Skip to main content

Advertisement

Log in

Palaeoenvironmental change across the Permian-Triassic boundary inferred from palynomorph assemblages (Godavari Graben, south India)

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

In the present study, palynological and palaeoenvironmental investigations have been carried out on a 601 m-thick sedimentary sequence intersected by borehole MCP-8 (Sattupalli-Chintalapudi coal belt, Chinatalapudi sub-basin, Godavari Graben). These studies have been carried out for the dating and correlation of sediments to understand the biostratigraphy and climatic change documented by terrestrial plant ecosystem across the Permian-Triassic boundary interval. The palynological investigation revealed the presence of five distinct floral assemblages (Assemblages I–V). Assemblages I–III (Guadalupian-Lopingian) represent Raniganj palynoflora (591.27–157.20 m), whereas Assemblages IV–V (Induan) represent Panchet palynoflora (137.79–136.08 m). The Gondwanan flora underwent a considerable change after the end-Permian mass extinction event. The late Permian glossopterids, conifer and cordaites dominated palynoflora was replaced by the lycopsids and few forms of peltasperms and conifers during Early Triassic. The decline in the glossopterid diversity and abundance along with concomitant rise in the lycopsids suggest a gradual but obvious palynofloral and environmental change across the Permian-Triassic boundary. Palynofacies studies have been carried with regards to reconstruct palaeoenvironment and palaeovegetation. These studies predict a thick closed forest cover during the deposition of the Raniganj palynoflora (late Permian), dominated by striate glossopterid and non-striate conifer and peltasperm pollen grains, which were the main peat-forming elements and the vegetation of the hinterland. The Panchet (Early Triassic) palynoflora was dominated by cingulate cavate spore bearing lycopsids and arborescent to sub-arborescent plants of conifers bearing taeniate bisaccates forming an open forest. On the basis of recovered palynoflora and palynofacies studies, the upper Permian (Guadalupian and lower Lopingian) deposits have been inferred as fluvio lacustrine while extensive peat-forming swamp dominating conditions prevailed during Changhsingian times. The Lower Triassic deposits represent hot-arid conditions along the braided river systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aitken, G. A. (1998). A palynological and palaeoenvironmental analysis of Permian and early Triassic sediments of the Ecca and the Beaufort groups, Northern Karoo Basin, South Africa. Unpublished Ph.D. Thesis, University of the Witwatersrand, Johannesburg, pp. 1–249.

  • Abu Hamad, A. M. B., Kerp, H., Vörding, B., & Bandel, K. (2008). A late Permian flora with Dicroidium from the Dead Sea region, Jordan. Review of Palaeobotany and Palynology, 268, 85–130.

    Google Scholar 

  • Backhouse, J. (1991). Permian palynostratigraphy of the Collie Basin, Western Australia. Review of Palaeobotany and Palynology, 67, 237–314.

    Google Scholar 

  • Backhouse, J. (1993). Palynology and correlation of Permian sediments in the Perth, Collie and Officer basins, Western Australia. Geological Survey of Western Australia Report, 34, 111–128.

    Google Scholar 

  • Balme, B. E. (1970). Palynology of Permian and Triassic strata in the Salt Range and Surghar Range, western Pakistan. Department of Geology, University Press of Kansas Special Publication, 4, 305–453.

    Google Scholar 

  • Balme, B. E. (1995). Fossil in situ spores and pollen grains: An annotated catalogue. Review of Palaeobotany and Palynology, 87, 81–323.

    Google Scholar 

  • Bamford, M. K. (2004). Diversity of the Woody vegetation of Gondwanan Southern Africa. Gondwana Research, 7, 53–164.

    Google Scholar 

  • Baranyi, V., Pálfy, J., Görög, Á., Riding, J. B., & Raucsik, B. (2016). Multiphase response of palynomorphs to the Toarcian oceanic anoxic event (Early Jurassic) in the Réka Valley section, Hungary. Review of Palaeobotany and Palynology, 235, 51–70.

    Google Scholar 

  • Batten, D. J. (1996). Palynofacies and paleoenvironmental interpretation. In J. Jansonius & D. C. McGregor (Eds.), Palynology: Principles and applications (Vol. 3, pp. 1011–1064). Dallas: American Association of Stratigraphic Palynologists Foundation.

    Google Scholar 

  • Benton, M. J., & Newell, A. J. (2014). Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Research, 25, 1308–1337.

    Google Scholar 

  • Berner, R. A. (2006). GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70, 5653–5664.

    Google Scholar 

  • Berner, R. A. (2009). Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. American Journal of Science, 309, 603–606.

    Google Scholar 

  • Bharadwaj, D. C. (1975). Palynology in biostratigraphy and palaeoecology of Indian Lower Gondwana Formations. Palaeobotanist, 22, 150–157.

    Google Scholar 

  • Bharadwaj, D. C., Tiwari, R. S., & Anand-Prakash. (1978). Palynology of Bijori Formation (Upper Permian) in Satpura Gondwana Basin, India. Palaeobotanist, 25, 70–78.

    Google Scholar 

  • Bharadwaj, D. C., Tiwari, R. S., & Anand-Prakash. (1979). Permo-Triassic palynostratigraphy and lithostratigraphical characteristic in Damodar Basin, India. Biological Memoirs, 4, 49–82.

    Google Scholar 

  • Bharadwaj, D. C., Srivastava, S. C., Ramanamurty, B. V., & Jha, N. (1987). Palynology of Kamthi Formation from Ramagundam-Mantheni area, Godavari Graben, India. Palaeobotanist, 35, 318–330.

  • Biswas, S. K. (1999). A review on the evolution of rift basins in India during Gondwana with special reference to western Indian basins and their hydrocarbon prospects, In A. Sahni, R.S. Loyal (Eds.), Gondwana assembly: New issues and perspectives. Proceedings of Indian National Science Academy Special Issue, pp. 261–283.

  • Biswas, S. K., Bhasin, A. L., & Ram, J. (1993). Classification of Indian sedimentary basins in the framework of plate tectonics. Proceedings Second Seminar on Petroliferous Basins of India, Indian Petroleum Publication, Dehradun, 1, 1–46.

  • Blandford, W. T. (1872). Description of the sandstone in the neighbourhood of the first barrier on the Godavari and in the country between the Godavari and Ellore. Records of Geological Survey of India, 6, 23–69.

    Google Scholar 

  • Carvalho, M. D. A., Ramos, R. R. C., Crud, M. B., Witovisk, L., Kellner, A. W., Silva, H. D. P., Grillo, O. N., Riff, D., & Romano, P. S. (2013). Palynofacies as indicators of paleoenvironmental changes in a Cretaceous succession from the Larsen Basin, James Ross Island, Antarctica. Sedimentary Geology, 295, 53–66.

    Google Scholar 

  • Cascales-Miñana, B., Cleal, C. J., & Diez, J. B. (2013). What is the best way to measure extinction? A reflection from the palaeobotanical record. Earth-Science Reviews, 124, 126–147.

    Google Scholar 

  • Chakraborty, C., Mandal, N., & Ghosh, S. K. (2003). Kinematics of the Gondwana basins of peninsular India. Tectonophysics, 377, 299–324.

    Google Scholar 

  • Chakraborty, S. (2003). Miofloral assemblage of the subsurface Lower Gondwana rocks of Permian in parts of Mahanadi Basin, India. Acta Palaeontologica Sinica, 42, 13–21.

    Google Scholar 

  • Chatterjee, R., Ghosh, A. K., Ratan, K., & Rao, G. M. N. (2014). Dwarfism and Lilliput effect: a study on the Glossopteris from the late Permian and early Triassic of India. Current Science, 107, 1735–1744.

  • Cirilli, S., Radrizzani, C. P., Ponton, M., & Radrizzani, S. (1998). Stratigraphical and palaeoenvironmental analysis of the Permian-Triassic transition in the Badia Valley (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 138, 85–113.

    Google Scholar 

  • Dawit, L. E. (2010). Adigrat sandstone in northern and central Ethiopia: Stratigraphy, facies, depositional environments and palynology. Ph.D. Thesis, Technische Universität Berlin, pp. 1–166.

  • Dawit, L. E. (2014). Permian and Triassic microflora assemblages from the Blue Nile Basin, central Ethiopia. Journal of African Earth Sciences, 99, 408–426.

    Google Scholar 

  • Dawit, E., & Bussert, R. (2009). Stratigraphy and facies architecture of adigrat sandstone, Blue Nile Basin, Central Ethiopia, Zentralblatt Geol. Paläonttol., I(3/4), 217–232.

  • Eshet, Y., Rampino, M. R., & Visscher, H. (1995). Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology, 23, 967–970.

    Google Scholar 

  • Farabee, M. J., Taylor, E. L., & Taylor, T. N. (1990). Correlation of Permian and Triassic palynomorph assemblages from the central Transantarctic Mountains, Antarctica. Review of Palaeobotany and Palynology, 65, 257–265.

    Google Scholar 

  • Flügel, E. (2002). Triassic reef patterns. Society for Sedimentary Geology, Special Publication.

  • Foster, C. B. (1982a). Spore-pollen assemblages of the Bowen Basin, Queensland (Australia): Their relationship to the Permian/Triassic boundary. Review of Palaeobotany and Palynology, 36, 165–183.

    Google Scholar 

  • Foster, C. B. (1982b). Biostratigraphic potential of Permian spore-pollen flotras from GSQ Mundubbera 5 and 6, Taroom trough. Queensland Government Mining Journal, 83, 82–96.

    Google Scholar 

  • Foster, C. B., & Afonin, S. A. (2005). Abnormal pollen grains: An outcome of deteriorating atmospheric conditions around the Permian–Triassic boundary. Journal of the Geological Society, 162, 653–659.

    Google Scholar 

  • Gastaldo, R. A., Ferguson, D. K., Walther, H., & Rabold, J. M. (1996). Criteria to distinguish parautochthonous leaves in Tertiary alluvial channel-fills. Review of Palaeobotany and Palynology, 91, 1–21.

    Google Scholar 

  • Gastaldo, R. A., Adendorff, R., Bamford, M., Lavanderia, C. C., Neveling, J., & Sims, H. (2005). Taphonomic trends of macrofloral assemblages across the Permian-Triassic boundary, Karoo Basin, South Africa. PALAIOS, 20, 479–497.

    Google Scholar 

  • Glasspool, I. J., & Scott, A. C. (2010). Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 3, 627–630.

    Google Scholar 

  • Golonka, J., & Ford, D. (2000). Pangean (Late Carboniferous-Middle Jurassic) palaeoenvironment and lithofacies. Palaeogeography, Palaeoclimatology, Palaeoecology, 161, 1–34.

    Google Scholar 

  • Grauvogel-Stamm, L. (1999). Pleuromeia sternbergii (Münster) Corda, ein characteristische Pflanze des deutschen Buntsandsteins. In N. Hauschke & V. W. Verlag (Eds.), Trias - Eine ganz andere Welt. Europa im frühen Erdmittelalter (pp. 271–281). München: Verlag Dr. Friedrich Pfeil.

  • Gutiérrez, P. R., Zavattieri, A. M., Ezpeleta, M., & Astini, R. A. (2011). Palynology of the La Veteada Formation (Permian) in the Sierra De Narva´ ez, Catamarca province, Argentina. Ameghiniana, Torno, 48, 154–176.

    Google Scholar 

  • Haig, D. W., Martin, S. K., Mory, A. J., McLoughlin, S., Backhouse, J., Berrell, R. W., Kear, B. P., Hall, R., Foster, C. B., Shi, G. R., & Bevan, J. C. (2015). Early Triassic (early Olenekian) life in the interior of east Gondwana: Mixed marine-terrestrial biota from the Kockatea shale, Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 511–533.

    Google Scholar 

  • Hankel, O. (1992). Late Permian to Early Triassic microfloral assemblages from the Maji ya Chumvi Formation, Kenya. Review of Palaeobotany and Palynology, 72, 129–147.

    Google Scholar 

  • Hermann, E., Hochuli, P. A., Méhay, S., Bucher, H., Brühwiler, T., Ware, D., Hautmann, M., Roohi, G., Rehman, K., & Yaseen, A. (2011). Organic matter and palaeoenvironmental signals during the Early Triassic biotic recovery: The Salt Range and Surghar Range records. Sedimentary Geology, 234, 19–41.

    Google Scholar 

  • Hermann, E., Hochuli, P. A., Bucher, H., & Roohi, G. (2012). Uppermost Permian to Middle Triassic palynology of the Salt Range and Surghar Range, Pakistan. Review of Palaeobotany and Palynology, 169, 61–95.

    Google Scholar 

  • Hermann, E., Kürschner, W. M., Kerp, H., Benjamin bomfleur, B., Hochuli, P. A., Bucher, H., Ware, D., & Roohi, G. (2015). Vegetation history across the Permian–Triassic boundary in Pakistan (Amb section, Salt Range). Gondwana Research, 27(3), 911–924.

    Google Scholar 

  • Hochuli, P. A., Hermann, E., Vigran, J. O., Bucher, H., & Weissert, H. (2010). Rapid demise and recovery of plant ecosystem across the end-Permian extinction event. Global and Planetary Change, 74, 144–155.

    Google Scholar 

  • Hübers, M., Kerp, H., Schneider, J. W., & Gaitzsch, B. (2013). Dispersed plant mesofossils from the Middle Missisipian of eastern Germany: Bryophytes, pteridophytes and gymnosperms. Review of Palaeobotany and Palynology, 193, 38–56.

    Google Scholar 

  • Jan, I. U., Stephenson, M. H., & Khan, F. R. (2009). Palynostratigraphic correlation of the Sardhai Formation (Permian) of Pakistan. Review of Palaeobotany and Palynology, 158, 72–82.

    Google Scholar 

  • Jasper, A., Uhl, D., Agnihotri, D., Tewari, R., Pandita, S. K., Wanderley Benicio, J. R., Fabbrin Pires, E., Stock Da Rosa, Á. A., Bhat, G. D., & Pillai, S. S. K. (2016). Evidence of wildfires in the Late Permian (Changsinghian) Zewan Formation of Kashmir, India. Current Science, 110(3), 419–423.

    Google Scholar 

  • Jha, N. (2002). Palynologial dating of sediments from Gattugudem area, Chintalapudi sub-basin, Andhra Pradesh. Geophytology, 30, 85–89.

    Google Scholar 

  • Jha, N. (2004). Palynological dating of coal-bearing sediments from the Bottapagudem area, Chintalapudi sub-basin, Andhra Pradesh. Palaeobotanist, 53, 61–67.

    Google Scholar 

  • Jha, N. (2006). Permian palynology from India and Africa: A phytogeographical paradigm. Journal of the Palaeontological Society of India, 51, 43–55.

    Google Scholar 

  • Jha, N. (2008). Permian-Triassic palynofloral transition in the Sattupalli area, Chintalapudi sub-basin, Godavari Graben, Andhra Pradesh, India. Journal of the Palaeontological Society of India, 52, 159–168.

    Google Scholar 

  • Jha, N., & Aggarwal, N. (2012). Permian–Triassic palynostratigraphy in Mailaram area, Godavari Graben, Andhra Pradesh, India. Journal of Earth System Science, 121, 1257–1285.

    Google Scholar 

  • Jha, N., & Aggarwal, N. (2015). Peat-forming environment of coal-bearing Permian sediments in Kachinapalli area of Godavari Graben, India. Revista Brasileira de Paleontologia, 18, 239–250.

    Google Scholar 

  • Jha, N., & Srivastava, S. C. (1996). Kamthi Formation—Palynofloral diversity. In P. K. S. Guha, S. Sengupta, K. Ayyasami, & R. N. Ghosh (Eds.), Ninth international Gondwana symposium (pp. 355–368). Hyderabad: Geological Survey of India. Oxford and IBH Publishing Co. New Delhi-Calcutta.

    Google Scholar 

  • Jha, N., Chary, M. B., & Aggarwal, N. (2012). Permian Triassic palynofloral transition in Chintalapudi area, Godavari Graben, Andhra Pradesh, India. Journal of Earth System Science, 121, 1287–1303.

    Google Scholar 

  • Jha, N., Sabina, P. K., Aggarwal, N., & Mahesh, S. (2014). Late Permian palynology and depositional environment of Chintalapudi sub basin, Pranhita–Godavari basin, Andhra Pradesh, India. Journal of Asian Earth Sciences, 79, 382–399.

    Google Scholar 

  • Jha, N., Saleem, M., & Aggarwal, N. (2011). Palynostratigraphy of Kachinapalli block, Lingala-Koyagudem Coalbelt, Godavari Graben, Andhra Pradesh, India. Minetech, 32, 51–64.

    Google Scholar 

  • Jin, Y. G., Wang, Y., Wang, W., Shang, Q. H., Cao, C. Q., & Erwin, D. H. (2000). Pattern of marine mass extinction near the Permian-Triassic boundary in south China. Science, 289, 432–436.

    Google Scholar 

  • Korte, C., Kozur, H. W., Joachimski, M. M., Strauss, H., Veizer, J., & Schwark, L. (2004). Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. International Journal of Earth Sciences, 93, 565–581.

    Google Scholar 

  • Krassilov, V., & Karasev, E. (2009). Palaeofloristic evidence of climate change near and beyond the Permian-Triassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 284, 326–336.

    Google Scholar 

  • Krings, M., Klavins, S. D., DiMichele, W. A., Kerp, H., & Taylor, T. N. (2005). Epidermal anatomy of Glenopteris splendens Sellards nov. emend., an enigmatic seed plant from the Lower Permian of Kansas (U.S.A.) Review of Palaeobotany and Palynology, 136(3–4), 159–180.

    Google Scholar 

  • Kustatscher, E., Wachtler, M., & Cittert, K.-v. (2010). Lycophytes from the Middle Triassic (Anisian) locality Kühwiesenkopf (Monte Prà Della Vacca) in the Dolomites. Palaeontology, 53(3), 595–626.

  • Kyle, R. A. (1977). Palynostratigraphy of the Victoria Group, south Victoria Land, Antarctica. Newzealand Journal of Geolagy and Geophysics, 20, 1081–1102.

    Google Scholar 

  • Lakshminarayana, G. (1996). Stratigraphy and structural framework of the Gondwana sediments in the Pranhita–Godavari Valley, Andhra Pradesh. In P. K. S. Guha, S. Sengupta, K. Ayyasami, & R. N. Ghosh (Eds.), Ninth international Gondwana symposium (pp. 311–330). Hyderabad: Geological Survey of India. Oxford and IBH Publishing Co. New Delhi-Calcutta.

    Google Scholar 

  • Lele, K. M., & Srivastava, A. K. (1980). Lower Gondwana (Karharbari to Raniganj Stage) mioflora assemblage from the Auranga coalfield and the stratigraphic significance. Proceedings IV International Palynological Conference, Lucknow, pp. 152–164.

  • Leziné, A. M., Zheng, W., Braconnot, P., & Krinner, G. (2009). Late Holocene plant and climate evolution at Lake Yoa, northern Chad: Pollen data and climate simulations. Climate Past, 7, 1351–1362.

    Google Scholar 

  • Lindström, S., & McLoughlin, S. (2007). Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains. Antarctica: Implications for palynofloristic turnover across Gondwana. Review of Palaeobotany and Palynology, 145, 89–122.

    Google Scholar 

  • Lindström, S., McLoughlin, S., & Drinnan, A. N. (1997). Intraspecific variation of Taeniate bisaccate pollen within Permian Glossopterid Sporangia, from the Prince Charles Mountains, Antarctica. International Journal of Plant Sciences, 158(5), 673–684.

    Google Scholar 

  • Looy, C. V., Brugman, W. A., Dilcher, D. L., & Visscher, H. (1999). The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. Proceedings of the National Academy of Sciences, 96, 13857–13862.

    Google Scholar 

  • Mahesh, S. K., Kavali, P. S., & Bilwa, M. (2007). Permian Palynomorphs from the sub surface sediments of Lower Gondwana of Wardha Valley Coalfield, Maharashtra, India. Gondwana Geological Magazine, 23, 63–67.

    Google Scholar 

  • Marques-Toigo, M. (1991). Palynobiostratigraphy of the southern Brazilian Neopalaeozoic Gondwana sequence. São Paulo: Institute of Geoscience, USP.

    Google Scholar 

  • McElwain, J. C., & Punyasena, S. (2007). Mass extinction events and the plant fossil record. Trends in Ecology & Evolution, 22, 548–557.

    Google Scholar 

  • McLoughlin, S. (1993). Plant fossil distributions in some Australian Permian non-marine sediments. Sedimentary Geology, 85, 601–619.

    Google Scholar 

  • McLoughlin, S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany, 49, 271–300.

    Google Scholar 

  • McLoughlin, S., Lindström, S., & Drinnan, A. N. (1997). Gondwanan floristic and sedimentological trends during the Permian–Triassic transition: New evidence from the Amery group, northern Prince Charles Mountains, East Antarctica. Antarctic Science, 9, 281–298.

    Google Scholar 

  • McManus, H. A., Taylor, E. L., Taylor, T. N., & Collinson, J. W. (2002). A petrified (Glossopteris) flora from Collinson Ridge, Central Transantarctic Mountains: Late Permian or Early Triassic? Review of Palaeobotany and Palynology, 120, 233–246.

  • Metcalfe, I., Nicoll, R. S., Willink, R., Ladjavadi, M., & Grice, K. (2013). Early Triassic (Induan-Olenekian) conodont biostratigraphy, global anoxia, carbon isotope excurssions and environmental per-tubrations: New data from western Australian Gondwana. Gondwana Research, 23, 1136–1150.

    Google Scholar 

  • Metcalfe, I., Crowley, J. L., Nicoll, R. S., & Schmitz, M. (2015). High precision U–Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Research., 28(3), 905–932.

    Google Scholar 

  • Michaelsen, P. (2002). Mass extinction of peat-forming plants and the effect on fluvial styles across the Permian-Triassic boundary, northern Bowen Basin, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 179, 173–188.

    Google Scholar 

  • Mishra, S., Jha, N., Joshi, H., & Gahalain, S. S. (2016). Palynological dating of sub-surface Gondwana sediments in Sattupalli area, Godavari Graben, Telangana. Geophytology, 46(1), 1–8.

    Google Scholar 

  • Mishra, S., Jha, N., & Gahalain, S. S. (2017). Taphonomic and palaeovegetational studies in lower Permian (Asselian-Sakmarian) deposits of Chintalapudi area, Godavari Graben, south India. Revue de Micropaléontologie, 60, 193–211.

  • Modie, B. N., & Le Hérissé, A. (2009). Late Palaeozoic palynomorph assemblages from the Karoo Supergroup and their potential for biostratigraphic correlation, Kalahari Karoo Basin, Botswana. Bulletin of Geosciences, 84, 337–358.

    Google Scholar 

  • Mukhopadhyay, G., Mukhopadhyay, S. K., Roychowdhury, M., & Parui, P. K. (2010). Stratigraphic correlation between different Gondwana basins of India. Journal of Geological Society of India, 76(3), 251–266.

    Google Scholar 

  • Murthy, S., Kavali, P. S., & Bernardes-de-Oliveira, M. E. C. (2015). Latest Permian palynomorphs from Jharia Coalfield, Damodar Basin, India and their potential for biostratigraphic correlation. Revue de Micropaléontologie, 58, 167–184.

  • Nyambe, I., & Utting, J. (1997). Stratigraphay and palynostratigraphy Karoo super group (Permian and Triassic) Mid Zambesi Velly southern Zambia. Journal of African Earth Sciences, 24, 563–583.

    Google Scholar 

  • Pereira, Z., Fernandes, P., Lopes, G., Marques, J., & Vasconselos, L. (2016). The Permian-Triassic transition in the Moatize Minjova Basin, Karoo Supergroup, Mozambique: A palynological perspective. Review of Palaeobotany and Palynology, 226, 1–19.

    Google Scholar 

  • Pott, C., & McLoughlin, S. (2009). Bennettitalean foliage in the Rhaetian-Bajocian (latest Triassic-Middle Jurassic) floras of Scania, southern Sweden. Review of Palaeobotany and Palynology, 158, 117–166.

    Google Scholar 

  • Prevec, R., Gastaldo, R. A., Neveling, J., Reid, S. B., & Looy, C. V. (2010). An autochthonous glossopterid flora with latest Permian palynomorphs and its depositional setting in the Dicynodon assemblage zone of the southern Karoo Basin, South Africa. Palaeo-geography, Palaeoclimatology, Palaeoecology, 292, 391–408.

    Google Scholar 

  • Qureshy, M. N., Brahmam, N. K., Gadse, S. C., & Mathur, B. K. (1968). Gravity analysis and the Godavari rift, India. Bulletins of Geophysical Society of America, 79, 1221–1230.

    Google Scholar 

  • Raiverman, V., Rao, M. R., & Pal, D. (1985). Stratigraphy and structure of the Pranhita-Godavari Graben. Petroleum Asia Journal, 8, 174–189.

    Google Scholar 

  • RajaRao, C. S. (1982). Coalfields of India–2. Coal resources of Tamil Nadu, Andhra Pradesh, Orissa and Maharashtra. Geological Survey of India, Bulletin Series A, 45, 9–40.

    Google Scholar 

  • Ram-Awatar, Kumar, M., & Prakash, N. (2005). Palynological analysis of Lower Gondwana sediments exposed along the Umrer River South Rewa Basin, Madhya Pradesh, India. Palaeobotanist, 54, 87–97.

    Google Scholar 

  • Ram Awatar, T., Tewari, R., Agnihotri, D., Chatterjee, S., Pillai, S. S. K., & Meena, K. L. (2014). Late Permian and Triassic palynomorphs from the Allan Hills, central Transantarctic Mountains, South Victoria Land, Antarctica. Current Science, 106, 988–996.

    Google Scholar 

  • Ramanamurty, B. V., & Madhusudan, R. C. (1996). A new stratigraphic classification of Permian (Lower Gondwana) succession of Pranhita- Godavari basin with special reference to Ramagundem Coalbelt, Andhra Pradesh, India. In P. K. S. Guha, S. Sengupta, K. Ayyasami, & R. N. Ghosh (Eds.), Ninth international Gondwana symposium (pp. 67–78). Hyderabad: Geological Survey of India. Oxford and IBH Publishing Co. New Delhi-Calcutta.

    Google Scholar 

  • Retallack, G. J. (1995). Permian-Triassic life crisis on land. Science, 267, 77–80.

    Google Scholar 

  • Retallack, G. J. (1997). A Colour Guide to Paleosols (pp. 1–175). Chichester: John Wiley and Sons.

    Google Scholar 

  • Retallack, G. J. (2002). Lepidopteris callipteroides, an earliest Triassic seed fern from the Sydney Basin, southeastern Australia. Alcheringa, 26, 475–500.

    Google Scholar 

  • Retallack, G. J. (2013). Permian and Triassic greenhouse crises. Gondwana Research, 24, 90–103.

    Google Scholar 

  • Retallack, G. J., & Krull, E. S. (1999). Landscape ecological shift at the Permian-Triassic boundary in Antarctica. Australian Journal of Earth Sciences, 46, 785–812.

    Google Scholar 

  • Retallack, G. J., Smith, R. M. H., & Ward, P. D. (2003). Vertebrate extinction across Permian-Triassic boundary in Karoo Basin, South Africa. Geological Society of America Bulletin, 115, 1133–1152.

    Google Scholar 

  • Retallack, G. J., Jahren, A. H., Sheldon, N. D., Charkrabarti, R., Metzger, C. A., & Smith, R. M. H. (2005). The Permian-Triassic boundary in Antarctica. Antarctic Science, 17, 241–258.

    Google Scholar 

  • Retallack, G. J., Metzger, C. A., Greaver, T., Jahren, A. H., Smith, R. M. H., & Sheldon, N. D. (2006). Middle-Late Permian mass extinction on land. Geological Society of American Bullettin, 118, 1398–1411.

    Google Scholar 

  • Santos, R. V., Souza, P. A., Alvarenga, C. J. S., Dantas, E. L., Pimentel, M. M., Oliveira, C. G., & Araújo, L. M. (2006). SHRIMP U-Pb zircon dating and palynology of bentonitic layers from the Permian Irati Formation, Paraná Basin, Brazil. Gondwana Research, 9, 456–463.

    Google Scholar 

  • Scotese, C. (2016). A new global temperature curve for the Phanerozoic. GSA Annual Meeting Denver, Colorado, Abstracts with Programs 48(7): Paper No. 7431. doi: https://doi.org/10.1130/abs/2016AM287167.

  • Shi, G. R., Waterhouse, J. B., & McLoughlin, S. (2010). The Lopingian of Australasia: A review o biostratigraphy, correlations, palaeo-geography and palaeobiogeography. Geological Journal, 45, 230–263.

    Google Scholar 

  • Singh, T., Tiwari, R. S., Vijaya, & Ram-Awatar. (1995). Stratigraphy and palynology of Carboniferous-Permian-Triassic succession in Spiti valley, Tethys Himalaya, India. Journal of the Palaeonotological Society of India, 40, 439–454.

    Google Scholar 

  • Smith, A., Smith, D. G., & Furnell, B. M. (1994). Atlas of Mesozoic and Cenozoic coastlines (pp. 1–112). Cambridge: Cambridge University Press.

    Google Scholar 

  • Smith, R., Rubidge, B. S., & van der Walt, M. (2012). Therapsid biodiversity patterns and Paleoenvironments of the Karoo Basin, South Africa. In A. Chinsamy-Turan (Ed.), Forerunners of mammals: Radiation history biology (pp. 31–62). Bloomington: Indiana University Press.

    Google Scholar 

  • Smith, R. M. H., & Ward, P. D. (2001). Pattern of vertebrate extinctions across an event bed at the Permian-Triassic boundary in the Karoo Basin of South Africa. Geology, 28, 227–230.

    Google Scholar 

  • Souza, P. A. (2006). Late Carboniferous palynostratigraphy of the Itararé subgroup, northeastern Paraná Basin, Brazil. Review of Palaeobotany and Palynology, 138, 9–29.

    Google Scholar 

  • Souza, P. A., & Marques-Toigo, M. (2003). An overview on the Palynostratigraphy of the Upper Paleozoic strata of the Brazilian Paraná Basin. Revista del Museo Argentino de Ciencias Naturales, 5, 205–214.

    Google Scholar 

  • Souza, P. A., & Marques-Toigo, M. M. (2005). Progress on the palynostratigraphy of the Permian strata in Rio Grande do Sul State, Paraná Basin, Brazil. Anais da Academia Brasileira de Ciências, 77, 353–365.

  • Srivastava, S. C., & Bhattacharyya, A. P. (1996). Permian-Triassic palynofloral succession in subsurface from Bazargaon. Nagpur District, Maharashtra. Palaeobotanist, 43, 10–15.

    Google Scholar 

  • Srivastava, S. C., & Jha, N. (1986). A new monosaccate genus from Kamthi Formation of Godavari Graben, Andhra Pradesh, India. Geophytology, 16, 258–260.

    Google Scholar 

  • Srivastava, S. C., & Jha, N. (1987). Palynology of Kamthi Formation from Chelpur area, Godavari Graben, Andhra Pradesh, India. Palaeobotanist, 35, 342–346.

    Google Scholar 

  • Srivastava, S. C., & Jha, N. (1988). A Lower Triassic palynoassemblages from Budharam area, Godavari Graben, Andhra Pradesh, India. Geophytology, 18, 124–125.

    Google Scholar 

  • Srivastava, S. C., & Jha, N. (1990). Permian-Triassic palynofloral transition in Godavari Graben, Andhra Pradesh. Palaeobotanist, 38, 92–97.

    Google Scholar 

  • Srivastava, S. C., & Jha, N. (1992a). Palynostartigraphy of Permian sedi-ments in Manuguru area, Godavari Graben, Andhra Pradesh. In V. S. Vankatachala, K. P. Jain, & N. Awasti (Eds.), Proceedings of Birbal Sanhi birth centenary Palaeobotanical conference (pp. 103–110). Lucknow: Geophytology Special Publication.

    Google Scholar 

  • Srivastava, S. C., & Jha, N. (1992b). Permian palynostratigraphy in Ramakrishnanpuram area, Godavari Graben, Andhra Pradesh, India. Geophytology, 20, 83–95.

    Google Scholar 

  • Srivastava, S. C., & Jha, N. (1995). Palynostratigraphy and correlations of Permian-Triassic sediments in Budharam area, Godavari Graben, India. Journal of the Geological Society of India, 46, 647–653.

    Google Scholar 

  • Srivastava, S. C., & Jha, N. (1997). Stratigraphic correlation of coal bearing sediments in Godavari Graben: Palynological parameter, Proceedings of National Symposium on Recent Researches in Sedimentary Basins, pp. 320–328.

  • Srivastava, A. K., Krasilov, V. A., & Agnihotri, D. (2011). Peltasperms in the Permian of Indian and their bearing on Gondwanaland reconstructions and climatic interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 393–399.

    Google Scholar 

  • Steiner, M. B., Eshet, Y., Rampino, M. R., & Schwindt, D. M. (2003). Fungal abundance spike and the Permian-Triassic boundary in the Karoo Supergroup (South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 405–414.

    Google Scholar 

  • Stolle, E. (2010). Recognition of southern Gondwanan palynomorphs at Gondwana’s northern margin and biostratigraphic correlation of Permain strata from SE Turkey and Australia. Geological Journal, 45, 336–349.

    Google Scholar 

  • Tavener-Smith, R., Mason, T. R., Christie, A. D. M., Roberts, D. L., Smith, A. M., & Van Des Spuy, A. (1988). Sedimentary models for coal formation in the Vryheid Formation, Northern Natal, Bulletin. Department of Mineral and Energy Affairs, Geological Survey, South Africa, 94, 1–13.

    Google Scholar 

  • Tewari, R., Ram-Awatar, Pandita, S. K., Kumar, K., & Bhat, G. D. (2015). The Permian-Triassic palynnological transition in the Guryul ravine section, Kashmir, India: Implication for Tethyan-Gondwanan correlations. Earth-Science Reviews, 149, 53–66.

    Google Scholar 

  • Tiwari, R. S., & Ram-Awatar. (1989). Sporae dispersae and correlation of Gondwana sediments in Johilla Coalfield, Son Valley Graben, Madhya Pradesh. Palaeobotanist, 37, 94–114.

  • Tiwari, R. S., & Singh, V. (1983). Miofloral transition at Raniganj-Panchet boundary in eastern Raniganj Coalfield and its implication on Permo-Triassic time boundary. Geophytology, 13, 227–234.

  • Tiwari, R. S., & Tripathi, A. (1992). Marker assemblage zones of spore and pollen species through Gondwana Palaeozoic-Mesozoic sequence in India. Palaeobotanist, 40, 194–236.

    Google Scholar 

  • Tiwari, R. S., Tripathi, A., & Jana, B. N. (1991). Palynological evidence for Upper Permian Raniganj coals in western part of Talcher Coalfield, Orissa, India. Current Science, 61, 407–420.

  • Tiwari, R. S., Tripathi, A., & Viajaya. (1995). Organic walled microfossils of doubtful origin in Permian and Triassic sequence on peninsular India. Palaeobotanist, 43, 1–38.

    Google Scholar 

  • Tiwari, R. S., Vijaya, Mamgain, V. D., & Misra, R. S. (1996). Palynological studies on a Late Palaeozoic-Mesozoic Tethyan sequence in the Niti area of the central Himalaya, Uttar Pradesh, India. Review of Palaeobotany and Palynology, 94, 169–196.

    Google Scholar 

  • Traverse, A. (1988). Palaeopalynology (pp. 1–600). Unwin Hyman, London: First Eddition.

    Google Scholar 

  • Traverse, A. (2007). Paleopalynology (Second ed.pp. 1–813). Dordrecht: Springer.

    Google Scholar 

  • Tripathi, A., Murthy, S., & Singh, R. (2010). Playnodating of coal bearing strata near Kunda Pahari, Pachwara coalfield, Rajmahal Basin, Jharkhand, India. Palaeontological Society of India, 55, 29–35.

    Google Scholar 

  • Tripathi, A. (1993). Palynosequence in subsurface Permian sediments in Talcher coalfield, Orissa. Geophytology, 23, 99–106.

    Google Scholar 

  • Tyson, R. V. (1993). Palynofacies analysis (pp. 153–191). Amsterdam: Kluwer Academic Publishers.

    Google Scholar 

  • Tyson, R. V. (1995). Sedimentary organic matter (pp. 1–615). Londons: Chapman and Hall.

    Google Scholar 

  • Utting, J. (1978). Lower Karroo pollen and spore assemblages from the coal measures and underlying sediments of the Siankondobo Coalfield, Mid-Zambezi valley, Zambia. Palynology, 2, 53–68.

  • Visscher, H., Brinkhuis, H., Dilcher, D. L., Elsik, W. C., Eshet, Y., Looy, C. V., Rampino, M. R., & Traverse, A. (1996). The terminal Paleozoic fungal event: Evidence of terrestrial ecosystem destabilization and collapse. Proceedings of the National Academy of Sciences of the United States of America, 93, 2155–2158.

    Google Scholar 

  • Visscher, H., Looy, C. V., Collinson, M. E., Brinkhuis, H., van Konijnenburg-van Cittert, J. H. A., Kürschner, W. M., & Sephton, M. A. (2004). Environmental mutagenesis during the end-Permian ecological crisis. Proceedings of the National Academy of Sciences of the United States of America, 101, 12952–12956.

    Google Scholar 

  • Wheeler, A., & Götz, A. E. (2016). Palynofacies patterns of the Highveld coal deposits (Karoo Basin, South Africa): Clues to reconstruction of palaeoenvironment and palaeoclimate. Acta Palaeobotanica, 56, 3–15.

    Google Scholar 

  • Wheeler, A., & Götz, A. E. (2017). Palynofacies as a tool for high-resolution palaeoenvironmental and palaeoclimatic reconstruction of Gondwanan postglacial coal deposits: No. 2 coal seam, Witbank coalfield (South Africa). Palaeobiodiversity and Palaeoenvironments, 97, 259–271.

    Google Scholar 

  • Wright, R. P., & Askin, R. A. (1987). The Permian-Triassic boundary in the southern Morondava Basin of Madagascar as defined by plant microfossils. American Geophysical Union, Geophysical Monograph, 41, 157–166.

    Google Scholar 

  • Zavada, M. S. (1991). The ultrastructure of pollen found in the dispersed sporangia of Arberiella (Glossopteridaceae). Botanical Gazette, 152, 248–255.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Sunil Bajpai, Director, Birbal Sahni Institute of Palaeobotany, Lucknow for permitting to publish the work and for extended facilities. Thanks are also due to Sri R. L. Khwaja, Former Chairman, Singareni Collieries Company Ltd. (SCCL), Kothagudem for providing the financial and personnel assistance during the field work. The editor and two anonymous reviewers are also gratefully acknowledged for their valuable suggestion that significantly improved the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreya Mishra.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Aggarwal, N. & Jha, N. Palaeoenvironmental change across the Permian-Triassic boundary inferred from palynomorph assemblages (Godavari Graben, south India). Palaeobio Palaeoenv 98, 177–204 (2018). https://doi.org/10.1007/s12549-017-0302-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-017-0302-3

Keywords

Navigation