muller, J., Di Giacomo, E. D., & Erve, A. W. van (1987). A palynological zonation for the Cretaceous, Tertiary, and Quaternary of northern South America. AASP Contribution Series, 19, 7–76.

  45. Norton, P. (1967). Rock stratigraphic nomenclature of the Western Desert. Unpublished Report. Pan American Oil Company, UAR, Cairo, Egypt.

  46. OGJ. (2018). Eni has second Faghur basin deep strike. Oil & Gas Journal, (July 2018).

  47. Oláníyì Odébòdé, M. (1987). Palynological dating of the Lamja Sandstone (Benue Basin, Nigeria) and its geological significance. Journal of African Earth Sciences, 6, 421–426.

  48. Pearson, D.L. (1984). Pollen/spore color “standard”. Phillips petroleum company exploration projects section (reproduction in Traverse 2007). Paleopalynology, figure 19.2. Springer.

  49. Penny, J. H. J. (1986). An Early Cretaceous angiosperm pollen assemblage from Egypt. Special Papers in Palaeontology, 35, 121–134.

  50. Roncaglia, L., & Kuijpers, A. (2006). Revision of the palynofacies model of Tyson (1993) based on recent high-latitude sediments from the North Atlantic. Facies, 52, 19–39.

    Article  Google Scholar 

  51. Said, R. (1962). The geology of Egypt. Elsevier, 377 pp.

  52. Salard-Cheboldaeff, M. (1990). Intertropical African palynostratigraphy from Cretaceous to late Quaternary times. Journal of African Earth Sciences, 11, 1–24.

  53. Schlumberger. (1984). Well evaluation conference. Egypt: Schlumberger Middle East SA, 201 pp.

  54. Schlumberger. (1995). Well evaluation conference, Egypt. Chester: Schlumberger Technical Editing Services, 87 pp.

  55. Schrank, E. (1987). Paleozoic and Mesozoic palynomorphs from northeast Africa (Egypt and Sudan) with special reference to Late Cretaceous pollen and dinoflagellates. Berliner geowissenschaftliche Abhandlungen, 75, 249–310.

  56. Schrank, E. (1991). Mesozoic palynology and continental sediments in NE Africa (Egypt and Sudan) - a review. Journal of African Earth Sciences, 12, 363–373.

    Article  Google Scholar 

  57. Schrank, E. (1992). Nonmarine Cretaceous correlations in Egypt and northern Sudan: Palynological and palaeobotanical evidence. Cretaceous Research, 13, 351–368.

    Article  Google Scholar 

  58. Schrank, E. (2001). Paleoecological aspects of Afropollis/elaterates peaks (Albian–Cenomanian pollen) in the Cretaceous of Northern Sudan and Egypt. In D. K. Goodman & R. T. Clarke (Eds.), Proceedings of the IX International Palynological Congress (pp. 201–210). Houston (TX): AASP Foundation.

  59. Schrank, E., & Ibrahim, M. I. A. (1995). Cretaceous (Aptian–Maastrichtian) palynology of foraminifera-dated wells (KRM-1, AG-18) in northwestern, Egypt. Berliner geowissenschaftliche Abhandlungen, 177, 1–44.

    Google Scholar 

  60. Schrank, E., & Mahmoud, M. S. (1998). Palynology (pollen, spores and dinoflagellates) and Cretaceous stratigraphy of the Dakhla Oasis, Central Egypt. Journal of African Earth Sciences, 26, 167–193.

    Article  Google Scholar 

  61. Schrank, E., & Mahmoud, M. S. (2000). New taxa of angiosperm pollen, miospores and associated palynomorphs from the early Late Cretaceous of Egypt (Maghrabi Formation, Kharga Oasis). Review of Palaeobotany and Palynology, 112, 167–188.

    Article  Google Scholar 

  62. Staplin, F. L. (1969). Sedimentary organic matter, organic metamorphism, and oil and gas occurrence. Bulletin of Canadian Petroleum Geology, 17, 47–66.

    Google Scholar 

  63. Steart, D. C., Spencer, A. R. T., Russell, J. G., Hilton, J., Munt, M. C., Needham, J., & Kenrick, P. (2014). X-ray synchrotron microtomography of a silicified Jurassic Cheirolepidiaceae (conifer) cone: Histology and morphology of Pararaucaria collinsonae sp. nov. PeerJ.

  64. Sultan, I. Z. (1985). Palynological studies in the Nubia Sandstone Formation, east of Aswan, southern Egypt. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 10, 605–617.

  65. Tappan, H. (1980). The Paleobiology of plant Protists. San Francisco: W.H. Freeman, 1028 pp.

  66. Thompson, C. L., & Dembicki Jr., H. (1986). Optical characteristics of amorphous kerogens and hydrocarbon-generating potential of source rocks. International Journal of Coal Geology, 6, 229–249.

    Article  Google Scholar 

  67. Tyson, R. V. (1984). Palynofacies investigation of Callovian (Middle Jurassic) sediments from DSDP site 534, Blake-Bahama Basin, Western Central Atlantic. Marine and Petroleum Geology, 1, 3–13.

  68. Tyson, R. V. (1989). Late Jurassic palynofacies trends, Piper and Kimmeridge Clay Formations, UK onshore and offshore. In D. J. Batten & M. C. Keen (Eds.) Northwest European Micropalaeontology and Palynology (pp. 135–172). Ellis Horwood: British Micropalaeontological Society Series.

  69. Tyson, R. V. (1995). Sedimentary organic matter — Organic facies and palynofacies (pp. 1-615). London: Chapman and Hall.

  70. Uwins, P. J. R., & Batten, D. J. (1988). Early to Mid-Cretaceous palynology of northeast Libya. In A. El-Arnauti, B. Owens, & B. Thusu (Eds.) Subsurface Palynostratigraphy of Northeast Libya (pp. 215–257). Benghazi: Garyounis University Publications.

  71. Wood, G. D., Gabriel, A. M., & Lawson, J. C. (1996). Palynological techniques – Processing and microscopy. In J. Jansonius & D. C. McGregor (Eds.) Palynology: principles and applications (Vol. 1, pp. 29–50). Dallas (TX): AASP Foundation.

Download references


The author is indebted to Prof. Maher El-Soughier (Aswan University) and the Egyptian General Petroleum Corporation (EGPC) for providing the samples and well log for this study. Dr. Rainer Brocke is gratefully acknowledged for running the fluorescence investigation of palynofacies samples and Prof. Alan Lord for improving the English of the manuscript. The author wishes to thank Mercedes di Pasquo, an anonymous reviewer and guest-editors Angela Bruch, Dieter Uhl, and Torsten Utescher for their insightful comments and constructive criticism as well as for their invitation to contribute to this special issue.


The author acknowledges financial support by Alexander von Humboldt Foundation, Germany (EGY-1190326-GF-P).

Author information



Corresponding author

Correspondence to Haytham El Atfy.

Ethics declarations

Conflict of interests

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue “Palaeobotanical contributions in honour of Volker Mosbrugger”

Appendix 1

Appendix 1

List of the recorded palynomorph taxa (arranged alphabetically), Faghur Hj5–1 well, Western Desert, Egypt.

I. Spores and pollen

I.I. Pteridophyte and bryophyte spores

Aequitriradites spinulosus (Cookson and Dettmann) Cookson and Dettmann 1961

Ariadnaesporites spp.

Cibotiumspora jurienensis (Balme) Filatoff 1975

Cicatricosisporites spp.

Concavisporites spp.

Concavissimisporites spp.

Crybelosporites pannuceus (Brenner) Srivastava 1977

Crybelosporites spp.

Cyathidites australis Couper 1953

Deltoidospora spp.

Dictyophyllidites spp.

Duplexisporites generalis Deak 1962

Duplexisporites spp.

Gabonisporis vigourouxii Boltenhagen 1967

Gleicheniidites senonicus Ross 1949

Gleicheniidites spp.

Murospora florida (Balme) Pocock 1961

Triplanosporites spp.

Zilvisporis blanensis

I.II. Pollen

Afropollis aff. jardinus Doyle et al. 1982

Afropollis jardinus (Brenner) Doyle et al. 1982

Afropollis kahramanensis Ibrahim and Schrank 1995

Afropollis operculatus Doyle et al. 1982

Afropollis spp.

Araucariacites australis Cookson 1947

Balmeiopsis limbatus (Balme) Archangelsky 1977

Callialasporites sp.

Circulina parva Brenner 1963

Classopollis brasiliensis Herngreen 1975

Classopollis classoides Pflug 1953

Classopollis spp.

Clavatipollenites hughesii Couper 1958

Dicheiropollis etruscus Trevisan 1972

Droseridites senonicus Jardiné and Magloire 1965

Ephedripites jansonii (Pocock) Muller 1968

Ephedripites spp.

Equisetosporites ambiguus (Hedlund) Singh 1983

Eucommiidites sp.

Foveotricolpites giganteus (Jardiné and Magloire 1965) Jan Du Chéne et al. 1978

Foveotricolpites gigantoreticulatus (Jardiné and Magloire 1965) Schrank 1987

Inaperturopollenites spp.

Integritetradites porosus Schrank and Mahmoud 2000

Nyssapollenites sp.

Proteacidites sp.

Retimonocolpites spp.

Stellatopollis spp.

Tucanopollis crisopolensis Regali 1989

II.Green and blue-green algae

Botryococcus spp.

Pediastrum spp.

Scenedesmus spp.

Tasmanites spp.

III. Miscellaneous

Microforaminiferal test linings

IV. Dinoflagellate cysts

Circulodinium spp.

Coronifera oceanica (Cookson and Eisenack) May 1980

Cribroperidinium edwardsii (Cookson and Eisenack) Davey 1969

Cribroperidinium spp.

Cribroperidinum orthoceras (Eisenack) Davey 1969

Florentinia spp.

Odontochitina operculata Deflandre and Cookson 1955

Oligosphaeridium spp.

Spiniferites spp.

Subtilisphaera spp.

Systematophora spp.

Trichodinium castanea (Deflandre) Clarke and Verdier 1967

Xiphophoridium alatum (Cookson and Eisenack) Sarjeant 1966

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Atfy, H. Palynofacies as a palaeoenvironment and hydrocarbon source potential assessment tool: An example from the Cretaceous of north Western Desert, Egypt. Palaeobio Palaeoenv 101, 35–50 (2021).

Download citation


  • Palynology
  • Palynofacies
  • Cretaceous
  • North Western Desert
  • Egypt