Skip to main content

Middle Miocene climatic oscillations controlled by orbital-scale changes triggered environmental and vegetation variability in the Dinarides Lake System (Bugojno Basin, Bosnia and Herzegovina)

Abstract

The middle Miocene was a key period in Earth’s history as climate changed from one of the warmest phases of the Cenozoic Era, the Miocene Climatic Optimum (MCO), to colder conditions with the establishment of permanent ice sheets on Antarctica. This climate change had a profound impact on terrestrial ecosystems affecting vegetation worldwide. However, the scarceness of detailed pollen data at short-scale resolution for this time period precludes us from a deep understanding of environmental and vegetation changes at millennial-scales. Here, we present palynological data from a new sedimentary sequence from the Gračanica open cast mine (Bugojno Basin, Bosnia and Herzegovina), which shows significant changes in the environment and lake sedimentation, probably related with orbital-scale climate dynamics during the middle Miocene. This study also shows that high-amplitude climate variations characterised the middle Miocene climatic optimum (MCO; ~ 16.8–14.7 Ma). Statistical analysis and sedimentary rates suggest that eccentricity- and precession-dominated orbital-scale variability is recorded in the studied core. Warmest conditions are registered at the base of the studied section that could be correlated with an eccentricity maximum at the end of the MCO. A cooling trend is recorded since then and until the top of the sedimentary sequence, with coldest maxima, tentatively correlated with a minimum in eccentricity and insolation. Smaller-scale cyclical climatic events (i.e. warm-dry vs. cold-humid) observed in the vegetation and corresponding with lake-level variations are observed in this study that seems to be related with precession cyclicity. This study suggests that sedimentation in this lake basin lasted for about 200 kyr and was strongly conditioned by climate at the beginning of the middle Miocene climate transition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Andrić, N., Sant, K., Matenco, L., Mandic, O., Pavelić, D., Tomljenović, B., Demir, V., & Hrvatović, H. (2017). The link between tectonics and sedimentation in asymmetric extensional basins: Inferences from the study of the Sarajevo-Zenica Basin. Marine and Petroleum Geology, 83, 305–332.

    Google Scholar 

  2. Behlilović, S., & Muftić, M. (1966). Geologija Bijelog polja kod Mostara. Geološki glasnik, 11, 78–102.

    Google Scholar 

  3. Bertini, A. (2001). Pliocene climatic cycles and altitudinal forest development from 2.7 Ma in the Northern Apennines (Italy): Evidence from the pollen record of the Stirone section (~5.1 to ~2.2 Ma). Géobios, 34(3), 253–265.

    Google Scholar 

  4. Beug, H.-J. (2004). Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete (pp. 542). München: Verlag Dr. Friedrich Pfeil.

  5. Biltekin, D., Popescu, S.-M., Suc, J.-P., Quézel, P., Yavuz, N., Jiménez-Moreno, G., Safra, A., & Namik Cagatay, M. (2015). Anatolia: A plant refuge area during the last 23 million years according to pollen records from Turkey. Review of Palaeobotany and Palynology, 215, 1–22.

    Google Scholar 

  6. Cheddadi, R., Henrot, A.-J., François, L., Boyer, F., Bush, M., Carré, M., Coissac, E., De Oliveira, P. E., Ficetola, F., Hambuckers, A., Huang, K., Lézine, A.-M., Nourelbait, M., Rhoujjati, A., Taberlet, P., Sarmiento, F., Abel-Schaad, D., Alba-Sánchez, F., & Zheng, Z. (2017). Microrefugia, climate change, and conservation of Cedrus atlantica in the Rif Mountains, Morocco. Frontiers in Ecology and Evolution, 5, 114.

    Google Scholar 

  7. Combourieu-Nebout, N., & Vergnaud-Grazzini, C. (1991). Late Pliocene northern hemisphere glaciation: The continental and marine responses in the central Mediterranean. Quaternary Science Reviews, 10, 319–334.

    Google Scholar 

  8. Coombs, M. C., & Göhlich, U. B. (in press). Anisodon (Perissodactyla, Chalicotheriinae) from the middle Miocene locality Gračanica (Bugojno Basin, Gornji Vakuf, Bosnia and Herzegovina). In U. B. Göhlich & O. Mandic (Eds.), The drowning swamp of Gračanica (Bosnia-Herzegovina)—A diversity hotspot from the middle Miocene in the Bugojno Basin. Palaeobiodiversity and Palaeoenvironments. https://doi.org/10.1007/s12549-018-0357-9. [this issue]

  9. De Leeuw, A., Mandic, O., Vranjković, A., Pavelić, D., Harzhauser, M., Krijgsman, W., & Kuiper, K. F. (2010). Chronology and integrated stratigraphy of the Miocene Sinj Basin (Dinaride Lake System, Croatia). Palaeogeography, Palaeoclimatology, Palaeoecology, 292, 155–167.

    Google Scholar 

  10. De Leeuw, A., Mandic, O., Krijgsman, W., Kuiper, K., & Hrvatović, H. (2011). A chronostratigraphy for the Dinaride Lake System deposits of the Livno-Tomislavgrad Basin: The rise and fall of a long-lived lacustrine environment in an intra-montane setting. Stratigraphy, 8, 29–43.

    Google Scholar 

  11. De Leeuw, A., Mandic, O., Krijgsman, W., Kuiper, K., & Hrvatović, H. (2012). Paleomagnetic and geochronologic constraints on the geodynamic evolution of the Central Dinarides. Tectonophysics, 530-531, 286–298.

    Google Scholar 

  12. Diester-Haass, L., Billups, K., Jacquemin, I., Emeis, K. C., Lefebvre, V., & François, L. (2013). Paleoproductivity during the middle Miocene carbon isotope events: A data-model approach. Paleoceanography, 28, 334–346.

    Google Scholar 

  13. Engelhard, H. (1883). Über bosnische Tertiärpflanzen. Beschreibung einiger Tertiärpflanzen von Bijelo Brdo bei Višegrad in Bosnien. Ges. “Isis” in Dresden 11, 85–88.

  14. Engelhard, H. (1900). Über Tertiärpflanzen aus Bosnien. Verhandlungen der k.u.k. Geologischen Reichsanstalt, 1900, 187–189.

    Google Scholar 

  15. Engelhard, H. (1901). Prilog poznavanju tercijarne flore najšire okoline Donje Tuzle u Bosni. Glasnik Zemaljskog Muzeja u Bosni i Hercegovini, 13, 473–526.

    Google Scholar 

  16. Engelhard, H. (1902a). Verzeichnis der im Jahre 1901 in Bosnien und Hercegowina aufgefundenen Tertiärpflanzen. Verhandlungen der k.u.k. Geologischen Reichsanstalt 142–143.

  17. Engelhard, H. (1902b). Prilog poznavanju tercijarne flore Bosne i Hercegovine. Glasnik Zemaljskog Muzeja u Bosni i Hercegovini, 14, 441–460.

    Google Scholar 

  18. Engelhard, H. (1903). Prilog poznavanju fosilne flore iz naslaga smeđeg ugljena u kotlini Zenica–Sarajevo u Bosni. Glasnik Zemaljskog Muzeja u Bosni i Hercegovini, 15, 115–148.

    Google Scholar 

  19. Engelhard, H. (1904a). Prilog poznavanju tercijarne flore okoline Prozora. Glasnik Zemaljskog Muzeja u Bosni i Hercegovini, 16(4), 245–262.

    Google Scholar 

  20. Engelhard, H. (1904b). Tercijarne bilinene iz Foče na jugoistoku Bosne. Glasnik Zemaljskog Muzeja u Bosni i Hercegovini, 16, 555–562.

    Google Scholar 

  21. Engelhard, H. (1910). Novi prilozi poznavanju tercijarne flore Bosne. Glasnik Zemaljskog Muzeja u Bosni i Hercegovini, 22, 141–172.

    Google Scholar 

  22. Engelhard, H. (1912). K poznavanju tercijarne flore sjeverozapadne Bosne. Glasnik Zemaljskog Muzeja u Bosni i Hercegovini, 24, 515–524.

    Google Scholar 

  23. Engelhard, H. (1913). Novi prilog poznavanju tercijarne flore Bosne. Glasnik Zemaljskog Muzeja u Bosni i Hercegovini, 25, 383–396.

    Google Scholar 

  24. Faegri, K., & Iversen, J. (1989). Textbook of pollen analysis. New York: Wiley.

    Google Scholar 

  25. Fauquette, S., Guiot, J., & Suc, J.-P. (1998). A method for climatic reconstruction of the Mediterranean Pliocene using pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 144, 183–201.

    Google Scholar 

  26. Flower, B. P., & Kennett, J. P. (1994). The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 108, 537–555.

  27. Grimm, E. C. (1987). CONISS: A Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences, 13, 13–35.

    Google Scholar 

  28. Guy-Ohlson, D. (1992). Botryococcus as an aid in the interpretation of palaeoenvironment and depositional processes. Review of Palaeobotany and Palynology, 71, 1–15.

    Google Scholar 

  29. Hammer, O., Harper, D.A.T., & Ryan, P. (2001). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4 (1) (art. 4, 9 pp.).

  30. Harzhauser, M., Mandic, O., Nordsieck, H., & Neubauer, T. A. (in press). A new Helicidae (Gastropoda) from the Middle Miocene of Bosnia and Herzegovina, with a revision of the genus Paradrobacia. In U. B. Göhlich & O. Mandic (Eds.), The drowning swamp of Gračanica (Bosnia-Herzegovina)—A diversity hotspot from the middle Miocene in the Bugojno Basin. Palaeobiodiversity and Palaeoenvironments.https://doi.org/10.1007/s12549-018-0344-1. [this issue]

  31. Herbert, T. D., Lawrence, K. T., Tzanova, A., Cleaveland Peterson, L., Caballero-Gill, R., & Kelly, C. S. (2016). Late Miocene global cooling and the rise of modern ecosystems. Nature Geoscience, 9, 843–847.

    Google Scholar 

  32. Holbourn, A., Kuhnt, W., Schulz, M., Flores, J.-A., & Andersen, N. (2007). Orbitally paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth and Planetary Science Letters, 261, 534–550.

    Google Scholar 

  33. Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O., & Andersen, N. (2014). Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology, 42(1), 19–22.

  34. Hrvatović, H. (2006). Geological guidebook through Bosnia and Herzegovina. Geological Survey of Federation BiH, p. 172, Sarajevo.

  35. Jiménez-Moreno, G., Rodríguez-Tovar, F.-J., Pardo-Igúzquiza, E., Fauquette, S., Suc, J.-P., & Müller, P. (2005). High-resolution palynological analysis in late Early–Middle Miocene core from the Pannonian Basin, Hungary: Climatic changes, astronomical forcing and eustatic fluctuations in the Central Paratethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(1–2), 73–97.

  36. Jiménez-Moreno, G., Mandic, O., Harzhauser, M., Pavelić, D., & Vranjković, A. (2008). Vegetation and climate dynamics during the Early Middle Miocene from Lake Sinj (Dinaride Lake System, Croatia). Review of Palaeobotany and Palynology, 152, 237–245.

    Google Scholar 

  37. Jiménez-Moreno, G., de Leeuw, A., Mandic, O., Harzhauser, M., Pavelic, D., Krijgsman, W., & Vranjkovic, A. (2009). Integrated stratigraphy of the Early Miocene lacustrine deposits of Pag Island (SW Croatia): Palaeovegetation and environmental changes in the Dinaride Lake System. Palaeogeography, Palaeoclimatology, Palaeoecology, 280, 193–206.

    Google Scholar 

  38. Jiménez-Moreno, G., García-Alix, A., Hernández-Corbalán, M. D., Anderson, R. S., & Delgado-Huertas, A. (2013). Vegetation, fire, climate and human disturbance history in the southwestern Mediterranean area during the late Holocene. Quaternary Research, 79, 110–122.

    Google Scholar 

  39. Jurišić-Polšak, Z., & Bulić, J. (2007). Pradavno Paško jezero, 1–63 (Hrvatski prirodoslovni muzej) Zagreb.

  40. Jurišić-Polšak, Z., Krizmanić, K., & Hajek-Tadesse, V. (1993). Freshwater Miocene of Krbavsko Polje in Lika (Croatia). Geologia Croatica, 46(2), 213–228.

    Google Scholar 

  41. Katzer, F. (1918). Die fossilen Kohlen Bosniens und der Hercegovina. Erster Bd. Selbstverlag, 1–403.

  42. Katzer, F. (1921). Die fossilen Kohlen Bosniens und der Hercegovina. Zweiter Bd. Verlag bosnisch-herzegowinischer geologischen Landesanstalt, 1–271.

  43. Kloosterboer-van Hoeve, M. L., Steenbrink, J., Visscher, H., & Brinkhuis, H. (2006). Millennial-scale climatic cycles in the Early Pliocene pollen record of Ptolemais, northern Greece. Palaeogeography Palaeoclimatology Palaeoecology, 229, 321–334.

  44. Krizmanić, K. (1995). Palynology of the Miocene bentonite from Gornja Jelenska (Mt. Moslavačka Gora, Croatia). Geologia Croatica, 48(2), 147–154.

    Google Scholar 

  45. Mandic, O., de Leeuw, A., Vuković, B., Krijgsman, W., Harzhauser, M., & Kuiper, K. F. (2011). Palaeoenvironmental evolution of Lake Gacko (NE Bosnia and Herzegovina): Impact of the Middle Miocene Climatic Optimum on the Dinaride Lake System. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 475–492.

    Google Scholar 

  46. Mandic, O., Vranjkovic, A., Pavelic, D., Hrvatovic, H., & De Leeuw, A. (2012a). Miocene intra-montane lacustrine basins of Outer Dinarides (Croatia and Bosnia and Herzegovina). In I. Vlahovic, O. Mandic, E. Mrinjek, S. Bergant, V. Cosovic, A. De Leeuw, P. Enos, H. Hrvatovic, D. Maticec, G. Miksa, W. Nemec, D. Pavelic, V., Pencinger, I. Velic & A. Vranjkovic (Eds.), Marine to continental depositional systems of Outer Dinarides foreland and intramontane basins (Eocene-Miocene, Croatia and Bosnia and Herzegovina). Field Trip Guide, 29th IAS Meeting of Sedimentology Schladming. Austrian Journal of Alpine Geology, 54, 456–470.

  47. Mandic, O., De Leeuw, A., Bulić, J., Kuiper, K., Krijgsman, W., & Jurišić-Polšak, Z. (2012b). Paleogeographic evolution of the Southern Pannonian Basin: 40Ar/39Ar age constraints on the Miocene continental series of northern Croatia. International Journal of Earth Sciences, 101, 1033–1046.

  48. Mandic, O., Sant, K., Andrić, N., Horvatinčić, N., Ilijanić, N., Miko, S., Markić, N., Novosel, A., Matenco, L., & Hrvatović, H. (2016). Dinarides lakes and basins—From 18 Ma to Present. In O. Mandic, D. Pavelić, M. Kovačić, K. Sant, N. Andrić, & H. Hrvatović (Eds.), Field trip guidebook. Lake - Basin - Evolution. RCMNS Interim Colloquium 2016 & Croatian Geological Society Limnogeology Workshop, Zagreb (pp. 33–80). Zagreb: Croatian Geological Society.

  49. Matenco, L., & Radivojević, D. (2013). On the formation and evolution of the Pannonian Basin: Constraints derived from the structure of the junction area between the Carpathians and Dinarides. Tectonics, 31, 1944–9194.

    Google Scholar 

  50. Miller, K. G., Wright, J. D., & Fairbanks, R. G. (1991). Unlocking the ice house: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. Journal of Geophysical Research, 96, 6829–6848.

    Google Scholar 

  51. Muftić, M. (1964). Prilog geološkom poznavanju gatačkog ugljenonosnog bazena. Geološki glasnik, 9, 139–154.

    Google Scholar 

  52. Muftić, M. (1970). Ugljenonosne naslage Banjaluke. Geološki glasnik, 14, 203–216.

    Google Scholar 

  53. Muftić, M., & Behlilović, S. (1961). Prikaz geološkog poznavanja ugljonosnih naslaga Gračanice kod Bugojna. Geološki glasnik, 11, 303–312.

    Google Scholar 

  54. Muftić, M., & Luburić, P. (1963). Prilog poznavanju litostratigrafskih i tektonskih odnosa jezerskog neogena u Bosni i Hercegovini. Geološki glasnik, 7, 103–130.

    Google Scholar 

  55. Paillard, D., Labeyrie, L., & Yiou, P. (1996). Macintosh program performs time-series analysis. Eos, Transactions AGU, 77, 379.

    Google Scholar 

  56. Pantić, N. (1957). Fitostratigrafija tercijarnih flora SI Bosne. Sarajevo: Zbornik II Kongresa geóloga FNRJ.

    Google Scholar 

  57. Pantić, N. (1961). O starosti slatkovodnog tercijara sa ugljem u Bosni na osnovu palaeofloristickih istrazivanja. Geološki anali Balkanskog poluostrva, 28, 1–22.

    Google Scholar 

  58. Pantić, N., & Bešlagić, A. (1964). Palinološke analize mrkog uglja i lignita iz Livanjskog tercijarnog bazena. Geološki anali Balkanskog poluostrva, 31, 127–132.

    Google Scholar 

  59. Pantić, N., Ercegovac, M., & Pantić, V. (1966). Palinološka ispitivanja i stratigrafija terestrično-limničkih tercijarnih naslaga u Zeničko–Sarajevskom basenu. Geološki anali Balkanskog poluostrva, 32, 183–210.

    Google Scholar 

  60. Pavelić, D., Avanić, R., Bakrač, K., & Vrsaljko, D. (2001). Early Miocene braided river and lacustrine sedimentation in the Kalnik mountain area (Pannonian Basin System, NW Croatia). Geologica Carpathica, 52(6), 375–386.

    Google Scholar 

  61. Piller, W. E., Harzhauser, M., & Mandic, O. (2007). Miocene Central Paratethys stratigraphy—Current status and future directions. Stratigraphy, 4, 151–168.

    Google Scholar 

  62. Polić, A. (1935). O Oligocenu i njegovoj flori kod Planine u Zagrebačkoj gori. Rad JAZU, 251, Mat. prir. razr. 78, Zagreb.

  63. Popescu, S.-M. (2001). Repetitive changes in Early Pliocene vegetation revealed by highresolution pollen analysis: Revised cyclostratigraphy of southwestern Romania. Review of Palaeobotany and Palynology, 120, 181–202.

  64. Popescu, S.-M., Suc, J.-P., & Loutre, M.-F. (2006). Early Pliocene vegetation changes forced by eccentricity-precession. Example from Southwestern Romania. Palaeogeogr Palaeoclimatol Palaeoecol, 238, 340–348.

    Google Scholar 

  65. Quézel, P., & Médail, F. (2003). Ecologie et biogéographie des forêts du basin méditerranéen. France: Elsevier.

    Google Scholar 

  66. Radimsky, O. (1877). Über den geologischen Bau der Insel Pago. In Verhandlungen der k.u.k. geologischen Reichsanstalt. Wien. 1877.

  67. Ramos-Román, M. J., Jiménez-Moreno, G., Camuera, J., García-Alix, A., Anderson, R. S., Jiménez-Espejo, F. J., & Carrión, J. S. (2018). Holocene climate aridification trend and human impact interrupted by millennial- and centennial-scale climate fluctuations from a new sedimentary record from Padul (Sierra Nevada, southern Iberian Peninsula). Climate of the Past, 14, 117–137.

    Google Scholar 

  68. Sánchez Goñi, M. F., Landais, A., Fletcher, W. J., Naughton, F., Desprat, S., & Duprat, J. (2008). Contrasting impacts of Dansgaard–Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews, 27, 1136–1151.

  69. Sant, K., Andrić, N., Mandic, O., Demir, V., Pavelić, D., Lj, R., Hrvatović, H., Matenco, L., & Krijgsman, W. (2018). Magneto-biostratigraphy and paleoenvironments of the Miocene freshwater sediments of the Sarajevo-Zenica Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 506, 48–69.

    Google Scholar 

  70. Schmid, M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., & Ustaszewski, K. (2008). The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.

    Google Scholar 

  71. Schulz, M., & Mudelsee, M. (2002). REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers and Geosciences, 28, 421–426.

  72. Shevenell, A. E., Kennett, J. P., & Lea, D. W. (2008). Middle Miocene ice sheet dynamics, deep-sea temperatures and carbon cycling: A Southern Ocean perspective. Geochemistry, Geophysics, Geosystems, 9, Q02006.

    Google Scholar 

  73. Tzedakis, P. C. (2007). Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quaternary Science Reviews, 26, 2042–2066.

    Google Scholar 

  74. Unen, M. van, Matenco, L., Nader, F. H., Darnault, R., Mandic, O., & Demir, V. (2019). Kinematics of foreland-vergent crustal accretion: Inferences from the Dinarides evolution. Tectonics, 38, 49–76.

  75. Vasković, D. (1931). Einige neue Pflanzenreste von Kakanj, Breza und Vogošća bei Sarajevo. Glasnik Zemaljskog muzeja Sarajevo.

  76. Veen, F. R. van (1954). Pollenuntersuchungen an Braunkohle aus Breza und Tusnica. Glasnik Biološkog Instituta Sarajevo, 7(1–2).

  77. Wang, C. W. (1961). The forests of China with a survey of grassland and desert vegetation. Maria Moors Cabot Foundation (Vol. 5). Cambridge: Harvard University.

    Google Scholar 

  78. Wessels, W., Bruijn, H.de, Marković, Z., & Milivojević, M. (in press). Small mammals from the opencast lignite mine Gračanica (Bugojno, middle Miocene), Bosnia and Herzegovina. In U. B. Göhlich & O. Mandic (Eds.), The drowning swamp of Gračanica (Bosnia-Herzegovina)—A diversity hotspot from the middle Miocene in the Bugojno Basin. Palaeobiodiversity and Palaeoenvironments. https://doi.org/10.1007/s12549-018-0366-8. [this issue]

  79. Weyland, H., Pflug, H., & Pantić, N. (1958). Untersuchungen über die Sporen und Pollen- Flora einige jugoslawischer und griechischer Braunkohlen. Palaeontographica, Abteilung B, 105, 75─99.

  80. Woodruff, F., & Savin, S. (1991). Mid-Miocene isotope stratigraphy in the deep sea: High resolution correlations, paleoclimatic cycles, and sediment preservation. Paleoceanography, 6, 755–806.

    Google Scholar 

  81. Zachos, J., Pagani, M., Sloan, S., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dževad Forčaković, Hamdija Puljarga and Branko Grabovac and the authorities of the Gračanica coal mine for the permission to work in the mine and the highly valuable infrastructural help. We thank Medina Mandic (Vienna) for her assistance with the field work and Dimiter Ivanov, Torsten Utescher and David De Vleeschouwer for their thoughtful and very constructive reviews of a previous version of this manuscript. Finally, we are highly indebted to Hazim Hrvatović (Federal institute for geology, Ilidža) for his continued support of our palaeoenvironmetal studies in the Dinarides Miocene basins.

Funding

This work was supported by the project P11-RNM-7332 funded by Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía, the projects CGL2013-47038-R and CGL2017-85415-R funded by Ministerio de Economía y Competitividad of Spain and fondo Europeo de desarrollo regional FEDER and the research group RNM0190 (Junta de Andalucía).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Jiménez-Moreno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue “The drowning swamp of Gračanica (Bosnia-Herzegovina) - a diversity hotspot from the middle Miocene in the Bugojno Basin”

Electronic supplementary material

ESM 1

(DOCX 781 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Moreno, G., Mandic, O. Middle Miocene climatic oscillations controlled by orbital-scale changes triggered environmental and vegetation variability in the Dinarides Lake System (Bugojno Basin, Bosnia and Herzegovina). Palaeobio Palaeoenv 100, 493–506 (2020). https://doi.org/10.1007/s12549-020-00416-5

Download citation

Keywords

  • Middle Miocene
  • Pollen analysis
  • Flora
  • Vegetation
  • Dinarides Lake System
  • Orbital-scale climatic changes