Palaeoclimate estimates based on the late Miocene to early Pleistocene wood flora of the Bengal Basin: an insight into the climatic evolution of southern Asia

Abstract

To assess the pattern of climatic evolution during the late Miocene to early Pleistocene in the largest fluvio-deltaic sedimentary system on the Earth, the Bengal Basin (BB), a quantitative palaeoclimatic reconstruction was made, based on 20 fossil wood floras. Those floras show that moisture-loving taxa have decreased considerably since the Miocene, especially at the western margin of the basin. A quantitative reconstruction of climate parameters reveals that the late Miocene−early Pliocene was warmer and wetter than now, yet with spatial variability. Seasonality of temperature was low in the basin and subsequently increased during the late Pliocene−early Pleistocene. Monsoon intensity was weaker during the interval from the late Miocene to early Pleistocene than the present day. A comparison of the retrieved data with some earlier records from sites either influenced by Indian summer monsoon (ISM) or East Asian summer monsoon (EASM) or both, the two branches of the Asian summer monsoon (AM) provide insights into the temporal and spatial patterns of climate evolution in southern Asia during the late Neogene–Quaternary transition. In general, a drop in temperature and a weakening in ISM strength since the early Pleistocene correlate with the global cooling trend, though with spatial differences.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Acharya, S., & Roy, S. K. (1986). Fossil woods of Leguminosae from the Tertiary of Tripura, India. Burdwan University Journal of Science, 3(1), 127–132.

    Google Scholar 

  2. Acosta, R. P., & Huber, M. (2020). Competing topographic mechanisms for the summer Indo-Asian monsoon. Geophysical Research Letters, 47, e2019GL085112. https://doi.org/10.1029/2019GL085112.

    Article  Google Scholar 

  3. Agarwal, D. P., Dodia, R., Kotlia, B. S., Razdan, H., & Sahni, A. (1989). The Plio-Pleistocene geologic and climatic record of the Kashmir volley, India: A review and new data. Palaeogeography, Palaeoclimatology, Palaeoecology, 73, 267–286.

    Article  Google Scholar 

  4. Agarwal, A., Ambwani, K., Saha, S., & Kar, R. K. (2000). Fossil wood of Barringtonia (Lecythidaceae) from Ramgarh, Chittagong Hill Tract, Bangladesh. Phytomorphology, 50(3,4), 333–336.

    Google Scholar 

  5. Alam, M. (1989). Geology and depositional history of Cenozoic sediments of the Bengal Basin of Bangladesh. Palaeogeography, Palaeoclimatology, Palaeoecology, 69, 125–139.

    Article  Google Scholar 

  6. An, Z. S., Kutzbach, J. E., Prell, W. L., & Porter, S. C. (2001). Evolution of Asian monsoons and phased uplift of the Himalaya—Tibetan Plateau since Late Miocene times. Nature, 411, 62–66.

    Article  Google Scholar 

  7. Ao, H., Roberts, A. P., Dekkers, M. J., Liu, X., Rohling, E. J., Shi, Z., An, Z., & Zhao, X. (2016). Late Miocene–Pliocene Asian monsoon intensification linked to Antarctic ice-sheet growth. Earth and Planetary Science Letters, 444, 75–87.

    Article  Google Scholar 

  8. Ash, S. R., & Creber, G. T. (1992). Palaeoclimatic interpretation of the wood structures of the trees in the Chinle Formation (Upper Triassic), Petrified Forest National Park, Arizona, USA. Palaeogeo-graphy, Palaeoclimatology, Palaeoecology, 96, 299–317.

  9. Awasthi, N., Mehrotra, R. C., & Bhattachryya, A. (1994). Fossil wood of Cynometra from the Neogene of Tripura. Geophytology, 23, 291–293.

    Google Scholar 

  10. Baas, P., & Wheeler, E. A. (2011). Wood anatomy and climate change. Chapter 6. In Climate change, ecology and systematics systematics association special volume series (pp 141-155). Cambridge University Press. https://doi.org/10.1017/CBO9780511974540.007.

  11. Bamford, M. K. (2011). Late Pliocene woody vegetation of area 41, Koobi flora, East Turkana Basin, Kenya. Review of Palaeobotany and Palynology, 164, 191–210.

    Article  Google Scholar 

  12. Bande, M. B., & Prakash, U. (1980). Fossil woods from the Tertiary of West Bengal, India. Geophytology, 10, 146–157.

    Google Scholar 

  13. Bande, M. B., & Srivastava, G. P. (1989). Fossil woods of Guttiferae (Kayea) and Lauraceae from the Tertiary of West Bengal. Geophytology, 18(2), 217–218.

    Google Scholar 

  14. Banerji, R. K. (1984). Post-Eocene Biofacies, Palaeoenvironments and Palaeogeography of the Bengal Basin, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 45, 49–73.

    Article  Google Scholar 

  15. Bera, S., & Banerjee, M. (1990). A new species of Palmoxylon and accretionary structures in the petrified woods from lateritic sediment in the western part of Bengal basins, India. Indian Journal of Earth Sciences, 17, 78–89.

    Google Scholar 

  16. Bera, S., & Banerjee, M. (1997). Palmoxylon pantii Trivedi & Surange from Santiniketan, West Bengal. Geobios New Reports, 16, 60–62.

    Google Scholar 

  17. Bera, S., & Banerjee, M. (2001). Petrified wood remains from Neogene sediments of the Bengal Basin, India with remarks on palaeoecology. Palaeontographica Abteilung B, 260, 167–199.

    Google Scholar 

  18. Bera, S., Parua, D., & Sen, I. (2000). Fossil wood resembling Sindora Miq. from the Neogene of West Bengal, India. Indian Journal of Earth Sciences, 1–4, 26–31.

    Google Scholar 

  19. Bhargava, O. N. (2015). Evolution of the tethyan and karewa successions in Kashmir: A synthesis. Journal of the Palaeontological Society of India, 60(1), 51–72.

    Google Scholar 

  20. Biswas, A., Khan, M. A., & Bera, S. (2019). Occurrence of Dryobalanops Gaertn. (Dipterocarpaceae) in the late Miocene of Bengal basin, India and biogeography of the genus during the Cenozoic of Southeast Asia. Botany Letters, 166(4), 434–443. https://doi.org/10.1080/23818107.2019.1672102.

  21. Carlquist, S. (1977). Ecological factors in wood evolution: A floristic approach. American Journal of Botany, 64, 887–896.

    Article  Google Scholar 

  22. Carlquist, S. (1988). Comparative wood anatomy: Systematic, ecological and evolutionary aspects of dicotyledon wood. Berlin: Springer.

    Google Scholar 

  23. Cerling, T. E., Wang, Y., & Quade, J. (1993). Expansion of C4 ecosystems as indicator of global ecological change in the late Miocene. Nature, 361, 344–345.

    Article  Google Scholar 

  24. Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., & Ehleringer, J. R. (1997). Global vegetation change through the Miocene–Pliocene boundary. Nature, 389, 153–158.

    Article  Google Scholar 

  25. Champion, H. G., & Seth, S. K. (1968). A revised survey of the forest types of India (pp. 404). Delhi: Manager of Publications.

  26. Chatterjee, L. (1970). The climate of West Bengal-A genetic approach. In A. B. Chatterjee, A. Gupta, & P. K. Mukhopadhyay (Eds.) West Bengal. (pp. 42–47). Calcutta: Presidency College, Geographical Institute.

  27. Chowdhury, K. A., & Tandon, K. N. (1952). A new record for the fossil wood of Glutoxylon from the southern part of West Bengal. Current Science, 21(6), 161.

    Google Scholar 

  28. Clift, P. D., Hodges, K. V., Heslop, D., Hannigan, R., Van Long, H., & Calves, G. (2008). Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience, 1, 875–880.

    Article  Google Scholar 

  29. Creber, G. T., & Chaloner, W. G. (1984). Influence of environmental factors in the wood structure of living and fossil trees. Botanical Review, 50, 357–448.

    Article  Google Scholar 

  30. Curio, J., & Scherer, D. (2016). Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau. Earth System Dynamics, 7(3), 767–782. https://doi.org/10.5194/esd-7-767-2016.

    Article  Google Scholar 

  31. Cutler, D. F., & Gregory, M. (1998). Anatomy of Dicotyledons. Volume IV. Saxifragales (p. 324). Oxford: Clarendon Press.

    Google Scholar 

  32. Dam, J. A. van (2006). Geographic and temporal patterns in the late Neogene (12–3 Ma) aridification of Europe: The use of small mammals as paleoprecipitation proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 190–218.

  33. Deb, U., & Ghosh, A. K. (1974). On the occurrence of Terminaloxylon, an angiospermous fossil wood from the victinity of Shantiniketan, Birbhum District, West Bengal. Indian Journal of Earth Sciences, 1(2), 208–213.

    Google Scholar 

  34. Dimri, A. P., Niyogi, D., Barros, A. P., Ridley, J., Mohanty, U. C., Yasunari, T., & Sikka, D. R. (2015). Western disturbances: A review. Reviews of Geophysics, 53, 225–246.

    Article  Google Scholar 

  35. Ding, L., Spicer, R. A., Yang, J., Xu, Q., Cai, F., Li, S., Lai, Q., Wang, H., Spicer, T. E. V., Yue, Y., Shukla, A., Srivastava, G., Khan, M. A., Bera, S., & Mehrotra, R. (2017). Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45, 215–218.

    Article  Google Scholar 

  36. Estrada-Ruiz, E., Martinez-Cabrera, H. I., & Cevallos-Ferriz, S. R. S. (2007). Fossil woods from the late Campanian–early Maastrichtian Olmos Formation, Coahuila, Mexico. Review of Palaeobotany and Palynology, 145, 123–133.

    Article  Google Scholar 

  37. Farnsworth, A., Lunt, D. J., Robinson, S. A., Valdes, P. J., Roberts, W. H. G., Clift, P. D., Markwick, P., Su, T., Wrobel, N., Bragg, F., Kelland, S.-J., & Pancost, R. D. (2019). Past East Asian monsoon evolution controlled by paleogeography, not CO2. Science Advances, 5, eaax1697.

  38. Feng, X. X., Yi, T. M., & Jin, J. H. (2010). First record of Paraphyllanthoxylon from China. IAWA Journal, 31, 89–94.

  39. Francis, J. E. (1984). The seasonal environment of the Purbeck (UpperJurassic) fossil forests. Palaeogeography, Palaeoclimatology, Palaeoecology, 48, 285–307.

    Article  Google Scholar 

  40. Gani, M. R., & Alam, M. M. (2003). Sedimentation and basin-fill history of the Neogene clastic succession exposed in the southeastern fold belt of the Bengal Basin, Bangladesh: A high-resolution sequence stratigraphic approach. Sedimentary Geology, 155, 227–270.

    Article  Google Scholar 

  41. Garzione, C. N., Quade, J., DeCelles, P. G., & English, N. B. (2000). Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients of meteoric water across the Nepal Himalaya. Earth and Planetary Science Letters, 183, 215–219.

  42. Gébelin, A., Mulch, A., Teyssier, C., Jessup, M. J., Law, R. D., & Brunel, M. (2013). The Miocene elevation of Mount Everest. Geology, 41, 799–802.

    Article  Google Scholar 

  43. Ghosh, S. S., & Kazmi, M. H. (1961). Pahudioxylon sahnii sp. nov.—A fossil record from the Miocene (?) of Tripura. Scientific Culture, 27, 96–98.

    Google Scholar 

  44. Ghosh, P. K., & Roy, S. K. (1978). Fossil wood of Canarium from the Tertiary of West Bengal, India. Current Science, 47(21), 804–805.

    Google Scholar 

  45. Ghosh, P. K., & Roy, S. K. (1979a). A fossil wood of Dracontomelum from the Tertiary of West Bengal, India. Current Science, 48, 362.

    Google Scholar 

  46. Ghosh, P. K., & Roy, S. K. (1979b). Dipterocarpoxylon bolpurense sp. nov., a fossil wood of Dipterocarpaceae from the Miocene of Bolpur. Birbhum District.West Bengal. Current Science, 48(11), 495–496.

  47. Ghosh, P. K., & Roy, S. K. (1979c). Chistochetonoxylon bengalensis gen. et sp. nov., a new fosil wood of Meliaceae from the Tertiary beds of Birbhum District, West Bengal, India. Current Science, 48(16), 737–739.

    Google Scholar 

  48. Ghosh, P. K., & Roy, S. K. (1979d). A new species of Calophyllum from the Miocene beds of Birbhum District, West Bengal, India. Current Science, 48(18), 823–824.

    Google Scholar 

  49. Ghosh, P. K., & Roy, S. K. (1980). Fossil wood of Anisoptera from the Miocene beds of Birbhum District, West Bengal, India. Current Science, 49(17), 665–666.

    Google Scholar 

  50. Ghosh, P. K., & Roy, S. K. (1981). Cassinium ballavpurense sp. nov. from the Miocene of West Bengal, India. Acta Botanica Indica, 9, 285–289.

  51. Ghosh, P. K., & Roy, S. K. (1982). Fossil woods of Caesalpinoidae from the Miocene of West Bengal, India. Acta Botanica Indica, 10, 50–55.

    Google Scholar 

  52. Ghosh, S. S., & Taneja, K. K. (1961). Further record of Glutoxylon from the Miocene (?) of Tripura. Scientific Culture, 27, 581–582.

    Google Scholar 

  53. Han, W.-X., Fang, X.-M., & Berger, A. (2012). Tibet forcing of mid-Pleistocene synchronous enhancement of East Asian winter and summer monsoons revealed by Chinese loess record. Quaternary Research, 78, 174–184.

    Article  Google Scholar 

  54. Hass, H., & Rowe, N. P. (1999). Thin section and wafering. In T. P. Jones & N. P. Rowe (Eds.), Fossil plants and spores, modern techniques (pp. 76–81). London: Geological Society.

  55. Hazra, T., Spicer, R. A., Hazra, M., Mahato, S., Spicer, T. E. V., Bera, S., Valdes, P. J., Farnsworth, A., Hughes, A. C., Jiang, Y., & Khan, M. A. (2020). Latest Neogene monsoon of the Chotanagpur Plateau, eastern India, as revealed by fossil leaf architectural signatures. Palaeogeography, Palaeoclimatology, Palaeoecology, 545. https://doi.org/10.1016/j.palaeo.2020.109641.

  56. Herzschuh, U., Birks, H. J. B., Mischke, S., Zhang, C., & Böhner, J. (2010). A modern pollen–climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains. Journal of Biogeography, 37, 752–766.

    Article  Google Scholar 

  57. Holbourn, A. E., Kuhnt, W., Clemens, S. C., Kochhann, K. G. D., Jöhnck, J., Lübbers, J., & Andersen, N. (2018). Late Miocene climate cooling and intensification of Southeast Asian winter monsoon. Nature Communications, 9, 1584. https://doi.org/10.1038/s41467-018-03950-1.

    Article  Google Scholar 

  58. Huang, Y.-J., Chen, W.-Y., Jacques, F. M. B., Liu, Y.-S. C., Utescher, T., Su, T., Ferguson, D. K., & Zhou, Z.-K. (2015). Late Pliocene temperatures and their spatial variation at the southeastern border of the Qinghai–Tibet Plateau. Journal of Asian Earth Sciences, 111, 44–53.

    Article  Google Scholar 

  59. Huber, B. T., & Goldner, A. (2012). Eocene monsoons. Journal of Asian Earth Science, 44, 3–23.

    Article  Google Scholar 

  60. Hunday, A. (1954). On the newly found Tertiary patches in Bankura, West Bengal. Scientific Culture, 19, 245–246.

    Google Scholar 

  61. Hunday, A., & Banerjee, S. (1967). Geology and mineral resources of West Bengal. Memoir Geological Survey of India, 97, 1–302.

    Google Scholar 

  62. Ingalls, M., Rowley, D., Olack, G., Currie, B., Li, S., Schmidt, J., Tremblay, M., Polissar, P., Shuster, D. L., Lin, D., & Colman, A. (2018). Paleocene to Pliocene low-latitude, highelevation basins of southern Tibet: Implications for tectonic models of India-Asia collision, Cenozoic climate, and geochemical weathering. GSA Bulletin, 130, 307–330.

    Article  Google Scholar 

  63. International Association of Wood Anatomists (IAWA). (1989). IAWA list of microscopic features for hardwood identification. IAWA New Series, 10, 219–332.

    Google Scholar 

  64. Jacques, F. M. B., Guo, S.-X., Su, T., Xing, Y.-W., Huang, Y.-J., Liu, Y.-S., Ferguson, D. K., & Zhou, Z.-K. (2011). Quantitative reconstruction of the late Miocene monsoon climates of southwest China: A case study of the Lincang flora from Yunnan Province. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 318–327.

  65. Jacques, F. M. B., Shi, G., & Wang, W. M. (2013). Neogene zonal vegetation of China and the evolution of the winter monsoon. Bulletin of Geosciences, 88(1), 175–193.

    Google Scholar 

  66. Jansen, S., Baas, P., Gasson, P., Lens, F., & Smets, E. (2004). Variation in xylem structure from tropics to tundra: Evidence from vestured pits. Proceedings of the National Academy of Science, 101(23), 8833–8837.

    Article  Google Scholar 

  67. Jeong, E. K., Kim, K., Suzuki, M., & Kim, J. W. (2009). Fossil woods from the lower coal bearing formation of the Janggi group (Early Miocene) in the Pohang Basin, Korea. Review of Palaeobotany and Palynology, 153, 124–138.

    Article  Google Scholar 

  68. Khan, M. A., Spicer, R. A., Bera, S., Ghosh, R., Yang, J., Spicer, T. E. V., Guo, S.-X., Su, T., Jacques, F. M. B., & Grote, P. J. (2014). Miocene to Pleistocene floras and climate of the Eastern Himalayan Siwaliks, and new palaeoelevation estimates for the Namling–Oiyug Basin, Tibet. Global and Planetary Change, 113, 1–10.

    Article  Google Scholar 

  69. Khan, M. A., Bera, M., Spicer, R. A., Spicer, T. E. V., & Bera, S. (2019). Palaeoclimatic estimates for a latest Miocene-Pliocene flora from the Siwalik Group of Bhutan: Evidence for the development of the South Asian Monsoon in the eastern Himalaya. Palaeogeography, Palaeoclimatology, Palaeoecology, 514, 326–335.

    Article  Google Scholar 

  70. Kou, X.-Y., Ferguson, D. K., Xu, J.-X., Wang, Y.-F., & Li, C.-S. (2006). The reconstruction of palaeovegetation and palaeoclimate in the Late Pliocene of West Yunnan, China. Climatic Change, 77, 431–448.

    Article  Google Scholar 

  71. Lacey, W. S. (1963). Palaeobotany technique. In J. D. Carthey & I. Duddington (Eds.), Viewpoint in biology 2 (pp. 202–243). London: Butterworths.

  72. Lakhanpal, R. N. (1970). Tertiary flora of India and their bearing on the historical geology of the region. Taxon, 19, 675–694.

    Article  Google Scholar 

  73. Li, F. J., Rousseau, D. D., Wu, N. Q., Hao, Q. Z., & Pei, Y. P. (2008). Late Neogene evolution of the East Asian monsoon revealed by terrestrial mollusk record in Western Chinese Loess Plateau: From winter to summer dominated sub-regime. Earth and Planetary Science Letters, 274, 439–447.

    Article  Google Scholar 

  74. Li, S.-F., Mao, L.-M., Spicer, R. A., Lebreton-Anberrée, J., Su, T., Sun, M., & Zhou, Z.-K. (2015). Late Miocene vegetation dynamics under monsoonal climate in southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 425, 14–40.

    Article  Google Scholar 

  75. Lindsay, J. F., Holiday, D. W., & Hulbert, A. G. (1991). Sequence stratigraphy and the evolution of the Ganges–Brahmaputra complex. American Association of Petroleum Geologists Bulletin, 75, 1233–1254.

    Google Scholar 

  76. Liu, X. D., & Dong, B. W. (2013). Influence of the Tibetan Plateau uplift on the Asian monsoon arid environment evolution. Chinese Science Bulletin, 58, 4277–4291.

    Article  Google Scholar 

  77. Liu, Y.-S. (. C.)., & Quan, C. (2016). Late Cenozoic climates of low-latitude East Asia: A paleobotanical example from the Baise basin of Guangxi, southern China. Palaeoworld, 26, 572–580.

  78. Liu, X. D., & Yin, Z. Y. (2002). Sensitivity of east Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 183, 223–245.

    Article  Google Scholar 

  79. Liu, Y.-S., Utescher, T., Zhou, Z.-K., & Sun, B. (2011). The evolution of Miocene climates in North China: Preliminary results of quantitative reconstructions from plant fossil records. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 308–317.

    Article  Google Scholar 

  80. Lunt, D., Flecker, R., & Clift, P. D. (2010). The impacts of Tibetan uplift on palaeoclimate proxies. Geological Society London Special Publications, 342, 279–291.

    Article  Google Scholar 

  81. Luo, X., & Zhang, Y. C. (2015). The linkage between upper-level jet streams over East Asia and East Asian Winter Monsoon variability. Journal of Climate, 28, 9013–9028.

    Article  Google Scholar 

  82. Maslin, M. A., Li, X. S., Loutre, M. F., & Berger, A. (1998). The contribution of orbital forcing to the progressive intensification of Northern Hemisphere glaciation. Quaternary Science Reviews, 17(4–5), 411–426.

    Article  Google Scholar 

  83. Mathur, L. P., & Kohli, G. (1964). Exploration and development for oil in India. Proc. 6th. World Petroleum Congresses, 1, 633–658.

  84. Mehrotra, R. C., & Bhattacharyya, A. (2002). Wood of Dipterocarpus from a new locality of the Champanagar Formation of Tripura, India. Palaeobotanist, 51, 123–127.

  85. Mehrotra, R. C., Bhattacharyya, A., & Shah, S. K. (2006). Petrified Neogene woods of Tripura. Palaeobotanist, 55, 67–76.

    Google Scholar 

  86. Mehrotra, R. C., Bera, S. K., Basumatary, S. K., & Srivastava, G. (2011). Study of fossil wood from the Middle–Late Miocene sediments of Dhemaji and Lakhimpur Districts of Assam, India and its palaeoecological and palaeophytogeographical implications. Journal of Earth System Science, 120, 681–701.

    Article  Google Scholar 

  87. Mehrotra, R. C., Mehrotra, N., Srivastava, G., & Shah, S. K. (2017). Occurrence of fossil woods in the Unakoti District, Tripura and their palaeoclimatic significance. Journal of the Palaeontological Society of India, 62, 17–30.

    Google Scholar 

  88. Metcalfe, C. R., & Chalk, L. (1950). Anatomy of Dicotyledons (Vol. I and II). Oxford: Clarendon Press.

    Google Scholar 

  89. Metcalfe, C. R., & Chalk, L. (1987). Anatomy of Dicotyledons Volume III, Magnoliales, Illiciales and Laurales (2nd ed. pp. 1–240). Oxford: Oxford University Press.

    Google Scholar 

  90. Mittre, V. (1964). Floristic and ecological reconsiderations of the Pleistocene plant impressions from Kashmir. Palaeobotanist, 13(3), 308–327.

    Google Scholar 

  91. Molnar, P. (2005). Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate. Palaeontologia Electronica, 8(1), 2A.

    Google Scholar 

  92. Molnar, P., Boos, W. R., & Battisti, D. S. (2010). Orographic controls on climate and palaeoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annual Review of Earth and Planetary Science, 38, 77–102.

    Article  Google Scholar 

  93. Mosbrugger, V., & Utescher, T. (1997). The coexistence approach—A method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeo-climatology, Palaeoecology, 134, 61–86.

  94. Mukherjee, A., Frayar, A. E., & Thomas, W. A. (2009). Geologic, geomorphic and hydrologic framework and evolution of the Bengal basin, India and Bangladesh. Journal of Asian Earth Sciences, 34, 227–244.

    Article  Google Scholar 

  95. Ohneiser, C., Florindo, F., Stocchi, P., Roberts, A. P., DeConto, R. M., & Pollard, D. (2015). Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding. Nature Communications, 6, 8765.

    Article  Google Scholar 

  96. Parrish, J. R., & Spicer, R. A. (1988). Middle Cretaceous wood from the Nanuskuk group, Central North Slope, Alaska. Palaeontology, 31, 19–34.

  97. Poole, I., & Davies, C. (2001). Glutoxylon Chowdhury (Anacardiaceae) the first record of fossil wood from Bangladesh. Review of Palaeobotany and Palynology, 113, 261–272.

    Article  Google Scholar 

  98. Prakash, U., Vaidyanathan, L., & Tripathi, P. P. (1994). Plant remains from the Tipam Sandstones of the North east India with remarks on the palaeoecology of the region during the Miocene. Palaeontographica B, 231, 113–146.

  99. Qin, F., Ferguson, D. K., Zetter, R., Wang, Y. F., Syabryaj, S., Li, J., Yang, J., & Li, C.-S. (2011). Late Plicoene vegetation and climate of Zhangcun region, Shanxi, North China. Global Change Biology, 17, 1850–1870.

    Article  Google Scholar 

  100. Quade, J., & Cerling, T. E. (1995). Expansion of C4 grasses in the Late Miocene of Northern Pakistan: Evidence from stable isotopes in paleosols. Palaeogeography Palaeoclimatology Palaeoecology, 115, 91–116.

  101. Reeves, H. D., & Lin, Y.-L. (2006). Effect of stable layer formation over the Po Valley on the development of convection during MAP IOP-8. Journal of the Atmospheric Sciences, 63(2003), 2567–2584. https://doi.org/10.1175/JAS3759.1.

    Article  Google Scholar 

  102. Reimann, K.-U. (1993). Geology of Bangladesh (p. 160). Berlin: Borntraeger.

    Google Scholar 

  103. Renner, S. S. (2016). Available data point to a 4-km-high Tibetan Plateau by 40 Ma, but 100 molecular-clock papers have linked supposed recent uplift to young node ages. Journal of Biogeography, 43, 1479–1487.

    Article  Google Scholar 

  104. Rowley, D. B., Pierrehumbert, R. T., & Currie, B. S. (2001). A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the high Himalaya since the Late Miocene. Earth and Planetary Science Letters, 188, 253–268.

    Article  Google Scholar 

  105. Roy, R. K. (1968-69). A note of the new clay deposits located in parts of the Sadar dn Sonamura sub-divison, Triprua, GSI Unpub. Progress Report.

  106. Roy, S. K., & Ghosh, P. K. (1979). On the occurrence of fossil woods of Gluta and Anogeissus in the Tertiary of Birbhum District, West Bengal, India. Geophytology, 9, 16–21.

    Google Scholar 

  107. Roy, S. K., & Ghosh, P. K. (1980). On the occurrence of Palmoxylon coronatum in West Bengal, India. Ameghiniana, 17(2), 130–134.

    Google Scholar 

  108. Roy, D. K., & Roser, B. P. (2013). Geochemical evolution of the Tertiary succession of the NW shelf, Bengal basin, Bangladesh: Implications for provenance, paleoweathering and Himalayan erosion. Journal of Asian Earth Sciences, 78, 248–262.

    Article  Google Scholar 

  109. Roybarman, R. (1992). Geological history and hydrocarbon exploration in Bengal Basin. Indian Journal of Geology, 64(3), 235–238.

    Google Scholar 

  110. Sahni, A., & Mitra, H. C. (1980). Neogene palaeobiogeography of the Indian subcontinent with special reference to fossil vertebrates. Palaeogeography, Palaeoclimatology, Palaeoecology, 31, 39–62.

    Article  Google Scholar 

  111. Salt, C. A., Alam, M. M., & Hossain, M. M. (1986). Bengal Basin: current exploration of the hinge zone area of south – western Bangladesh (pp. 55–57). Singapore: Proc. 6th offshore Southeast Asia (SEAPEX) Conference.

  112. Saylor, J. E., Quade, J., Dettman, D. L., DeCelles, P. G., Kapp, P. A., & Ding, L. (2009). The late Miocene through present paleoelevation history of southwestern Tibet. American Journal of Science., 309, 1–42.

    Article  Google Scholar 

  113. Schmitz, N., Verheyden, A., Beeckman, H., Kairo, J. G., & Koedam, N. (2006). Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata. Annals of Botany, 98, 1321–1330.

    Article  Google Scholar 

  114. Ségalen, L., Lee-Thorp, J. A., & Cerling, T. (2007). Timing of C4 grass expansion across sub-Saharan Africa. Journal of Human Evolution, 53, 549–559.

    Article  Google Scholar 

  115. Sen, I. (2006). Xylotomical study of Neogene wood remains from different parts of Bengal Basin with remarks on palaeoenviroment. Unpublished Thesis, Calcutta: Calcutta University.

  116. Sen, I., & Bera, S. (2005). Petrified wood remains from the Neogene of Tripura, India. Geophytology, 35(1–2), 65–73.

  117. Sen, I., Islam, M. S., & Bera, S. (2004). A fossil wood of Cynometra (Fabaceae) from the Plio-Pleistocene Dupi Tila Formation in Sylhet, Bangladesh. Bangladesh Journal of Geology, 23, 45–53.

    Google Scholar 

  118. Sen, I., Parua, D. K., Bera, S., Islam, S. U., & Poole, I. (2012). Contribution to the Neogene fossil wood records and palaeo-ecological understanding of Bangladesh. Palaeontographica Abteilung B, 288(1–4), 99–133. https://doi.org/10.1127/palb/288/2012/99.

  119. Shackleton, N. J., Imbrie, J., & Pisias, N. G. (1988). The evolution of oceanic oxygen-isotope variability in the North Atlantic over the past three million years. Philosophical Transactions of the Royal Society of London B, 318, 679–686.

    Article  Google Scholar 

  120. Spicer, R. A. (2017). Tibet, the Himalaya, Asian monsoons and Biodiversity – In what ways are they related? Plant Diversity, 39, 233–244.

  121. Spicer, R. A., Su, T., Valdes, P. J., Farnsworth, A., Wu, F.-X., Shi, G., Spicer, T. E. V., & Zhou, Z.-K. (2020). Why the ‘Uplift of the Tibetan Plateau’ is a myth. National Science Review, nwaa091. https://doi.org/10.1093/nsr/nwaa091.

  122. Srivastava, G., Paudayal, K. N., Utescher, T., & Mehrotra, R. C. (2018). Miocene vegetation shift and climate change: Evidence from the Siwalik of Nepal. Global and Planetary Change, 161, 108–120.

    Article  Google Scholar 

  123. Su, T., Jacques, F. M. B., Spicer, R. A., Liu, Y.-S., Huang, Y.-J., Xing, Y.-W., & Zhou, Z.-K. (2013). Post-Pliocene establishment of the present monsoonal climate in SW China: Evidence from the late Pliocene Longmen megaflora. Climate of the Past, 9, 1911–1920.

    Article  Google Scholar 

  124. Sun, X. J., & Wang, P. X. (2005). How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeography Palaeoclimatology Palaeoecology, 222, 181–222.

    Article  Google Scholar 

  125. Sun, B.-N., Wu, J.-Y., Liu, Y.-S. C., Ding, S.-T., Li, X.-C., Xie, S.-P., Yan, D.-F., & Lin, Z.-C. (2011). Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 328–336.

    Article  Google Scholar 

  126. Tang, H., Micheels, A., Eronen, J., & Fortelius, M. (2011). Regional climate model experiments to investigate the Asian monsoon in the Late Miocene. Climate of the Past, 7, 847–868.

    Article  Google Scholar 

  127. Thayn, G. F., Tidwell, W. D., & Stokes, W. L. (1985). Flora of the Lower Cretaceous Cedar Mountain Formation of Utah and Colorado. Part III: Icacinoxylon pittense n. sp. American Journal of Botany, 72, 175–180.

  128. Tiwari, R. P., Mehrotra, R. C., Srivastava, G., & Shukla, A. (2012). The vegetation and climate of a Neogene petrified wood forest of Mizoram, India. Journal of Asian Earth Sciences, 61, 143–165.

    Article  Google Scholar 

  129. Uddin, A., & Lundberg, N. (1998). Cenozoic history of the Himalayan–Bengal system: Sand composition in the Bengal basin, Bangladesh. Geological Society of America, Bulletin, 10, 497–511.

    Article  Google Scholar 

  130. Uddin, A., Kumar, P., Sharma, J. N., Syed, H., & A. (2007b). Heavy-mineral constraints on provenance of Cenozoic sediments from the foreland basins of Assam, India and Bangladesh: Erosional history of the eastern Himalayas and the Indo-Burman ranges. In M. A. Mange & D. T. Wright (Eds.), Heavy minerals in use: Developments in Sedimentology 58, 823–847.

  131. Uhl, D., Bruch, A. A., Traiser, C., & Klotz, S. (2006). Palaeoclimate estimates for the Middle Miocene Schrotzburg flora (S Germany): A multi-method approach. International Journal of Earth Science, 95, 1071–1085.

    Article  Google Scholar 

  132. Utescher, T., & Mosbrugger, V. (2015). The Palaeoflora Database. www.palaeoflora.de.

  133. Utescher, T., Bruch, A. A., Erdei, B., François, L., Ivanov, D., Jacques, F. M. B., Kern, A. K., Liu, Y.-S. (. C.)., & Mosbrugger, V. (2014). The Coexistence Approach—Theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeo-graphy, Palaeoclimatology, Palaeoecology, 410, 58–73.

  134. Wan, S. M., Li, A. C., Clift, P. D., & Stuut, J. W. (2007). Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeography Palaeoclimatology Palaeoecology, 254, 561–582.

    Article  Google Scholar 

  135. Wang, B. (2006). The Asian monsoon. Berlin, Heidelberg: Springer Praxis Books, Springer.

    Google Scholar 

  136. Wang, P. X., Wang, B., Cheng, H., Fasullo, J., Guo, Z. T., Kiefer, T., & Liu, Z. Y. (2014). The global monsoon across timescales: Coherent variability of regional monsoons. Climate of the Past, 10, 2007–2052.

  137. Wang, C. S., Dai, J., Zhao, X., Li, Y., Graham, S. A., He, D., Ran, B., & Meng, J. (2014). Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonics, 621, 1–43.

  138. Wheeler, E. A., & Baas, P. (1991). A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Bulletin New Series, 13, 275–332.

    Article  Google Scholar 

  139. Wheeler, E. A., & Baas, P. (1993). The potentials and limitations of dicotyledonous wood anatomy for climatic reconstructions. Paleobiology, 19, 487–498.

    Article  Google Scholar 

  140. Wheeler, E. A., Pearson, R. G., La Pasha, C. A., Zack, T., & Hatley, W. (1986). Computer aided wood identification. North Carolina Agricultural Research Service Bulletin, 474, 1–96.

    Google Scholar 

  141. Wheeler, L. B., Galewsky, J., Herold, N., & Huber, M. (2016). Late Cenozoic surface uplift of the southern Sierra Nevada (California, USA): A paleoclimate perspective on lee-side stable isotope paleoaltimetry. Geology, 44(6), 451–454. https://doi.org/10.1130/G37718.1.

    Article  Google Scholar 

  142. Wolfe, J. A., & Upchurch Jr., G. R. (1987). North American nonmarine climates and vegetation during the Late Cretaceous. Palaeogeo-graphy, Palaeoclimatology, Palaeoecology, 61, 33–77.

  143. Woodcock, D. W., & Ignas, C. M. (1994). Prevalence of wood characters in eastern North America: What characters are most promising for interpreting climates from fossil wood. American Journal of Botany, 81, 1243–1251.

    Article  Google Scholar 

  144. Xia, K., Tao, S., Liu, Y.-S. (. C.)., Xing, Y.-W., Jacques, F. M. B., & Zhou, Z.-K. (2009). Quantitative climate reconstructions of the late Miocene Xiaolongtan megaflora from Yunnan, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 276, 80–86.

  145. Xing, Y. W., Utescher, T., Jacques, F. M. B., Tao, S., Liu, Y. S., Huang, Y. J., & Zhou, Z.-K. (2012). Palaeoclimatic estimation reveals a weak winter monsoon in southwestern China during the late Miocene: Evidence from plant macrofossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 358-360, 19–26.

    Article  Google Scholar 

  146. Xu, J. X., Ferguson, D. K., Li, C. S., & Wang, Y. F. (2008). Late Miocene vegetation and climate of the Lühe region in Yunnan, southwestern China. Review of Palaeobotany and Palynology, 148, 36–59.

    Article  Google Scholar 

  147. Yao, Y.-F., Bruch, A. A., Mosbrugger, V., & Li, C. S. (2011). Quantitative reconstruction of Miocene climate patterns and evolution in Southern China based on plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 291–307.

    Article  Google Scholar 

  148. Yao, Y.-F., Bruch, A. A., Cheng, Y.-M., Mosbrugger, V., Wang, Y.-F., & Li, C.-S. (2012). Monsoon versus uplift in southwestern China–Late Pliocene climate in Yuanmou Basin, Yunnan. PLOS One, 7, e37760. https://doi.org/10.1371/journal.pone.0037760.

    Article  Google Scholar 

  149. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.

    Article  Google Scholar 

  150. Zheng, H. B., Powell, C. M. A., Read, D. K., Wang, J. L., & Wang, P. X. (2004). Late Miocene and mid-Pliocene enhancement of the East Asian monsoon as viewed from the land and sea. Global and Planetary Change, 41, 147–155.

    Article  Google Scholar 

Download references

Acknowledgements

RG acknowledges the Director, Birbal Sahni Institute of Palaeosciences, Lucknow, for her encouragement, support and permission to publish this work. SB, AB, IS and DKP acknowledge UGC-CAS, Phase VII, Department of Botany, University of Calcutta, for the infrastructural facilities. This work is a contribution to NECLIME (Neogene Climate Evolution in Eurasia) and the ROCEEH (The Role of Culture in Early Expansions of Humans) Research Centre of the Heidelberg Academy of Sciences and Humanities. We thank Professor Robert A. Spicer, The Open University, UK and an anonymous reviewer for their constructive suggestions on this manuscript which certainly have increased the merit of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Subir Bera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue “Palaeobotanical contributions in honour of Volker Mosbrugger”.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, R., Biswas, A., Bruch, A.A. et al. Palaeoclimate estimates based on the late Miocene to early Pleistocene wood flora of the Bengal Basin: an insight into the climatic evolution of southern Asia. Palaeobio Palaeoenv 101, 141–162 (2021). https://doi.org/10.1007/s12549-020-00467-8

Download citation

Keywords

  • Late Miocene to early Pleistocene
  • Climate
  • Bengal Basin
  • Fossil woods
  • ISM
  • EASM