Palaeobiodiversity and Palaeoenvironments

, Volume 97, Issue 3, pp 375–390 | Cite as

Heterostracan vertebrates and the Great Eodevonian Biodiversification Event—an essay

  • Alain BlieckEmail author
Original Paper


The oldest vertebrates are Early Cambrian, cephalized unossified species (craniates) from China. The oldest armoured species (euvertebrates) are Ordovician in age. After Talimaa’s Gap, vertebrates have their first adaptive radiation during the Silurian when jawless species (“ostracoderms”) are dominant and their second radiation during the Devonian when jawed species (gnathostomes), and particularly placoderms (armoured fishes), are dominant. A Lochkovian peak of diversity is registered in various Lower Devonian siliciclastic series all around the Old Red Sandstone Continent and Siberia, for ostracoderms in general, and heterostracan pteraspidomorphs in particular. It occurs at different time slices in the Lochkovian, depending on the localities, and may be followed by another smaller peak in the Pragian. Both events correspond to the rise of the Devonian Nekton Revolution as defined for marine invertebrates. This appears to be the second main biodiversification event in the Palaeozoic, following the Great Ordovician Biodiversification Event or GOBE, when euvertebrates appeared. Taking into account most recent palaeobiological studies on heterostracans that suggest they were microphagous suspension feeders or feeding upon microscopic epiphytes from filamentous algae, the origin of this Great Eodevonian Biodiversification Event (GEBE) of heterostracans is questioned. Both abiotic (sea level, tectonic events, climatic changes—oceanic oxygenation and temperature, continental surface temperature) and biotic (plankton diversity, marine primary productivity, competition with vertebrates and invertebrates, including eurypterids, macroecological turnover) factors are examined. No plausible global evolutionary scenario seems to be presently available.


Early Devonian Nekton Revolution Ostracoderms Palaeobiodiversity Essay in geobiology 



This paper is based on a series of oral communications that have been given in front of IGCP 596–SDS Symposium: Climate change and biodiversity patterns in the Mid-Palaeozoic (Sept. 20–22, 2015, Brussels, Belgium), the 2016 meeting of Association Française de Paléontologie (30 March–2 April 2016, Elbeuf, France), and IGCP 591 Closing meeting: The Early to Mid Palaeozoic Revolution (6–9 July 2016, Ghent, Belgium). The organisers of these meetings are warmly thanked. Several colleagues helped during the making of this paper, viz., Lauren C. Sallan (University of Pennsylvania at Philadelphia, PA, USA), Elise Nardin (Université Paul Sabatier, Toulouse, France), and some others who are cited in the text. They are thanked for this. Both reviewers David K. Elliott (Northern Arizona University, Flagstaff, USA) and Philippe Janvier (CNRS, Muséum National d’Histoire Naturelle, Paris, France) made detailed comments on the “manuscript”, that greatly improved its quality.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aberhan, M., & Kiessling, W. (2012). Phanerozoic marine biodiversity: a fresh look at data, methods, patterns and processes. In J. A. Talent (Ed.), Earth and Life: Global biodiversity, extinction intervals and biogeographic perturbations through time (pp. 3–22). Dordrecht: Springer Verlag, IYPE Series.CrossRefGoogle Scholar
  2. Allmon, W. D., & Martin, R. E. (2014). Seafood through time revisited: the Phanerozoic increase in marine trophic resources and its macroevolutionary consequences. Paleobiology, 40(2), 256–287.CrossRefGoogle Scholar
  3. Alroy, J. (2010). The shifting balance of diversity among major marine animal groups. Science, 329, 1191–1194.CrossRefGoogle Scholar
  4. Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomasovych, A., & Visaggi, C. C. (2008). Phanerozoic trends in the global diversity of marine invertebrates. Science, 321, 97–100. doi: 10.1126/science.1156963.CrossRefGoogle Scholar
  5. Bambach, R. K. (2002). Supporting predators: changes in the global ecosystem inferred from changes in predator diversity. Paleontological Society Papers, 8, 319–351.Google Scholar
  6. Benton, M. J. (Ed.). (1993). The Fossil Record 2. London: Chapman and Hall. 845 p.Google Scholar
  7. Blieck, A., (1984). Les Hétérostracés Ptéraspidiformes, Agnathes du Silurien-Dévonien du Continent nord-atlantique et des blocs avoisinants: révision systématique, phylogénie, biostratigraphie, biogéographie. Cahiers de Paléontologie (Vertébrés), 199 p.Google Scholar
  8. Blieck, A. (1985). Paléoenvironnements des Hétérostracés, Vertébrés agnathes ordoviciens à dévoniens. In J.-C Fischer. organ., Journées d’étude sur les indicateurs paléobiologiques de milieux (RCP 641, Paris, 26–27 mars 1984). Bulletin du Muséum National d’Histoire Naturelle, 4e série, 7, C (2), 143–155.Google Scholar
  9. Blieck, A. (2011). The André Dumont medallist lecture — From adaptive radiations to biotic crises in Palaeozoic vertebrates: a geobiological approach. Geologica Belgica, 14(3–4), 203–227; also World Wide Web address:
  10. Blieck, A. (2012). Du plus ancien insecte au plus ancien tétrapode. Science & pseudo-sciences, Chroniques: Du côté de la science, 29 sept. 2012; World Wide Web address:
  11. Blieck, A. (2015). An Early Devonian peak of biodiversity: the case of heterostracan vertebrates. In Mottequin, B., Denayer, J., Königshof, P., Prestianni, C., & Olive, S. (Eds.), IGCP 596 – SDS Symposium: Climate change and biodiversity patterns in the Mid-Palaeozoic (Brussels, Sept. 20–22, 2015). Strata, Série 1: communications, vol. 16, 16–17.Google Scholar
  12. Blieck, A., & Elliott, D.K. (2016). Pteraspidomorphs (Vertebrata), the Old Red Sandstone, and the special case of the Brecon Beacons National Park, Wales, U.K. In Howe, S.R. organ., [ORS Symposium Volume]. Proceedings of the Geologists’ Association; doi: 10.1016/j.pgeola.2016.07.003 [Online publication: 6-AUG-2016].
  13. Blieck, A., & Heintz, N. (1983). The Cyathaspids of the Red Bay Group (Lower Devonian) of Spitsbergen (The Downtonian and Devonian vertebrates of Spitsbergen: XIV). Polar Research, 1, n.s(1), 49–74.CrossRefGoogle Scholar
  14. Blieck, A., & Styza, A. (2014). Devonian sandstones from the Liévin shaft n° 8, Avion (Pas-de-Calais, France): historical context and additional vertebrate rema. Annales de la Société Géologique du Nord, 21(2e série), 25–33.Google Scholar
  15. Blieck, A., Goujet, D., & Janvier, P. (1987). The vertebrate stratigraphy of the Lower Devonian (Red Bay Group and Wood Bay Formation) of Spitsbergen. Modern Geology, 11(3), 197–217.Google Scholar
  16. Blieck, A., Mark-Kurik, E., & Märss, T. (1988). Biostratigraphical correlations between Siluro-Devonian invertebrate-dominated and vertebrate-dominated sequences: the East Baltic example. In McMillan, N.J., Embry, A.F., & Glass, D.J. (Eds.), Devonian of the World (Proceedings of the IInd International Symposium on the Devonian System, Calgary, 1987). Canadian Society of Petroleum Geologists, Memoir 14, vol. III, 579–587.Google Scholar
  17. Blieck, A., Goujet, D., Janvier, P., & Meilliez, F. (1995). Revised Upper Silurian-Lower Devonian ichthyostratigraphy of northern France and southern Belgium (Artois-Ardenne). In Arsenault, M., Lelièvre, H., & Janvier, P. (Eds.), Etudes sur les Vertébrés inférieurs (VIIe Symposium International, Parc de Miguasha, Québec, 9–22 Juin 1991). Bulletin du Muséum National d’Histoire Naturelle, 4e série, 17, C (1–4), 447–459; also World Wide Web address:
  18. Blieck, A., & Cloutier, R., with contributions by Elliott, D.K., Goujet, D., Loboziak, S., Reed, R.C., Rodina, O., Steemans, P., Valiukevičius, J.J., V’yushkova, L., Yolkin, E.A., & Young, V.T. (2000). Biostratigraphical correlations of Early Devonian vertebrate assemblages of the Old Red Sandstone Continent. In Blieck, A., & Turner, S. (Eds.), Palaeozoic Vertebrate Biochronology and Global Marine/Non-Marine Correlation — Final Report of IGCP 328 (1991–1996). Courier Forschungsinstitut Senckenberg, 223, 223–269.Google Scholar
  19. Blieck, A.R.M., Karatajūtė-Talimaa, V.N., & Mark-Kurik, E. (2002). Upper Silurian and Devonian heterostracan pteraspidomorphs (Vertebrata) from Severnaya Zemlya (Russia): a preliminary report with biogeographical and biostratigraphical implications. Geodiversitas, 24 (4), 805–820; also World Wide Web address:
  20. Brett, C.E., & Walker, S.E. (2002). Predators and predation in Palaeozoic marine environments. In Kowalewski, M., & Kelley, P.H. (Eds.), The Fossil Record of Predation. Paleontological Society Papers, 8, 93–118.Google Scholar
  21. Broad, D. S., & Dineley, D. L. (1973). Torpedaspis, a new Upper Silurian and Lower Devonian genus of Cyathaspididae (Ostracodermi) from Arctic Canada. Geological Survey of Canada, Bulletin, 222, 52–91.Google Scholar
  22. Butterfield, N.J. (2011). Was the Devonian radiation of large predatory fish a consequence of rising atmospheric oxygen concentration ? Proceedings of the National Academy of Sciences of the United States of America, 108 (9), E28; doi: 10.1073/pnas.1018072108.
  23. Carr, R.K., & Jackson, G.L. (2009). The vertebrate fauna of the Cleveland Member (Famennian) of the Ohio Shale. In Guide to the Geology and Paleontology of the Cleveland Member of the Ohio Shale (68th Annual Meeting of the Society of Vertebrate Paleontology, Cleveland, Ohio, Oct. 15–18, 2008). Ohio Geological Survey, Guidebook 22, 17 p.Google Scholar
  24. Cowen, R. (2003). Diversity of life through time, including Sepkoski’s analysis: mini-essay. University of California, Davis campus (UC Davis), Earth and Planetary Sciences, MyGeologyPage, Richard Cowen’s Home Page: 10 p.; World Wide Web address:
  25. Dahl, T. W., Hammarlund, E. U., Anbar, A. D., Bond, D. P. G., Gill, B. C., Gordon, G. W., Knoll, A. H., Nielsen, A. T., Schovsbo, N. H., & Canfield, D. E. (2010). Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 17911–17915. doi: 10.1073/pnas.1011287107.CrossRefGoogle Scholar
  26. Dineley, D. L. (1976). New species of Ctenaspis (Ostracodermi) from the Devonian of Arctic Canada. In C. S. Churcher (Ed.), Athlon - Essays on Palaeontology in Honour of Loris Shano Russell (pp. 26–44). Toronto: Royal Ontario Museum.Google Scholar
  27. Donoghue, P. C. J., Forey, P. L., & Aldridge, R. J. (2000). Conodont affinity and chordate phylogeny. Biological Reviews, 75, 191–251.CrossRefGoogle Scholar
  28. Dupret, V. (2010). Revision of the genus Kujdanowiaspis Stensiö, 1942 (Placodermi, Arthrodira, “Actinolepida”) from the Lower Devonian of Podolia (Ukraine). Geodiversitas, 32(1), 5–63. doi: 10.5252/g2010n1a1.CrossRefGoogle Scholar
  29. Dupret, V., & Blieck, A. (2009). The Lochkovian-Pragian boundary in Podolia (Lower Devonian, Ukraine) based upon placoderm vertebrates. Comptes Rendus Geoscience, 341(1), 63–70. doi: 10.1016/j.crte.2008.09.007.CrossRefGoogle Scholar
  30. Elliott, D. K., & Blieck, A. R. M. (2010). A new ctenaspid (Agnatha, Heterostraci) from the Early Devonian of Nevada, with comments on taxonomy, paleobiology and paleobiogeography. In D. K. Elliott, J. G. Maisey, X. Yu, & D. Miao (Eds.), Morphology, Phylogeny and Paleobiogeography of Fossil Fishes – Honoring Meemann Chang (pp. 25–38). München: Verlag Dr. Friedrich Pfeil.Google Scholar
  31. Elliott, D. K., & Petriello, M. A. (2011). New poraspids (Agnatha, Heterostraci) from the Early Devonian of the western United States. Journal of Vertebrate Paleontology, 31(3), 518–530.CrossRefGoogle Scholar
  32. Elliott, D. K., Reed, R. C., & Loeffler, E. J. (2004). A new species of Allocryptaspis (Heterostraci) from the Early Devonian, with comments on the structure of the oral area in cyathaspidids. In G. Arratia, M. V. H. Wilson, & R. Cloutier (Eds.), Recent Advances in the Origin and early Radiation of Vertebrates – Honoring Hans-Peter Schultze (pp. 455–472). Verlag Dr. Friedrich Pfeil: München.Google Scholar
  33. Elliott, D. K., Schultze, H.-P., & Blieck, A. (2015). A new pteraspid (Agnatha, Heterostraci) from the Lower Devonian Drake Bay Formation, Prince of Wales Island, Nunavut, Arctic Canada, and comments on environmental preferences of pteraspids. Journal of Vertebrate Paleontology, 35(6), e1005098. doi: 10.1080/02724634.2015.1005098. 10 p.CrossRefGoogle Scholar
  34. Friedman, M., & Sallan, L. C. (2012). Five hundred million years of extinction and recovery: a Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology, 55(4), 707–742.CrossRefGoogle Scholar
  35. Gensel, P. G. (2008). The earliest land plants. Annual Review of Ecology, Evolution, and Systematics, 39, 459–477.CrossRefGoogle Scholar
  36. George, D., & Blieck, A. (2011). Rise of the earliest tetrapods: An Early Devonian origin from marine environment. PLoS ONE, 6(7), 1–7. doi: 10.1371/journal.pone.0022136.
  37. Gornitz, V. (Ed.). (2009). Encyclopedia of Paleoclimatology and Ancient Environments. Dordrecht: Springer Netherlands. xxviii + 1049 p.Google Scholar
  38. Grahn, Y., & Paris, F. (2011). Emergence, biodiversification and extinction of the chitinozoan group. Geological Magazine, 148(2), 226–236.CrossRefGoogle Scholar
  39. Gross, W. (1937). Die Wirbeltiere des rheinischen Devons. Teil II. Abhandlungen der Preußischen Geologischen Landesanstalt, N. F. 176, 83 p.Google Scholar
  40. Gross, W. (1963). Drepanaspis gemuendenensis Schlüter. Neuuntersuchung. Palaeontographica A, 121(4–6), 133–155.Google Scholar
  41. Hairapetian, V., Roelofs, B.P.A., Trinajstic, K.M., & Turner, S. (2015). Famennian survivor turiniid thelodonts of North and East Gondwana. In Becker, R.T., Königshof, P., & Brett, C. (Eds.), Devonian Climate, Sea Level and Evolutionary Events. Geological Society of London, Special Publication 423. doi: 10.1144/SP423.3, 17 p.
  42. Hansen, M. C., & Mapes, R. H. (1990). A predator–prey relationship between sharks and cephalopods in the Late Palaeozoic. In A. J. Boucot (Ed.), Evolutionary Paleobiology of Behavior and Coevolution (pp. 189–192). Amsterdam: Elsevier.Google Scholar
  43. Haq, B. U., & Schutter, S. R. (2008). A chronology of Paleozoic sea-level changes. Science, 322(5898), 64–68.CrossRefGoogle Scholar
  44. Holland, S. M., & Sclafani, J. A. (2015). Phanerozoic diversity and neutral theory. Paleobiology, 41, 369–376.CrossRefGoogle Scholar
  45. Janvier, P. (1996). Early Vertebrates. Oxford: Oxford Science Publications and Clarendon Press, Oxford Monographs on Geology and Geophysics, 33. 393 p.Google Scholar
  46. Joachimski, M. M., Breisig, S., Buggisch, W., Talent, J. A., Mawson, R., Gereke, M., Morrow, J. R., Day, J., & Weddige, K. (2009). Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth and Planetary Science Letters, 284(3–4), 599–609.CrossRefGoogle Scholar
  47. Kleesment, A., & Mark-Kurik, E. (1997). Lower Devonian. In A. Raukas & A. Teedumäe (Eds.), Geology and Mineral Resources of Estonia (pp. 107–112). Tallinn: Estonian Academy Publishers.Google Scholar
  48. Klug, C., Kröger, B., Kiessling, W., Mullins, G.L., Servais, T., Frýda, J., Korn, D., & Turner, S. (2010). The Devonian nekton revolution. Lethaia, 43, 465–477. doi:10.111/j.1502-3931.2009.00206.x.Google Scholar
  49. Klug, C., Frey, L., Korn, D., Jattiot, R., & Rücklin, M. (2016). The oldest Gondwanan cephalopod mandibles (Hangenberg Black Shale, Late Devonian) and the Mid-Palaeozoic rise of jaws. Palaeontology, Early View Article, 19 p. doi:10.111/pala.12248.Google Scholar
  50. Lamsdell, J. C., & Braddy, S. J. (2010). Cope’s Rule and Romer’s theory: patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates. Biology Letters, 2010(6), 265–269. doi: 10.1098/rsbl.2009.0700.CrossRefGoogle Scholar
  51. Le Hérissé, A., Mullins, G. L., Dorning, K. J., & Wicander, R. (2009). Global patterns of organic-walled phytoplankton biodiversity during the Late Silurian to earliest Devonian. Palynology, 33, 25–75.Google Scholar
  52. Le Hir, G., Donnadieu, Y., Godderis, Y., Meyer-Berthaud, B., Ramstein, G., & Blakey, R. C. (2011). The climate change caused by the land plant invasion in the Devonian. Earth and Planetary Science Letters, 310, 203–212.CrossRefGoogle Scholar
  53. Lebedev, O.A., Mark-Kurik, E., Karatajūtė-Talimaa, V., Lukševičs, E., & Ivanov, A. (2009). Bite marks as evidence of predation in early vertebrates. In Ahlberg, P.E., Blom, H., & Boisvert, C.A. (Eds.), Forty Years of Early Vertebrates (11th International Symposium on Early and Lower Vertebrates, Uppsala, 2007). Acta Zoologica, Special Issue, Supplement to vol. 90, 344–356.Google Scholar
  54. Long, J. A. (1990). Fishes. In K. J. McNamara (Ed.), Evolutionary Trends (pp. 255–278). London: Belhaven Press.Google Scholar
  55. Long, J. A., Large, R. R., Lee, M. S. Y., Benton, M. J., Danyushevsky, L. V., Chiappe, L. M., Halpin, J. A., Cantrill, D., & Lottermoser, B. (2016). Severe selenium depletion in the Phanerozoic oceans as a factor in three global mass extinction events. Gondwana Research. doi: 10.1016/ 10 p.Google Scholar
  56. Mallatt, J. (1984). Feeding ecology of the earliest vertebrates. Zoological Journal of the Linnean Society, 82(3), 261–272. doi: 10.1111/j.1096-3642.1984.tb00643.x.CrossRefGoogle Scholar
  57. Mark-Kurik, J. E. (1966). On some alterations of the exoskeleton of psammosteids (Agnatha). In Organism and its environment in the geological past. Moskva: Nauka, 55–60. [In Russian.]Google Scholar
  58. Mark-Kurik, E., & Põldvere, A. (2012). Devonian stratigraphy in Estonia: current state and problems. Estonian Journal of Earth Sciences, 61(1), 33–47. also World Wide Web address: Scholar
  59. Martin, R. E. (1996). Secular Increase in Nutrient Levels through the Phanerozoic: Implications for Productivity, Biomass, and Diversity of the Marine Biosphere. Palaios, 11(3), 209–219.CrossRefGoogle Scholar
  60. May, A. (1996). Relationships among sea-level fluctuation, biogeography and bioevents of the Devonian: an attempt to approach a powerful, but simple model for complex long-range control of biotic crises. Geolines, 3(1995), 38–49.Google Scholar
  61. Miles, R. S. (1973). Articulated acanthodian fishes from the Old Red Sandstone of England, with a review of the structure and evolution of the acanthodian shoulder-girdle. Bulletin of the British Museum (Natural History). Geology, 24(2), 113–213.Google Scholar
  62. Nardin, E., Godderis, Y., Donnadieu, Y., Le Hir, G., Blakey, R. C., Puceat, E., & Aretz, M. (2011). Modeling the early Paleozoic long-term climatic trend. Geological Society of America Bulletin, 123(5–6), 1181–1192.CrossRefGoogle Scholar
  63. Nestor, V. (2009). Chitinozoan diversity in the East Baltic Silurian. Estonian Journal of Earth Sciences, 58(4), 311–316.CrossRefGoogle Scholar
  64. Nikiforova, O. I. (1977). Podolia. In A. Martinsson (Ed.), The Silurian-Devonian Boundary. International Union of Geological Sciences Series A, 5 (pp. 52–64). Stuttgart: E. Schweizerbart Verlag.Google Scholar
  65. Novitskaya, L.I. (2004). Podklass Heterostraci [Subclass Heterostraci]. In L.I. Novitskaya,  & O.B. Afanassieva (Eds.), Iskopaemye pozvonotchnye Rossii i sopredel’nykh stran [Fossil vertebrates of Russia and adjacent countries]: Bestchelyustnye i drevnie ryby [Agnathans and early fishes]. Rossijskaya Akademiya Nauk [Academy of Sciences of Russia], Paleontologitcheskij Institut [Palaeontological Institute]. Moskva: Geos, 69–207. [In Russian].Google Scholar
  66. Novitskaya, L.I. (2007). Evolution of generic and species diversity in agnathans (Heterostraci: Orders Cyathaspidiformes, Pteraspidiformes). Paleontological Journal, 41 (3), 268–280. [Original Russian paper: Paleontologicheskii Zhurnal, 2007 (3), 33–46].Google Scholar
  67. Novitskaya, L.I. (2008). Evolution of taxonomic diversity in amphiaspids (Agnatha, Heterostraci: Amphiaspidiformes) and the causes of extinction in ecologically favorable conditions. Paleontological Journal, 42 (2), 181–191. [Original Russian paper: Paleontologicheskii Zhurnal, 2008 (2), 75–85].Google Scholar
  68. Paris, F., & Nõlvak, J. (1999). Biological interpretation and palaeobiodiversity of a cryptic fossil group : the “chitinozoan animal”. Geobios, 32(2), 315–324.CrossRefGoogle Scholar
  69. Paris, F., Achab, A., Asselin, E., Chen, X.-H., Grahn, I., Nolvak, J., Obut, O., Samuelsson, J., Sennikov, N., Vecoli, M., Verniers, J., Wang, X.-F., & Winchester-Seeto, T. (2004). Chitinozoans. In B. D. Webby, F. Paris, M. L. Droser, & I. G. Percival (Eds.), The Great Ordovician Biodiversification Event (pp. 294–311). NewYork: Columbia University Press, Critical Moments and Perspectives in Earth History and Paleobiology.Google Scholar
  70. Paškevičius, J. (1997). The geology of the Baltic Republics. Vilnius: Vilnius University and Geological Survey of Lithuania. 387 p.Google Scholar
  71. Payne, J. L., Boyer, A. G., Brown, J. H., Finnegan, S., Kowalewski, M., Krause, R. A., Jr., Lyons, S. K., McClain, C. R., McShea, D. W., Novack-Gottshall, P. M., Smith, F. A., Stempien, J. A., & Wang, S. C. (2009). Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 24–27.CrossRefGoogle Scholar
  72. Pernègre, V. N. (2005). Description d’une nouvelle espèce et analyse morpho-fonctionnelle du genre Doryaspis White (Heterostraci) du Dévonien du Spitsberg). Geobios, 38(2), 257–268.CrossRefGoogle Scholar
  73. Pernègre, V., & Blieck, A. (2016). A revised heterostracan-based ichthyostratigraphy of the Wood Bay Formation (Lower Devonian, Spitsbergen), and correlation with Russian Arctic archipelagos. Geodiversitas, 38(1), 5–20. doi: 10.5252/g2016n1a1.CrossRefGoogle Scholar
  74. Pernègre, V. N., & Elliott, D. K. (2008). Phylogeny of the Pteraspidiformes (Heterostraci), Silurian-Devonian jawless vertebrates. Zoologica Scripta, 37(4), 391–403.CrossRefGoogle Scholar
  75. Phillips, J. (1860). Life on the Earth: Its Origin and Succession. Cambridge and London: MacMillan and Co. (Reprint edition, 1980. New York: Arno Press). (after Scott, 2015).CrossRefGoogle Scholar
  76. Plotnick, R.E. (1999). Habitat of Llandoverian-Lochkovian eurypterids. In Boucot, A.J., & Lawson, J.D. (Eds.), Paleocommunities: a case study from the Silurian and Lower Devonian. Cambridge: Cambridge University Press, World and Regional Geology Series, 11, 106–131.Google Scholar
  77. Purnell, M. A. (1995). Microwear on conodont elements and macrophagy in the first vertebrates. Nature, 374(6525), 798–800.CrossRefGoogle Scholar
  78. Purnell, M.A. (2001). Scenarios, selection and the ecology of early vertebrates. In Ahlberg, P.E. ed., Major Events in Early Vertebrate Evolution – Palaeontology, phylogeny, genetics and development. Systematics Association Special Volume Series, 61, 187–208.Google Scholar
  79. Purnell, M. A. (2002). Feeding in extinct jawless heterostracan fishes and testing scenarios of early vertebrate evolution. Proceedings of the Royal Society of London, B, 269(1486), 83–88.CrossRefGoogle Scholar
  80. Rasmussen, C. M. Ø., Ullmann, C. V., Jakobsen, K. G., Lindskog, A., Hansen, J., Hansen, T., Eriksson, M. E., Dronov, A., Frei, R., Korte, C., Nielsen, A. T., & Harper, D. A. T. (2016). Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Scientific Reports, 6, 18884. doi: 10.1038/srep18884. 9 p.CrossRefGoogle Scholar
  81. Rohde, R. A., & Muller, R. A. (2005). Cycles in fossil diversity. Nature, 434(7030), 208–210.CrossRefGoogle Scholar
  82. Romer, A. S. (1933) Eurypterid influence on vertebrate history. Science, 78,(2015), 114–117Google Scholar
  83. Sansom, R. S., Randle, E., & Donoghue, P. C. J. (2015). Discriminating signal from noise in the fossil record of early vertebrates reveals cryptic evolutionary history. Proceedings of the Royal Society B, 282, 20142245. doi: 10.1098/rspb.2014.2245. 8 p.CrossRefGoogle Scholar
  84. Sallan, L., & Carlton, T. (2015). The rise of fishes after the fall of the Ordovician world. In K. Trinajstic, Z. Johanson, M. Richter, & C. Boisvert (Eds.), 13th International Symposium on Early and Lower Vertebrates. Melbourne: Royal Society of Victoria. August 3–7, 2015. Abstract Volume: 28.Google Scholar
  85. Schobben, M., Stebbins, A., Ghaderi, A., Strauss, H., Korn, D., & Korte, C. (2016). Eutrophication, microbial-sulfate reduction and mass extinctions. Communicative & Integrative Biology. doi: 10.1080/19420889.2015.1115162.Google Scholar
  86. Scotese, C.R. (2002). PALEOMAP Project: Plate tectonic maps and continental drift animations. World Wide Web address:; Arlington, Texas [dated 1998–2002; updated 2003].
  87. Scott, M. (2015). John Phillips. Strange Science; World Wide Web address: [viewed on April 28, 2016].
  88. Sepkoski, J. J., Jr. (1981). A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7(1), 36–53.CrossRefGoogle Scholar
  89. Sepkoski, Jr., J.J. (2002). A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363. 560 p.Google Scholar
  90. Slavik, L., Hladil, J., Chadimova, L., Valenzuela-Ríos, J.I., Huškova, A., & Liao, J.-C. (2015). Cooling or warming in the Pragian ? The sedimentary records and petrophysical logs from the key peri-Gondwanan sections. In B. Mottequin, J. Denayer., P. Königshof, C. Prestianni, & S. Olive (Eds.), IGCP 596 – SDS Symposium: Climate change and biodiversity patterns in the Mid-Palaeozoic (Brussels, Sept. 20–22, 2015). Strata, Série 1: communications, vol. 16, 130–131.Google Scholar
  91. Smith, A. B., & McGowan, A. J. (2008). Temporal patterns of barren intervals in the Phanerozoic. Paleobiology, 34(1), 155–161.CrossRefGoogle Scholar
  92. Smith, A. B., Lloyd, G. T., & McGowan, A. J. (2012). Phanerozoic marine diversity: rock record modelling provides an independent test of large-scale trends. Proceedings of the Royal Society B, 279, 4489–4495. doi: 10.1098/rspb.2012.1793.CrossRefGoogle Scholar
  93. Thomson, K. S. (1977). The pattern of diversification among fishes. In A. Hallam (Ed.), Patterns of evolution as illustrated by the fossil record (pp. 377–404). Amsterdam: Elsevier.CrossRefGoogle Scholar
  94. Turner, S., Blieck, A., & Nowlan, G.S. (2004). Vertebrates (Agnathans and Gnathostomes). In Webby, B.D., Paris, F., Droser, M.L., & Percival, I.G. (Eds.), The Great Ordovician Biodiversification Event (IGCP 410 volume). New York: Columbia University Press, "Critical moments and perspectives in Earth history and paleobiology", chapter 30, 327–335.Google Scholar
  95. Turner, S., Burrow, C. J., Schultze, H.-P., Blieck, A., Reif, W.-E., Rexroad, C. B., Bultynck, P., & Nowlan, G. S. (2010). False teeth: conodont-vertebrate phylogenetic relationships revisited. Geodiversitas, 32(4), 545–594. also World Wide Web address: Scholar
  96. Vandenbroucke, T.R.A., Emsbo, P., Munnecke, A., Nuns, N., Duponchel, L., Lepot, K., Quijada, M., Paris, F., Servais, T., & Kiessling, W. (2015). Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction. Nature Communications, 6 (7966), 7 p. + Supplementary Information; doi: 10.1038/ncomms8966.
  97. Voichyshyn, V. (2011). The Early Devonian armoured agnathans of Podolia, Ukraine. Palaeontologia Polonica, 66, 211 p.; also World Wide Web address:

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Université de Lille–Sciences et TechnologiesVilleneuve d’Ascq cedexFrance

Personalised recommendations