Palaeobiodiversity and Palaeoenvironments

, Volume 97, Issue 4, pp 703–722 | Cite as

Early Maastrichtian benthos of the chalk at Kronsmoor, northern Germany: implications for Late Cretaceous environmental change

  • Julia Engelke
  • Christian Linnert
  • Jörg Mutterlose
  • Markus Wilmsen
Original Paper


Lower Maastrichtian strata (Belemnella obtusa and lower–middle B elemnella sumensis cephalopod biozones) at the Saturn quarry near Kronsmoor (northern Germany) were logged and sampled in detail (33 bulk samples of about 6 kg each) for high-resolution quantitative palaeoecological analysis of the benthic fauna. Following standardised preparation, the size fractions 500 μm–1 mm and >1 mm were considered, documenting a diverse benthic assemblage of bryozoans, brachiopods, bivalves, various echinoid taxa, asteroids, ophiuroids, crinoids, sponges, small-sized sabellids and serpulids, cirripedes and foraminifera. A general, gradual up-section increase in the abundance of benthic faunas was recognised. Furthermore, from the lower to the upper part of the section, epifaunal suspension feeders became more dominant as the mobile guilds (epifaunal and shallow infaunal) saw a reduction in numbers. These observations parallel results obtained from low-resolution macrofossil analyses of this interval that documented an impoverished lower and a rich upper assemblage, the latter clearly dominated by epifaunal suspension feeders. Palaeoecological data of benthic community relicts at Kronsmoor are indicative of increased nutrient availability during the early Maastrichtian. However, in the absence of any evidence of increased productivity in the overlying photic zone (calcareous nannofossil data), a lateral input (upwelling) of nutrient-rich waters onto the shelf to fuel the benthic ecosystem has to be considered. This view is supported by records of contemporaneous changes in latest Cretaceous ocean circulation that followed the latest Campanian cooling event, inclusive of a southward spread of waters of intermediate depth from high latitudes.


Upper Cretaceous Chalk Sea Quantitative palaeoecology Benthic communities Environmental factors 



Holcim (Deutschland) AG, in particular Mr. J. Stinsky and Dr. A. Iwanoff, are thanked for permission to carry fieldwork at the Saturn quarry. We also thank Dr. B. Niebuhr (Dresden) for support in fieldwork, M. Müller (Bochum) for sampling as well as F. Häuser and K. Kleefuß (both Bochum) for preparation. M. Berensmeier (Potsdam) picked some samples. M. Machalski (Warsaw) and F.T. Fürsich (Erlangen) are thanked for constructive reviews of the manuscript as well as P. Königshof (Frankfurt) for editorial handling. Financial support by the German Research Foundation (DFG codes MU 667/44-1 and WI 1743/8-1) is gratefully acknowledged.


  1. Aberhan, M. (1994). Guild-structure and evolution of Mesozoic benthic shelf communities. PALAIOS, 9, 516–545.CrossRefGoogle Scholar
  2. Allison, P. A., Wignall, P. B., & Brett, C. E. (1995). Palaeo-oxygenation: effects and recognition. In D. W. Bosence & P. A. Allison (Eds.), Marine palaeoenvironmental analysis from fossils (pp. 97–112). London: Geological Society London Special Publication 83.Google Scholar
  3. APH. (2006). Fossilien aus dem Campan von Hannover (p. 290). Hannover: Schäfer.Google Scholar
  4. Baldschuhn, R., Best, G., & Kockel, F. (1991). Inversion tectonics in the north-west German basin. In A. M. Spencer (Ed.), Generation, accumulation and production of Europe's hydrocarbon (pp. 149–159). Oxford: European Association of Petroleum Geoscientists.Google Scholar
  5. Baldschuhn, R., Binot, F., Fleig, S., & Kockel, F. (2001). Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor – Strukturen, Strukturentwicklung, Paläogeographie. Geologisches Jahrbuch, A, 153, 15–88.Google Scholar
  6. Bambach, R. K. (1983). Ecospace utilization and guilds in marine communities through the Phanerozoic. In M. J. S. Tevesz & P. L. McCall (Eds.), Biotic interactions in recent and fossil benthic communities (pp. 719–746). New York: Plenum Press.CrossRefGoogle Scholar
  7. Barrera, E., & Savin, S. M. (1999). Evolution of late Campanian–Maastrichtian marine climates and oceans. In E. Barrera & C. C. Johnson (Eds.), Evolution of the Cretaceous ocean-climate system (pp. 245–282). Boulder: Geological Society of America Special Paper.CrossRefGoogle Scholar
  8. Brasier, M.D. (1995). Fossil indicators of nutrient levels. 1: Eutrophication and climate change. In: D.W Bosence, & P.A. Allison (Eds.), Marine palaeoenvironmental analysis from fossils (vol. 83, pp. 113–132). London: Geological Society of London Special Publication.Google Scholar
  9. Brenchley, P. J., & Harper, D. A. T. (1998). Palaeoecology: ecosystems, environments and evolution (p. 402). London: Chapman & Hall.Google Scholar
  10. Broecker, W. S., & Takahashi, T. (1981). Hydrography of the central Atlantic-IV: intermediate waters of Antarctic origin. Deep Sea Research, 28(3), 177–193.CrossRefGoogle Scholar
  11. Carlson, C. A. (2002). Production and removal processes. In D. Hansell & C. A. Carlson (Eds.), Biogeochemistry of marine dissolved organic matter (pp. 91–151). London: Academic Press.CrossRefGoogle Scholar
  12. Dhondt, A. V. (1982). Bivalvia (Mollusca) from the Maastrichtian of Hemmoor (NW Germany) and their palaeobiogeographical affinities. Geologisches Jahrbuch, A, 61, 73–107.Google Scholar
  13. Ehrmann, W. U. (1986). Zum Sedimenteintrag in das zentrale nordwesteuropäische Oberkreidemeer. Geologisches Jahrbuch, A, 97, 3–139.Google Scholar
  14. Emery, W. J. (2003). Water types and water masses. In J. R. Holton, J. A. Curry, & J. A. Pyle (Eds.), Encyclopedia of atmospheric sciences (pp. 1556–1567). Amsterdam: Elsevier.CrossRefGoogle Scholar
  15. Engelke, J., Linnert, C., Mutterlose, J., & Wilmsen, M. (2016). The benthic macrofauna from the Lower Maastrichtian chalk of Kronsmoor (northern Germany, Saturn quarry): taxonomic outline and palaeoecologic implication. Acta Geologica Polonica, 66(4), 671–694.CrossRefGoogle Scholar
  16. Ernst, H. (1978). Zur Bathymetrie und Sedimentstrukturen der Schreibkreide von Lägerdorf/Holstein (Coniac–Santon): eine quantitative Analyse der Foraminiferenfaunen. Mitteilungen aus dem Geologischen-Paläontologischen Institut der Universität Hamburg, 48, 53–78.Google Scholar
  17. Ernst, H. (1984). Bericht über eine Großprobenserie im Schreibkreide-Richtprofil von Lägerdorf/Kronsmoor (M-Coniac bis U-Maastricht). Mitteilungen aus dem Geologischen-Paläontologischen Institut der Universität Hamburg, 57, 137–145.Google Scholar
  18. Ernst, G., & Schulz, M.-G. (1974). Stratigraphie und Fauna des Coniac und Santon im Schreibkreide-Richtprofil von Lägerdorf (Holstein). Mitteilungen aus dem Geologischen-Paläontologischen Institut der Universität Hamburg, 43, 5–60.Google Scholar
  19. Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., & Taylor, F. J. R. (2004). The evolution of modern eukaryotic phytoplankton. Science, 305, 354–360.CrossRefGoogle Scholar
  20. Felder, P. J. (1981). Mesofossielen in de kalkafzettingen uit het krijt van limburg. Natuurhistorisch Maandblad, 70(12), 201–236.Google Scholar
  21. Felder, P. J. (2001). Bioklasten-stratigrafie of ecozonatie voor het Krijt (Santoniaan-Campaniaan-Maastrichtiaan) van Zuid-Limburg en oostelijk België. Memoirs of the Geological Survey of Belgium, 47, 1–141.Google Scholar
  22. Ferguson, J. C. (1982). A comparative study of the net metabolic benefits derived from the uptake and release of free amino acids by marine invertebrates. Biological Bulletin, 162(1), 1–17.CrossRefGoogle Scholar
  23. Flügel, E. (2004). Microfacies of carbonate rocks (p. 976). Berlin/Heidelberg: Springer Verlag.CrossRefGoogle Scholar
  24. Franke, A. (1922). Die Präparation von Foraminiferen und anderen mikroskopischen Tierresten. In K. Keilhacker (Ed.), Lehrbuch der praktischen Geologie, Mineralogie, und Palaeontologie (pp. 509–533). Stuttgart: Enke-Verlag.Google Scholar
  25. Friedrich, O., Herrle, J. O., & Hemleben, C. (2005a). Climatic changes in the Late Campanian–Early Maastrichtian: micropaleontological and stable isotopic evidence from an epicontinental sea. Journal of Foraminiferal Research, 35(3), 228–247.CrossRefGoogle Scholar
  26. Friedrich, O., Herrle, J. O., Kößler, P., & Hemleben, C. (2005b). Early Maastrichtian stable isotopes: deep-water sources in the North Atlantic? Palaeogeography, Palaeoclimatology, Palaeoecology, 211, 171–184.CrossRefGoogle Scholar
  27. Fürsich, F. T. (1994). Palaeoecology and evolution of Mesozoic salinity-controlled benthic macroinvertebrate associations. Lethaia, 26, 327–346.CrossRefGoogle Scholar
  28. Giorgioni, M., Weissert, H., Bernasconi, S. M., Hochuli, P. A., Keller, C. E., Coccioni, R., Petrizzo, M. R., Lukeneder, A., & Garcia, T. I. (2015). Paleoceanographic changes during the Albian–Cenomanian in the Tethys and North Atlantic and the onset of the Cretaceous chalk. Global and Planetary Change, 126, 46–61.CrossRefGoogle Scholar
  29. Goldring, R. (1995). Organism and the substrate: response and effect. In D. W. Bosence & P. A. Allison (Eds.), Marine palaeoenviromental analysis from fossils (pp. 151–180). London: Geological Society Special Publications No. 83.Google Scholar
  30. Graf, G. (1989). Benthic-pelagic coupling in a deep-sea benthic community. Nature, 341, 437–439.CrossRefGoogle Scholar
  31. Graf, G. (1992). Benthic-pelagic coupling: a benthic view. Oceanograpy and Marine Biology, 30, 149–190.Google Scholar
  32. Gravesen, P., & Jakobsen, S. L. (2013). Skrivekridtets fossiler (p. 168). København: Gyldendal.Google Scholar
  33. Hammer, Ø., & Harper, D. A. T. (2006). Paleontological data analysis (p. 351). Cambridge: Black Well.Google Scholar
  34. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologica Electronica, 4(1), 1–9.Google Scholar
  35. Hancock, J. M. (1989). Sea-level changes in the British region during the Late Cretaceous. Proceedings of the Geologists' Association, 100, 565–594.CrossRefGoogle Scholar
  36. Hancock, J. M., & Kauffman, E. G. (1979). The great transgressions of the Late Cretaceous. Journal of the Geological Society London, 136, 175–186.CrossRefGoogle Scholar
  37. Hansell, D. A., Carlson, C. A., & Schlitzer, R. (2012). Net removal of major marine dissolved organic carbon fractions in the subsurface ocean. Global Biogeochemical Cycles, 26(GB1016), 1–9.Google Scholar
  38. Hansen, T., & Surlyk, F. (2014). Marine macrofossil communities in the uppermost Maastrichtian chalk of Stevns Klint, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology, 399, 323–344.CrossRefGoogle Scholar
  39. Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary Change, 113, 44–58.CrossRefGoogle Scholar
  40. Hay, W. W. (1995). Cretaceous paleoceanography. Geologica Carpathica, 46(5), 257–266.Google Scholar
  41. Hay, W. W. (2008). Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research, 29, 725–753.CrossRefGoogle Scholar
  42. Hay, W. W., & Floegel, S. (2012). New thoughts about the Cretaceous climate and oceans. Earth-Science Reviews, 115, 262–272.CrossRefGoogle Scholar
  43. Höflinger, J. (2015). Kreidebrachiopoden. Bestimmungstipps für Sammler (p. 352). Röthenbach: Selbstverlag.Google Scholar
  44. Ineson, J. R., Stemmerik, L., & Surlyk, F. (2005). Chalk. In R. C. Selley, L. R. M. Cooks, & I. R. Plimer (Eds.), Encyclopedia of geology (pp. 42–50). Oxford: Elsevier Science.CrossRefGoogle Scholar
  45. Izumi, K. (2015). Deposit feeding by the Pliocene deep-sea macrobenthos, synchronized with phytodetritus input: micropaleontological and geochemical evidence recorded in the trace fossil Phymatoderma. Palaeogeography, Palaeoclimatology, Palaeoecology, 431, 15–25.CrossRefGoogle Scholar
  46. Jäger, M. (1983). Serpulidae (Polychaeta sedentaria) aus der norddeutschen höheren Oberkreide – Systematik, Stratigraphie, Ökologie. Geologisches Jahrbuch, A, 68, 3–219.Google Scholar
  47. Jäger, M. (2004). Serpulidae und Spirorbidae (Polychaeta sedentaria) aus Campan und Maastricht von Norddeutschland, den Niederlanden, Belgien und angrenzenden Gebieten. Geologisches Jahrbuch, A, 157, 121–249.Google Scholar
  48. Jäger, M. (2012). Sabellids and serpulids (Polychaeta sedentaria) from the type Maastrichtian, the Netherlands and Belgium. In J. W. M. Jagt, S. K. Donovan, & E. A. Jagt-Yazykova (Eds.), Fossils of the type Maastrichtian (part 1) (pp. 45–81). Leiden: Scripta Geologica Special Issue 8.Google Scholar
  49. Jagt, J. W. M. (1999). Late Cretaceous–Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium—part 2 crinoids. Scripta Geologica, 116, 59–255.Google Scholar
  50. Jagt, J. W. M. (2000). Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium—part 5 asteroids. Scripta Geologica, 121, 377–503.Google Scholar
  51. Johansen, M. B., & Surlyk, F. (1990). Brachiopods and the stratigraphy of the Upper Campanian and Lower Maastrichtian Chalk of Norfolk, England. Palaeontology, 33(4), 823–872.Google Scholar
  52. Johnson, C., & Wendt, D. E. (2007). Availability of dissolved organic matter offsets metabolic costs of a protracted larval period for Bugula neritina (Bryozoa). Marine Biology, 151(1), 301–311.CrossRefGoogle Scholar
  53. Kidwell, S. M. (2002). Mesh-size effects on the ecological fidelity of death assemblages: a meta-analysis of molluscan live-dead studies. Geobios, 35(1), 107–119.CrossRefGoogle Scholar
  54. Kotake, N. (2014). Changes in lifestyle and habitat of Zoophycos-producing animals related to evolution of phytoplankton during the Late Mesozoic: geological evidence for the ‘benthic-pelagic coupling model’. Lethaia, 47, 165–175.CrossRefGoogle Scholar
  55. Kowalewski, M., Carroll, M., & Rodland, D. L. (2002). Abundant brachiopods on a tropical, upwelling-influenced shelf (southeast Brazilian Bight, South Atlantic). PALAIOS, 17, 277–286.CrossRefGoogle Scholar
  56. Kutscher, M. (1984). Die Scaphopoden und Gastropoden der Rügener Schreibkreide (Oberes Unter-Maastricht). Freiberger Forschungsheft (Geowissenschaften Paläontologie) - Beiträge zur allgemeinen und speziellen Paläontologie, C395, 55–69.Google Scholar
  57. Kutscher, M., & Jagt, J. W. M. (2000). Early Maastrichtian ophiuroids from Rügen (northeast Germany) and Møn (Denmark). In J. W. M. Jagt (ed.), Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium—part 3: Ophiuroids. Scripta Geologica, 121, 45–107.Google Scholar
  58. Lauridsen, B. W., & Surlyk, F. (2008). Benthic faunal response to late Maastrichtian chalk-marl cyclicity at Rørdal, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology, 269(1–2), 38–53.CrossRefGoogle Scholar
  59. Lauridsen, B. W., Gale, A. S., & Surlyk, F. (2009). Benthic macrofauna variations and community structure in Cenomanian cyclic chalk-marl from Southerham Grey Pit, SE England. Journal of the Geological Society London, 166, 115–127.CrossRefGoogle Scholar
  60. Liebau, A. (1984). Grundlagen der Ökobathymetrie. In H. P. Luterbacher (Ed.), Paläobathymetrie, Paläontologische Kursbücher, Band 2 (pp. 149–184). München: Paläontologische Gesellschaft.Google Scholar
  61. Linnert, C., Robinson, S. A., Lees, J. A., Brwon, P. R., Pérez-Rodríguez, I., Petrizzo, M. R., Falzoni, F., Littler, K., Arz, J. A., & Russell, E. E. (2014). Evidence for global cooling in the Late Cretaceous. Nature Communications, 5, 1–7.CrossRefGoogle Scholar
  62. Linnert, C., Engelke, J., Wilmsen, M., & Mutterlose, J. (2016). The impact of the Maastrichtian cooling on the marine nutrient regime—evidence from midlatitudinal calcareous nannofossils. Paleoceanography, 31, 694–714.CrossRefGoogle Scholar
  63. Martin, R. E. (1999). Taphonomy—a process approach (p. 508). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  64. Maystrenko, Y., Bayer, U., & Scheck-Wenderoth, M. (2005a). The Glueckstadt Graben, a sedimentary record between the North and Baltic Sea in north Central Europe. Tectonophysics, 397, 113–126.CrossRefGoogle Scholar
  65. Maystrenko, Y., Bayer, U., & Scheck-Wenderoth, M. (2005b). Structure and evolution of the Glueckstadt Graben due to salt movements. International Journal of Earth Sciences, 94, 799–814.CrossRefGoogle Scholar
  66. McCammon, H. M. (1969). The food of articulate brachiopods. Journal of Paleontology, 43, 976–985.Google Scholar
  67. McCammon, H. M., & Reynolds, W. A. (1976). Experimental evidence for direct nutrient assimilation by the lophophore of articulate brachiopods. Marine Biology, 34, 41–51.CrossRefGoogle Scholar
  68. Miller, K. G., Barrera, E., Olsson, R. K., Sugarman, P. J., & Savin, S. M. (1999). Does ice drive early Maastrichtian eustasy? Geology, 27, 783–786.CrossRefGoogle Scholar
  69. Millero, F. J. (2013). Chemical oceanography (p. 591). Boca Raton: CRC Press.Google Scholar
  70. Milliman, J. D. (1993). Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochemical Cycles, 7, 927–957.CrossRefGoogle Scholar
  71. Mutterlose, J., Bornemann, A., & Herrle, J. O. (2005). Mesozoic calcareous nannofossils—state of the art. Paläontologische Zeitschrift, 79, 113–133.CrossRefGoogle Scholar
  72. Nestler, H. (1965). Die Rekonstruktion des Lebensraumes der Rügener Schreibkreide-Fauna (Unter-Maastricht) mit Hilfe der Paläoökologie und Paläobiologie. Geologie 14, Beiheft 49, 1–147.Google Scholar
  73. Nestler, H. (1982). Die Fossilien der Rügener Schreibkreide (p. 108). Wittenberg: Die Neue Brehm-Bücherei.Google Scholar
  74. Niebuhr, B. (1995). Fazies-Differenzierungen und ihre Steuerungsfaktoren in der höheren Oberkreide von S-Niedersachsen/Sachsen-Anhalt (N-Deutschland). Berliner geowissenschaftliche Abhandlungen, A174, 1–131.Google Scholar
  75. Niebuhr, B. (2006). Multistratigraphische Gliederung der norddeutschen Schreibkreide (Coniac bis Maastricht), Korrelation von Aufschlüssen und Bohrungen. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 245–262.CrossRefGoogle Scholar
  76. Niebuhr, B., Hiss, M., Kaplan, U., Tröger, K.-A., Voigt, S., Voigt, T., Wiese, F., & Wilmsen, M. (2007). Lithostratigraphie der norddeutschen Oberkreide. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 55, 1–136.Google Scholar
  77. Ogg, J. G., & Hinnov, L. A. (2012). Cretaceous. In F. M. Gradstein, J. G. Ogg, M. Schmitz, & G. M. Ogg (Eds.), The geologic time scale 2012 (pp. 793–853). Amsterdam: Elsevier Science.CrossRefGoogle Scholar
  78. Oschmann, W. (1991). Anaerobic–poikiloaerobic–aerobic: a new facies zonation for modern and ancient neritic redox facies. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 565–571). Berlin: Springer.Google Scholar
  79. Rasmussen, H. W. (1961). A monograph on the Cretaceous Crinoidea (p. 428). København: Biologiske Skrifter udgivet af Det Kongelige Danske Videnskabernes Selskab.Google Scholar
  80. Rasmussen, S. L., & Surlyk, F. (2012). Facies and ichnology of an Upper Cretaceous chalk contourite drift complex, eastern Denmark, and the validity of contourite facies models. Journal of the Geological Society of London, 169, 435–447.CrossRefGoogle Scholar
  81. Reich, M., & Frenzel, P. (2002). Die Fauna und Flora der Rügener Schreibkreide (Maastrichtium, Ostsee). Archiv für Geschiebekunde, 3, 73–284.Google Scholar
  82. Reich, M., Villier, L., & Kutscher, M. (2004). The echinoderms of the Rügen White Chalk (Maastrichtian, Germany). In T. Heinzeller & J. H. Nebelsick (Eds.), Echinoderms: München (pp. 495–505). Leiden: Balkema Publishers.CrossRefGoogle Scholar
  83. Rudwick, M. J. S. (1970). Living and fossil brachiopods (p. 199). London: Hutchinson University Library.Google Scholar
  84. Russell, J.L., & Dickinson, A.G. (2003). Variability in oxygen and nutrients in South Pacific Antarctic Intermediate Water. Global Biogeochemical Cycles, 17(2), 2–1–2-11.Google Scholar
  85. Sarmiento, J. L., Gruber, N., Brzezinski, M. A., & Dunne, J. P. (2004). High-latitude controls of thermocline nutrients and low-latitude biological productivity. Nature, 427, 56–60.CrossRefGoogle Scholar
  86. Schäfer, W. (1962). Aktuo-Paläontologie nach Studien in der Nordsee (p. 666). Frankfurt am Main: Waldemar Kramer.Google Scholar
  87. Schmid, F. (Ed.). (2005). Fossilien aus der Schreibkreide von Hemmoor und Kronsmoor (mit Bibliographie) - Belemniten, Einzelkorallen, Serpuliden und Skelettreste eines Elasmosauriers. Geologisches Jahrbuch, A157, 1–249.Google Scholar
  88. Schönfeld, J., Schulz, M. G., Burnett, J., Gale, A. S., Hambach, U., Hansen, O. P., Kennedy, W. J., Rasmussen, H. W., Thirlwall, M. F., & Wray, D. S. (1996). New results on biostratigraphy, paleomagnetism, geochemistry and correlation from the standard section for the Upper Creteceous white chalk of northern Germany (Lägerdorf-Kronsmoor-Hemmoor). Mitteilungen aus dem Geologischen-Paläontologischen Institut der Universität Hamburg, 77, 545–575.Google Scholar
  89. Schulz, M.-G., Ernst, G., Ernst, H., & Schmid, F. (1984). Coniacian to Maastrichtian stage boundaries in the standard section for the Upper Cretaceous white chalk of NW Germany (Lägerdorf-Kronsmoor-Hemmoor): definitions and proposals. Bulletin of the Geological Society Denmark, 33, 203–215.Google Scholar
  90. Schwarz, A., & Marten, H. (1927). Das Herauspräparieren von Fossilien aus festen Gesteinen mit Hilfe gefrierenden Wassers. Zugleich ein weiterer Beitrag zur Präparation verkiester Fossilien. Senckenbergiana, 9(6), 243–247.Google Scholar
  91. Seilacher, A. (1967). Bathymetry of trace fossils. Marine Geology, 5, 413–428.CrossRefGoogle Scholar
  92. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication (p. 144). Urbana: University of Illinois Press.Google Scholar
  93. Simon, E. (2000). Upper Campanian brachiopods from the Mons Basin (Hainaut, Belgium): the brachiopod assemblage from the Belemnitella mucronata Zone. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, 70, 129–160.Google Scholar
  94. Smith, A.B., & Batten, D.J. (Eds.) (2002). Fossils of the Chalk (2 nd Ed.). Palaeontological Association Field Guides to Fossils (p. 374). London: Palaeontological Association.Google Scholar
  95. Sommer, U. (2005). Biologische Meereskunde (p. 412). Berlin/Heidelberg/New York: Springer.Google Scholar
  96. Stanley, S. M., Ries, J. B., & Hardie, L. A. (2005). Seawater chemistry, coccolithophore population growth, and the origin of Cretaceous chalk. Geology, 33, 593–596.CrossRefGoogle Scholar
  97. Suga, T., & Talley, L. D. (1995). Antarctic intermediate water circulation in the tropical and subtropical South Atlantic. Journal of Geophysical Research, 100(C7), 13,441–13,453.CrossRefGoogle Scholar
  98. Surlyk, F. (1982). Brachiopods from the Campanian–Maastrichtian boundary sequence, Kronsmoor (NW Germany) - Die Maastricht-Stufe in NW-Deutschland. Geologisches Jahrbuch, A, 61, 259–277.Google Scholar
  99. Surlyk, F., & Birkelund, T. (1977). An integrated stratigraphical study of fossil assemblages from the Maastrichtian White Chalk of northwestern Europe. In E. G. Kauffman & J. Hazel (Eds.), Concepts and methods of biostratigraphy (pp. 257–281). Pennsylvania: Dowden, Hutchinson & Ross, Inc..Google Scholar
  100. Surlyk, F., & Lykke-Andersen, H. (2007). Contourite drifts, moats and channels in the Upper Cretaceous chalk of the Danish Basin. Sedimentology, 54, 405–422.CrossRefGoogle Scholar
  101. Tardent, P. (2005). Meeresbiologie - eine Einführung (p. 305). Stuttgart: George Thieme Verlag.Google Scholar
  102. Taylor, P.D. (2002). Bryozoans. In: A.B. Smith, D.J. Batten (Eds.), Fossils of the Chalk (2 nd Ed.). Palaeontological Association Field Guides to Fossils no. 2 (pp. 53–75). London: The Palaeontological Association.Google Scholar
  103. Taylor, P. D. (2005). Bryozoans and palaeoenvironmental interpretation. Journal of Palaeontological Society of India, 50(2), 1–11.Google Scholar
  104. Thibault, N., Harlou, R., Schovsbo, N. H., Stemmerik, L., & Surlyk, F. (2016). Late Cretaceous (late Campanian-Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea. Climate of the Past, 12, 1–10.CrossRefGoogle Scholar
  105. Tomašových, A., Kidwell, S. M., Foygel, R., & Kaufman, D. (2014). Long-term accumulation of carbonate shells reflects a 100-fold drop in loss rate. Geology, 42, 819–822.CrossRefGoogle Scholar
  106. Turner, J. T. (2002). Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquatic Microbial Ecology, 27, 57–102.CrossRefGoogle Scholar
  107. Vejbæk, O. V., Andersen, C., Dusar, M., Herngreen, G. F. W., Krabbe, H., Leszczyński, K., Lott, G. K., Mutterlose, J., & Van der Molen, A. S. (2010). Cretaceous. In J. C. Doornenbal & A. G. Stevenson (Eds.), Petroleum geological atlas of the southern Permian basin area (pp. 195–209). Houten: EAGE Publications b.v..Google Scholar
  108. Voigt, E. (1996). Submarine Aragonit-Lösung am Boden des Schreibkreide-Meeres. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 77, 577–601.Google Scholar
  109. Voigt, S., & Schönfeld, J. (2010). Cyclostratigraphy of the reference section for the Cretaceous white chalk of northern Germany, Lägerdorf-Kronsmoor: a late Campanian–early Maastrichtian orbital time scale. Palaeogeography, Palaeoclimatology, Palaeoecology, 287(1–4), 67–80.CrossRefGoogle Scholar
  110. Voigt, S., Gale, A. S., Jung, C., & Jenkyns, H. C. (2012). Global correlation of Upper Campanian-Maastrichtian successions using carbon-isotope stratigraphy: development of a new Maastrichtian timescale. Newsletter on Stratigraphy, 45(1), 25–53.CrossRefGoogle Scholar
  111. Wendt, D. E., & Johnson, C. (2006). Using latent effects to determine the ecological importance of dissolved organic matter to marine invertebrates. Integrative and Comparative Biology, 46(5), 634–642.CrossRefGoogle Scholar
  112. Wick, W. (1947). Aufbereitungsmethoden in der Mikropaläontologie; Festschrift zur 150-Jahr-Feier der Gründung der Gesellschaft. Jahresberichte der naturhistorischen Gesellschaft Hannover, 94(98), 35–41.Google Scholar
  113. Wilmsen, M. (2003). Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretaceous Research, 24, 525–568.CrossRefGoogle Scholar
  114. Wilmsen, M., & Niebuhr, B. (2017). High-resolution Campanian–Maastrichtian carbon and oxygen stable isotopes of bulk-rock and skeletal components: palaeoceanographic and palaeoenvironmental implications for the Boreal shelf sea. Acta Geologica Polonica, 67(1), 47–74. doi: 10.1515/agp-2017-0004.
  115. Wissing, F.-N., & Herrig, E. (1999). Arbeitstechniken der Mikropaläontologie. Eine Einführung (p. 191). Stuttgart: Ferdinand Enke Verlag.Google Scholar
  116. Ziegler, P. A. (1990). Geological atlas of western and central Europe, 2 (completely revised) (p. 239). Amsterdam: Shell Internationale Petroleum Maatschappij B.V..Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Senckenberg Naturhistorische Sammlungen DresdenMuseum für Mineralogie und GeologieDresdenGermany
  2. 2.Institut für Geologie, Mineralogie und GeophysikRuhr Universität BochumBochumGermany

Personalised recommendations