Palaeobiodiversity and Palaeoenvironments

, Volume 97, Issue 2, pp 315–327 | Cite as

An early Pliocene anuran assemblage from Mallorca (Balearic Islands, Western Mediterranean): palaeobiogeographic and palaeoenvironmental implications

  • Enric Torres-Roig
  • Salvador Bailon
  • Pere Bover
  • Josep Antoni Alcover
Original Paper

Abstract

A new anuran assemblage from the early Zanclean of Mallorca (Balearic Islands) is described using a set of 47 fossil bones obtained at the deposit of Na Burguesa-1, Mallorca. The assemblage includes four different anuran taxa: Alytes (Baleaphryne) aff. muletensis, Discoglossus sp., an indeterminate Bufonidae, and an indeterminate Ranidae. The record of Alytes and Discoglossus in this site represents the earliest evidence for the presence of their lineages on the Balearic Islands. The remains of the bufonid and the ranid constitute the first fossil record of these families in the Balearics. The discovery of this anuran assemblage has a relevant significance for the knowledge of the vertebrate colonisation of the Balearic Islands during the Messinian Salinity Crisis, especially due to the presence of a ranid and Discoglossus. These two taxa suggest that dispersal via a riparian corridor could have played a significant role in the Messinian colonisation of Mallorca, together with the corridor formed by the subaerial exposition of the Balearic Promontory. The Na Burguesa-1 site furnished one of the most diverse early Pliocene fossil anuran assemblages known so far in the Mediterranean islands.

Keywords

Amphibia Anura Messinian Salinity Crisis Palaeobiogeography Na Burguesa-1 Balearic Islands 

References

  1. Adrover, R. (1966). Pequeño intento de lavado de tierras de la Cueva de son Muleta y los resultados obtenidos. Boletín de la Sociedad de Historia natural de las Baleares, 12, 39–46.Google Scholar
  2. Agustí, J., Bover, P., & Alcover, J. A. (2012). A new genus of endemic cricetid (Mammalia, Rodentia) from the Late Neogene of Mallorca (Balearic Islands, Spain). Journal of Vertebrate Paleontology, 32, 722–726.CrossRefGoogle Scholar
  3. Alcover, J.A., Moyà-Solà, S., & Pons-Moyà, J. (1981). Les Quimeres del Passat. Els Vertebrats Fòssils del Plio-Quaternari de les Balears i Pitiüses. Monografies Científiques: Editorial Moll.Google Scholar
  4. Alcover, J.A., Sanders, E., & Sanchiz, B. (1984). El registro fósil de los sapos parteros (Anura, Discoglossidae) de Baleares. In H. Hemmer, & J. A. Alcover (Eds.), Història Biològica del Ferreret (Baleaphryne muletensis) (pp. 109–121). Palma de Mallorca: Editorial Moll.Google Scholar
  5. Arntzen, J. W., & García-París, M. (1995). Morphological and allozyme studies of midwife toads (genus Alytes) including the description of two new taxa from Spain. Contributions to Zoololy, 65, 5–34.Google Scholar
  6. Bailon, S. (1999). Différenciation ostéologique des anoures (Amphibia, Anura) de France. In J. Desse & N. Desse-Berset (Eds.), Fiches d’ostéologie animale pour l’archéologie, série c: varia (pp. 1–38). Valbonne: Centre de Recherches Archéologique, CNRS.Google Scholar
  7. Bailon, S., & Hossini, S. (1990). Les plus anciens Bufonidae (Amphibia, Anura) d’Europe: les espèces du Miocène français. Annales de Paléontologie (Vertébré-Invertébré), 76(2), 121–132.Google Scholar
  8. Bailon, S., Bover, P., Quintana, J., & Alcover, J. A. (2010). First fossil record of Vipera Laurenti 1768 ‘Oriental Vipers Complex’ (Serpentes: Viperidae) from the Early Pliocene of the Western Mediterranean islands. Comptes Rendus Palevol, 9, 147–154.CrossRefGoogle Scholar
  9. Bailon, S., Boistel, R., Bover, P., & Alcover, J. A. (2014). Maioricalacerta rafelinensis gen. et sp. nov. (Squamata, Lacertidae) from the Early Pliocene of Mallorca (Balearic Islands, Western Mediterranean Sea). Journal of Vertebrate Paleontology, 34(2), 318–326.CrossRefGoogle Scholar
  10. Ballman, P., & Adrover, R. (1970). Yacimiento paleontológico de la cueva de Son Bauzá (Mallorca). Acta Geológica Hispánica, 5(2), 58–62.Google Scholar
  11. Bastir, M., Böhme, M., & Sanchiz, B. (2014). Middle Miocene remains of Alytes (Anura, Alytidae) as an example of the unrecognized value of fossil fragments for evolutionary morphology studies. Journal of Vertebrate Paleontology, 34(1), 69–79.CrossRefGoogle Scholar
  12. Biton, R., Geffen, E., Vences, M., Cohen, O., Bailon, S., Rabinovich, R., Malka, Y., Oron, T., Boistel, R., Brumfeld, V., & Gafny, S. (2013). The rediscovered Hula painted frog is a living fossil. Nature Communications, 4, 1–6.CrossRefGoogle Scholar
  13. Biton, R., Boistel, R., Rabinovich, R., Gafni, S., Brumfeld, V., & Bailon, S. (2016). Osteological observations on the Alytid Anura Latonia nigriventer with comments on functional morphology, biogeography, and evolutionary history. Journal of Morphology, 277(9), 1131–1145.CrossRefGoogle Scholar
  14. Blain, H.-A. (2009). Contribution de la paléoherpétofaune (Amphibia & Squamata) à la connaissance de l’évolution du climat et du paysage du Pliocène supérieur au Pléistocène moyen d’Espagne. Treballs del Museu de Geologia de Barcelona, 16, 39–170.Google Scholar
  15. Blain, H.-A., Gibert, L., & Ferràndez-Cañadell, C. (2010). First report of a green toad (Bufo viridis sensu lato) in the Early Pleistocene of Spain: palaeobiogeographical and palaeoecological implications. Comptes Rendus Palevol, 9, 487–497.CrossRefGoogle Scholar
  16. Blain, H.-A., Agustí, J., López-García, M., Haddoumi, H., Aouraghe, H., El Hammouti, K., Pérez-González, A., Chacón, M. G., & Sala, R. (2013). Amphibians and squamate reptiles from the late Miocene (Vallesian) of Eastern Morocco (Guefaït-1, Jerada Province). Journal of Vertebrate Paleontology, 33(4), 804–816.CrossRefGoogle Scholar
  17. Blain, H.-A., Lózano-Fernández, I., & Böhme, G. (2015). Variation in the ilium of central European water frogs Pelophylax (Amphibia, Ranidae) and its implications for species-level identification of fragmentary anuran fossils. Zoological Studies, 54, 5.CrossRefGoogle Scholar
  18. Blondel, J., & Aronson, J. (1999). Biology and wildlife of Mediterranean region. Oxford: Oxford University Press.Google Scholar
  19. Böhme, G. (1977). Zur Bestimmung quartarer Anuren Europas an Hand von Skelettelementen. Wissenschaftliche Zeitschrift der Humboldt-Universität, Mathematisch-Naturwissenschaftliche Reihe, 26(3), 283–300.Google Scholar
  20. Böhme, M. (2008). Ectothermic vertebrates (Teleostei, Allocaudata, Urodela, Anura, Testudines, Choristodera, Crocodylia, Squamata) from the Upper Oligocene of Oberleichtersbach (Northern Bavaria, Germany). Courier Forschungsinstitut Senckenberg, 260, 161–183.Google Scholar
  21. Bover, P., Quintana, J., Agustí, J., Bailon, S., & Alcover, J. A. (2007). Caló den Rafelino: an Early Pliocene site in Mallorca, Western Mediterranean. In Libro de Resúmenes del VII Simposio Internacional de Zoología (pp. 12–17). Cuba: Topes de Collantes, Sancti Spiritus.Google Scholar
  22. Bover, P., Quintana, J., & Alcover, J. A. (2008). Three islands, three worlds: paleogeography and evolution of the vertebrate fauna from the Balearic Islands. Quaternary international, 182, 135–144.CrossRefGoogle Scholar
  23. Bover, P., Quintana, J., & Alcover, J. A. (2010). A new species of Myotragus Bate, 1909 (Artyodactyla, Caprinae) from the Early Pliocene of Mallorca (Balearic Islands, western Mediterranean). Geological Magazine, 147, 871–885.CrossRefGoogle Scholar
  24. Bover, P., Valenzuela, A., Guerra, C., Rofes, J., Alcover, J. A., Ginés, J., Fornós, J. J., Cuenca-Bescós, G., & Merino, A. (2014a). The Cova des Pas de Vallgornera (Llucmajor, Mallorca): a singular deposit containing an extraordinarily well preserved Early Pleistocene vertebrate fauna. International Journal of Speleology, 43(2), 175–192.CrossRefGoogle Scholar
  25. Bover, P., Rofes, J., Bailon, S., Agustí, J., Cuenca-Bescós, G., Torres, E., & Alcover, J. A. (2014b). The late Miocene/early Pliocene vertebrate fauna from Mallorca (Balearic Islands, Western Mediterranean): an update. Integrative Zoology, 9(2), 183–196.CrossRefGoogle Scholar
  26. Channing, A. (1976). Life histories of frogs in the Namib Desert. Zoologica Africana, 11(2), 299–312.CrossRefGoogle Scholar
  27. Clarke, B. T. (2007). Comparative morphology and amphibian taxonomy: an example from the osteology of discoglossoid frogs. In H. Heatwole & M. J. Tyler (Eds.), Amphibian Biology. Amphibian Systematics, Vol. 7 (pp. 2465–2612). Chipping Norton: Surrey Beatty and Sons.Google Scholar
  28. Clarke, B. T., & Lanza, B. (1990). Notes on the morphology and distribution of the Corsican Painted Frogs: Discoglossus sardus Tschudi and D. montalentii Lanza, Nascetti, Capula & Bullini. Bollettino Museo Regionale di Scienze Naturali, 8(2), 531–544.Google Scholar
  29. Coulthard, T.J., Ramirez, J.A. Barton, N., Rogerson, M., & Brücher, T. (2013). Were rivers flowing across the Sahara during the last interglacial? Implications for human migration through Africa. PLoS ONE, 8(9) Doi: 10.1371/journal.pone.0074834.
  30. Delfino, M., Doglio, S., Roček, Z., Seglie, D., & Kabiri, L. (2009). Osteological peculiarities of Bufo brongersmai (Anura: Bufonidae) and their possible relation to life in an arid environment. Zoological Studies, 48, 108–119.Google Scholar
  31. Drake, N. A., Blench, R. M., Armitage, S. J., Bristow, C. S., & White, K. M. (2011). Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proceedings of the National Academy of Sciences of America, 108(2), 458–462.CrossRefGoogle Scholar
  32. Fauquette, S., Suc, J.-P., Bertini, A., Popescu, S.-M., Warny, S., Taoufiq, N. B., Perez Villa, M.-J., Chikhi, H., Feddi, N., Subally, D., Clauzon, G., & Ferrier, J. (2006). How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 281–301.CrossRefGoogle Scholar
  33. Free, C.L., Baxter, G.S., Dickman, C.R., & Leung, L.K.P. (2013). Resource pulses in desert river habitats: productivity-biodiversity hotspots, or mirages? PLoS ONE 8(10) Doi:10.1371/journal.pone.0072690.
  34. Free, C.L., Baxter, G.S., Dickman, C.R., Lisle, A., & Leung. L.k.-P. (2015). Diversity and community composition of vertebrates in desert river habitats. PLoS ONE, 10(12) Doi: 10.1371/journal.pone.0144258.
  35. Fromhage, L., Vences, M., & Veith, M. (2004). Testing alternative vicariance scenarios in western Mediterranean discoglossid frogs. Molecular Phylogenetics and Evolution, 31, 308–322.CrossRefGoogle Scholar
  36. Frost, D. R., Grant, T., Faivovich, J., Bain, R. H., Haas, A., Haddad, C. F. B., De Sa, S. O., Channing, A., Wilkinson, M., Donnellan, S. C., Raxworthy, C. J., Campbell, J. A., Blotto, B. L., Moler, P., Drewes, R. C., Nussbaum, R. A., Lynch, J. D., Green, D. M., & Wheeler, W. C. (2006). The amphibian tree of life. Bulletin of the American Museum of Natural History, 297, 8–370.CrossRefGoogle Scholar
  37. García, M., Maillard, A., Aslanian, D., Rabineau, M., Alonso, B., Gorini, C., & Estrada, F. (2011). The catalan margin during the messinian salinity crisis: physiography, morphology and sedimentary record. Marine Geology, 284(2011), 158–174.CrossRefGoogle Scholar
  38. Gasull, L., & Adrover, R. (1966). Fauna malacológica y mastológica del yacimiento cuaternario de Es Bufador. Boletín de la Sociedad de Historia Natural de Baleares, 12, 141–148.Google Scholar
  39. Gonçalves, H. (2007). História evolutiva dos sapos-parteiros (Alytes spp.) na Península Ibérica. Ph.D. dissertation. Porto: Universidade do Porto.Google Scholar
  40. Hemmer, H., Kadel, B., & Kadel, K. (1981). The Balearic toad [Bufo viridis balearicus (Boettger, 1881)], human Bronze Age culture, and Mediterranean biogeography. Amphibia-Reptilia, 2(3), 217–230.CrossRefGoogle Scholar
  41. Hsü, K. J. (1983). The Mediterranean was a desert. A voyage of the Glomar Challenger. Princeton: Princeton University Press.Google Scholar
  42. Hsü, K. J., Ryan, W. B. F., & Cita, M. B. (1973). Late Miocene dessication of the Mediterranean. Nature, 242, 240–244.CrossRefGoogle Scholar
  43. Jaeger, J. R., Riddle, B. R., & Bradford, D. F. (2005). Cryptic Neogene vicariance and Quaternary dispersal of the red-spotted toad (Bufo punctatus): insights on the evolution of North American warm desert biotas. Molecular Ecology, 14, 3033–3048.CrossRefGoogle Scholar
  44. Just, J., Hubscher, C., Betzler, C., Lüdmann, T., & Reicherter, K. (2010). Erosion of continental margins in the Western Mediterranean due to sea-level stagnancy during the Messinian Salinity Crisis. Geo-Marine Letters, 31, 51–64.CrossRefGoogle Scholar
  45. Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., & Wilson, D. S. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655.CrossRefGoogle Scholar
  46. Maia-Carvalho, B., Gonçalves, H., Ferrand, N., & Martínez-Solano, I. (2014). Multilocus assessment of phylogenetic relationships in Alytes (Anura, Alytidae). Molecular Phylogenetics and Evolution, 79, 270–278.CrossRefGoogle Scholar
  47. Martín, C., & Sanchiz, B. (2013). Lisanfos KMS, version 1.2. Online reference available at http://www.lisanfos.mncn.csic.es/. Museo Nacional de Ciencias Naturales, MNCN, Madrid, Spain. Accessed December 3–5, 2015.
  48. Martínez-Solano, I., Gonçalves, H. A., Arntzen, J. W., & García-París, M. (2004). Phylogenetic relationships and biogeography of midwife toads (Discoglossidae: Alytes). Journal of Biogeography, 31, 603–618.CrossRefGoogle Scholar
  49. Mayol, J., Alcover, J. A., Alomar, G., Pomar, G., Jurado, J., & Jaume, D. (1980). Supervivència de Baleaphryne (Amphibia: Anura: Discoglossidae) a les muntanyes de Mallorca. Nota preliminar. Butlletí de la Institució Catalana d’Història Natural, 45(3), 115–119.Google Scholar
  50. Moyà-Solà, S., & Pons-Moyà, J. (1979). Catálogo de los yacimientos con fauna de vertebrados del Plioceno, Pleistoceno y Holoceno de las Baleares. Endins, 5–6, 59–74.Google Scholar
  51. Moyà-Solà, S., & Pons-Moyà, J. (1980). Una nueva especies del género Myotragus Bate, 1909 (Mammalia, Bovidae) en la isla de Menorca: Myotragus binigausensis nov. sp. Implicaciones paleozoogeográficas. Endins, 7, 37–47.Google Scholar
  52. Pabijan, M., Crottini, A., Reckwell, D., Irisarri, I., Hauswaldt, J. S., & Vences, M. (2012). A multigene species tree for Western Mediterranean painted frogs (Discoglossus). Molecular Phylogenetics and Evolution, 64, 690–696.CrossRefGoogle Scholar
  53. Quintana, J. (1999). Aproximación a los yacimientos de vertebrados del Mio-Pleistoceno de la isla de Menorca. Bolletí de la Societat d’Història Natural de les Balears, 41, 101–117.Google Scholar
  54. Quintana, J., Alcover, J.A., Moyà-Solà, S., & Sanchiz, B. (2005). Presence of Latonia (Anura, Discoglossidae) in the insular Pliocene of Menorca (Balearic Islands). In J.A. Alcover & P. Bover (Eds.), Proceedings of the International Symposium Insular Vertebrate Evolution: the Palaeontological Approach, 12, (pp. 293–296). Monografies de la Societat d’Història Natural de les Balears.Google Scholar
  55. Quintana, J., Bover, P., Alcover, J. A., Agustí, J., & Bailon, S. (2010). Presence of Hypolagus Dice, 1917 (Mammalia, Lagomorpha) in the Neogene of the Balearic Islands (Western Mediterranean): description of Hypolagus balearicus nov. sp. Geobios, 43, 555–567.CrossRefGoogle Scholar
  56. Rage, J.-C. (1984). Are the Ranidae (Anura, Amphibia) known prior to the Oligocene? Amphibia-Reptilia, 5, 281–288.CrossRefGoogle Scholar
  57. Rage, J.-C., & Roček, Z. (2003). Evolution of anuran assemblages in the Tertiary and the Quaternary of Europe, in the context of palaeoclimate and palaeogeography. Amphibia-Reptilia, 24, 133–167.CrossRefGoogle Scholar
  58. Ratnikov, V. Y. (2001). Osteology of Russian toads and frogs for paleontological researches. Acta Zoologica Cracoviensia, 44, 1–23.Google Scholar
  59. Razeng, E., Morán-Ordóñez, A., Boxt, J. B., Thompson, R., Davis, J., & Sunnucks, P. (2016). A potential role for overland dispersal in shaping aquatic invertebrate communities in arid regions. Freshwater Biology, 61, 745–757.CrossRefGoogle Scholar
  60. Rizzini, A., Vezzani, F., Cococcetta, V., & Milad, G. (1978). Stratigraphy and sedimentation of a Neogene-Quaternary section in the Nile Delta area. Marine Geology, 27, 327–348.CrossRefGoogle Scholar
  61. Roček, Z. (1982). The incrassatio frontoparietalis in frogs, its origin and phylogenetic significance. Amphibia-Reptilia, 3, 111–124.CrossRefGoogle Scholar
  62. Roček, Z. (1994). Taxonomy and distribution of Tertiary discoglossids (Anura) of the genus Latonia v. Meyer, 1843. Geobios, 27, 717–751.CrossRefGoogle Scholar
  63. Roček, Z., & Rage, J.-C. (2000). Tertiary Anura of Europe, Africa, Asia, North America, and Australia. In H. Heatwole & R. L. Carroll (Eds.), Amphibian biology (pp. 1332–1387). Australia: Surrey Beatty, Chipping Norton.Google Scholar
  64. Rofes, J., Bover, P., Cuenca-Bescós, G., &. Alcover, J.A. (2012). Nesiotites rafelinensis sp. nov., the earliest shrew (Mammalia, Soricidae) from the Balearic Islands, Spain. Palaeontologia Electronica, 15, 8A.Google Scholar
  65. Ryan, W. B. F., & Cita, M. B. (1978). The nature and distribution of Messinian Erosional Surfaces—indicators of a several-kilometer-deep Mediterranean in the Miocene. Marine Geology, 27, 193–230.CrossRefGoogle Scholar
  66. Sanchiz, B. (1977a). Catálogo de los anfibios fósiles de España. Acta Geológica Hispánica, 12(4–6), 103–107.Google Scholar
  67. Sanchiz, B. (1977b). La familia Bufonidae (Amphibia, Anura) en el Terciario europeo. Trabajos Neógeno-Cuaternario, 8, 75–111.Google Scholar
  68. Sanchiz, B. (1977b). Nuevos anfibios del Neógeno y Cuaternario de Europa. Origen, desarrollo y relaciones de la batracofauna española. Ph.D. dissertation. Madrid: Univ. Complutense.Google Scholar
  69. Sanchiz, B. (1998). Salientia (Handbuch der Paläoherpetologie, Volume 4). Stuttgart: Gustav Fischer Verlag.Google Scholar
  70. Sanchiz, B., & Adrover, R. (1979). Anfibios fósiles del Pleistoceno de Mallorca. Acta Vertebrata, 4, 5–25.Google Scholar
  71. Sanchiz, B., & Alcover, J. A. (1982). Un nou discoglòssid (Amphibia: Anura) de l’Holocè de Menorca. Butlletí de la Institució Catalana d’Història Natural, 48(3), 99–105.Google Scholar
  72. Spieler, M., & Linsenmair, K. E. (1998). Migration patterns and diurnal use of shelter in a ranid frog of a West African savannah: a telemetric study. Amphibia-Reptilia, 19, 43–64.CrossRefGoogle Scholar
  73. Tockner, K., Klaus, I., Baumgartner, C., & Ward, J. V. (2006). Amphibian diversity and nestedness in a dynamic floodplain river (Tagliamento, NE-Italy). Hydrobiologia, 565, 121–133.CrossRefGoogle Scholar
  74. Urgeles, R., Camerlenghi, A., García-Castellanos, D., De Mol, B., Garcés, M., Vergés, J., Haslama, I., & Hardman, M. (2010). New constraints on the Messinian sealevel drawdown from 3D seismic data of the Ebro Margin, Western Mediterranean. Basin Research, 23, 123–145.CrossRefGoogle Scholar
  75. van der Made, J., Morales, J., & Montoya, P. (2006). Late Miocene turnover in the Spanish mammal record in relation to palaeoclimate and the Messinian salinity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 228–246.CrossRefGoogle Scholar
  76. Vences, M., Vieites, D. R., Glaw, F., Brinkmann, H., Kosuch, J., Veith, M., & Meyer, A. (2003). Multiple overseas dispersal in amphibians. Proceedings of the Royal Society of London, B, 270, 2435–2442.CrossRefGoogle Scholar
  77. Venczel, M., & Sanchiz, B. (2006). Lower Miocene amphibians and reptiles from Oschiri (Sardinia, Italy). Hantkeniana, 5, 72–75.Google Scholar
  78. Zangari, F., Cimmaruta, R., & Nascetti, G. (2006). Genetic relationships of the Western Mediterranean painted frogs based on allozymes and mitochondrial markers: evolutionary and taxonomic inferences (Amphibia, Anura, Discoglossidae). Biological Journal of the Linnean Society, 87, 515–536.CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Biodiversity and ConservationInstitut Mediterrani d’Estudis AvançatsEsporlesSpain
  2. 2.UMR 7209 et 7194, CNRSMuséum National d’Histoire Naturelle and Sorbonne UniversitésParisFrance
  3. 3.Research Associate, Division of Vertebrate Zoology/Mammalogy DepartmentAmerican Museum of Natural HistoryNew YorkUSA
  4. 4.Australian Centre for Ancient DNA (ACAD), School of Biological SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations