Palaeobiodiversity and Palaeoenvironments

, Volume 97, Issue 2, pp 259–271 | Cite as

Palynofacies as a tool for high-resolution palaeoenvironmental and palaeoclimatic reconstruction of Gondwanan post-glacial coal deposits: No. 2 Coal Seam, Witbank Coalfield (South Africa)

Original Paper

Abstract

The early Permian movement of Gondwana away from the South Pole caused a major climatic change across the continent. The shift from a post-glacial Carboniferous flora to a temperate Permian flora is represented in the palynological record. Using palynofacies analysis, this climate transition can be studied at a high resolution, and the palaeoenvironment can be interpreted on a local scale. Core samples were studied from four localities of the Artinskian/Kungurian-aged No. 2 Coal Seam of the Witbank Coalfield. At some localities, the No. 2 Coal Seam is split into an Upper Coal Seam and a Lower Coal Seam by an intraseam parting, and samples were collected from both horizons as well as the parting. All samples were studied with respect to palynomorph composition and phytoclast content. The results suggest a swamp-dominated environment in the Lower Coal Seam, a river-dominated environment in the parting, and an environment which fluctuated locally from a lake-dominated to swamp-dominated in the Upper Coal Seam due to increased input of glacial meltwater from the hinterlands. The vegetation switched from a fern- and conifer-dominated flora in the Lower Coal Seam to a more diverse Glossopteris-Gangamopteris flora in the Upper Coal Seam. Cordaites appears to be limited to valleys on the northern edge of the swamplands in the Lower Coal Seam. A decrease in monosaccate pollen grains and an increase in bisaccate pollen grains are apparent in all sample sets and interpreted to indicate a transition from a cold to a fluctuating cool-temperate climate. This climate signal is well documented in palynofacies of the coal seam and thus a powerful correlation tool for high-resolution basin-wide and Gondwanan correlation.

Keywords

Palynofacies Palaeoenvironment Palaeoclimate Permian Witbank Coalfield South Africa 

Notes

Acknowledgements

This study was partly funded by the DST-NRF Centre of Excellence for Integrated Mineral and Energy Resource Analysis (CIMERA). Additional funding was provided by the National Research Foundation of South Africa (NRF), grant no. 94589. BHP Billiton kindly provided access to the core samples. The comments of Paulo Fernandes (Universidade do Algarve) and an anonymous reviewer are gratefully acknowledged.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. Anderson, J. M. (1977). The biostratigraphy of the Permian and Triassic. Part 3. A review of Gondwana palynology with particular reference to the northern Karoo Basin, South Africa. Memoirs of the Botanical Survey of South Africa, 4, 1–33.Google Scholar
  2. Backhouse, J. (1991). Permian palynostratigraphy of the Collie Basin, Western Australia. Review of Palaeobotany and Palynology, 67, 237–314.CrossRefGoogle Scholar
  3. Balme, B. E. (1980). Palynology and the Carboniferous‐Permian boundary in Australia and other Gondwana continents. Palynology, 4, 43–55.CrossRefGoogle Scholar
  4. Balme, B. E. (1995). Fossil in situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology, 87, 81–322.CrossRefGoogle Scholar
  5. Cadle, A. B., Cairncross, B., Christie, A. D. M., & Roberts, D. L. (1993). The Karoo Basin of South Africa: type basin for the coal-bearing deposits of southern Africa. International Journal of Coal Geology, 23(1), 117–157.CrossRefGoogle Scholar
  6. Cairncross, B. (1989). Paleodepositional environments and tectonosedimentary controls of the postglacial Permian coals, Karoo Basin, South Africa. International Journal of Coal Geology, 12(1), 365–380.CrossRefGoogle Scholar
  7. Cairncross, B., & Cadle, A. B. (1988). Palaeoenvironmental control on coal formation, distribution and quality in the Permian Vryheid Formation, East Witbank Coalfield, South Africa. International Journal of Coal Geology, 9, 343–370.CrossRefGoogle Scholar
  8. Caputo, M. V., & Crowell, J. C. (1985). Migration of glacial centers across Gondwana during Paleozoic Era. GSA Bulletin, 96, 1020–1036.CrossRefGoogle Scholar
  9. Catuneanu, O., Hancox, P. J., & Rubidge, B. S. (1998). Reciprocal flexural behaviour and contrasting stratigraphies: a new basin development model for the Karoo retroarc foreland system, South Africa. Basin Research, 10, 417–439.CrossRefGoogle Scholar
  10. Catuneanu, O., Wopfner, H., Eriksson, P. G., Cairncross, B., Rubidge, B. S., Smith, R. M. H., & Hancox, P. J. (2005). The Karoo basins of south-central Africa. Journal of African Earth Sciences, 43, 211–253.CrossRefGoogle Scholar
  11. Cazzulo-Klepzig, M., Mendonça Filho, J. G., Guerra-Sommer, M., Menezes, T. R., Simas, M. W., Mendonca, J. O., & Degani-Schmidt, I. (2009). Effect of volcanic ash-fall on a Permian peat-forming environment, on the basis of palynology, palynofacies and paleobotany (Faxinal Coalfield, Brazil). Revista Brasileira de Paleontologia, 12(3), 179–194.CrossRefGoogle Scholar
  12. Degani-Schmidt, I., Guerra-Sommer, M., Mendonça, J. O., Mendonça Filho, J. G., Jasper, A., Cazzulo-Klepzig, M., & Iannuzzi, R. (2015). Charcoalified logs as evidence of hypautochthonous/autochthonous wildfire events in a peat-forming environment from the Permian of southern Paraná Basin (Brazil). International Journal of Coal Geology, 146, 55–67.CrossRefGoogle Scholar
  13. Diessel, C. F. K. (1992). Coal-bearing depositional systems. Berlin: Springer.CrossRefGoogle Scholar
  14. Falcon, R. M. S. (1986). A brief review of the origin, formation and distribution of coal in Southern Africa. In C. R. Anhaeusser & S. Maske (Eds.), Mineral deposits of Southern Africa (pp. 1879–1898). Pretoria: Geological Society of South Africa.Google Scholar
  15. Falcon, R. M. S. (1989). Macro and micro-factors affecting coal-seam quality and distribution in southern Africa with particular reference to the No. 2 seam, Witbank Coalfield, South Africa. International Journal of Coal Geology, 12, 681–731.CrossRefGoogle Scholar
  16. Falcon, R. M. S., Pinheiro, H., & Sheperd, P. (1984). The palynobiostratigraphy of the major coal seams in the Witbank Basin with lithostratigraphic, chronostratigraphic and palaeoclimatic implications. Comunicações dos Serviços Geológicos de Portugal, 70, 215–243.Google Scholar
  17. Gastaldo, R.A. (1994). The genesis and sedimentation of phytoclasts with examples from coastal environments. In A. Traverse (Ed.), Sedimentation of organic particles (pp. 103–127). Cambridge University Press.Google Scholar
  18. Goldberg, K. (2004). Floral diversity in the assessment of paleoclimate in the Paraná Basin, southern Brasil. Journal of Geology, 112, 719–727.CrossRefGoogle Scholar
  19. Götz, A. E., & Ruckwied, K. (2014). Palynological records of the Early Permian postglacial climate amelioration (Karoo Basin, South Africa). Palaeobiodiversity and Palaeoenvironments, 94(2), 229–235.CrossRefGoogle Scholar
  20. Götz, A.E., Ruckwied, K., Littke, R., & Hartkopf-Fröder, C. (2012). Facies, sedimentary organic matter content and coal petrography of the No. 2 coal seam, northern Witbank Basin (South Africa). Proceedings of the 34th International Geological Congress, Abstract 3383 (CD-ROM, ISBN 978-0-646-57800-2).Google Scholar
  21. Hancox, J. P., & Götz, A. E. (2014). South Africa’s coalfields – a 2014 perspective. International Journal of Coal Geology, 132, 170–254.CrossRefGoogle Scholar
  22. Hart, G.F. (1967). Micropalaeontology of the Karroo deposits in South and Central Africa. In I.U.G.S. Secretariat (Ed.), Reviews of the first symposium on Gondwana stratigraphy (pp. 161–172). Haarlem.Google Scholar
  23. Iannuzzi, R., Souza, P.A., & Holz, M. (2007). Lower Permian post-glacial succession in the southernmost Brazilian Paraná Basin: stratigraphy and floral (macro and micro) record. In E. Díaz-Martinez & I. Rábano (Ed.) 4th European Meeting on the Palaeontology and Stratigraphy of Latin America. Cuadernos del Museo Geominero, 8, 207–212.Google Scholar
  24. Iannuzzi, R., Souza, P. A., & Holz, M. (2010). Stratigraphic and paleofloristic record of the Lower Permian postglacial succession in the southern Brazilian Paraná Basin. GSA Special Paper, 468, 113–132.CrossRefGoogle Scholar
  25. Isbell, J. L., Cole, D. I., & Catuneanu, O. (2008). Carboniferous-Permian glaciation in the main Karoo Basin, South Africa: stratigraphy, depositional controls, and glacial dynamics. GSA Special Paper, 441, 71–82.Google Scholar
  26. Jasper, A., Uhl, D., Guerra-Sommer, M., Bernardes-de-Oliviera, M. E. C., & Machado, N. T. G. (2011). Upper Paleozoic charcoal remains from South America: multiple evidences of fire events in the coal bearing strata of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 306, 205–218.Google Scholar
  27. Jasper, A., Uhl, D., Agnihotri, D., Tewari, R., Pandita, S. K., Wanderley Benicio, J. R., Fabbrin Pires, E., Stock Da Rosa, Á. A., Bhat, G. D., & Pillai, S. S. K. (2016). Evidence of wildfires in the Late Permian (Changsinghian) Zewan Formation of Kashmir, India. Current Science, 110(3), 419–423.CrossRefGoogle Scholar
  28. Johnson, M. R., Van Vuuren, C. J., Visser, J. N. J., Cole, D. I., Wickens, H. V., Christie, A. D. M., & Roberts, D. L. (1997). The foreland Karoo Basin, South Africa. In R. C. Selley (Ed.), Sedimentary Basins of Africa (pp. 269–317). Amsterdam: Elsevier.CrossRefGoogle Scholar
  29. Kauffmann, M., Jasper, A., Uhl, D., Meneghini, J., Osterkamp, I. C., Zvirtes, G., & Fabbrin Pires, E. (2016). Evidence for palaeo-wildfire in the Late Permian palaeotropics – Charcoal from the Motuca Formation in the Parnaíba Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 450, 122–128.Google Scholar
  30. Lindström, S. (1995). Early Permian palynostratigraphy of the northern Heimefrontfjella mountain range, Dronning Maud Land, Antarctica. Review of Palaeobotany and Palynology, 89, 359–415.CrossRefGoogle Scholar
  31. López-Gamundí, O.R. (1997). Glacial-postglacial transition in the late Paleozoic basins of southern South America. In I.P. Martini (Ed.), Late Glacial and Postglacial Environmental Changes (pp. 147–168). Oxford University Press.Google Scholar
  32. MacRae, C. S., & Aitken, G. A. (1997). Contributions in the field of palaeopalynology at the Bernard Price Institute, past, present and future. Palaeontologica Africana, 33, 37–40.Google Scholar
  33. Manfroi, J., Uhl, D., Guerra-Sommer, M., Francischini, H., Guillermo Martinelli, A., Bento Soares, M., & Jasper, A. (2015). Extending the database of Permian palaeo-wildfire on Gondwana: charcoal remains from the Rio do Rasto Formation (Paraná Basin), Middle Permian, Rio Grande do Sul State, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 436, 77–84.Google Scholar
  34. Ruckwied, K., Götz, A. E., & Jones, P. (2014). Palynological records of the Permian Ecca Group (South Africa): utilizing climatic icehouse–greenhouse signals for cross basin correlations. Palaeogeography, Palaeoclimatology, Palaeoecology, 413, 167–172.Google Scholar
  35. Ryan, P.J. (1968). Stratigraphy of the Ecca Series and Lowermost Beds (Permian) in the Great Karoo Basin of South Africa. PhD Thesis, University of the Witwatersrand, Johannesburg, pp. 1–285.Google Scholar
  36. Seward, A. C., & Leslie, T. N. (1908). Permo-Carboniferous Plants from Vereeniging, Transvaal. Quarterly Journal of the Geological Society, 64(1–4), 109–126.CrossRefGoogle Scholar
  37. Snyman, C.P. (1998) Coal. In M.G.C. Wilson & C.R. Anhaeusser (Ed.), The Mineral Resources of South Africa. Council for Geoscience Handbook 16, 136–205.Google Scholar
  38. Stephenson, M. H. (2008). A review of the palynostratigraphy of Gondwanan Late Carboniferous to Early Permian glacigene successions. GSA Special Paper, 441, 317–330.Google Scholar
  39. Stephenson, M. H., & McLean, D. (1999). International correlation of Early Permian palynofloras from the Karoo sediments of Morupule, Botswana. South African Journal of Geology, 102, 3–14.Google Scholar
  40. Stephenson, M. H., Leng, M. J., Vane, C. H., Osterloff, P. L., & Arrowsmith, C. (2005). Investigating the record of Permian climate change from argillaceous sediments, Oman. Journal of the Geological Society London, 162, 641–651.CrossRefGoogle Scholar
  41. Stephenson, M.H., Angiolini, L., & Leng, M.J. (2007). The Early Permian fossil record of Gondwana and its relationship to deglaciation: A review. In M. Williams, A.M. Haywood, F.J. Gregory & D.N. Schmidt (Eds.), Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies. TMS Special Publications, 169–189.Google Scholar
  42. Traverse, A. (2007). Paleopalynology (2nd ed.). Berlin: Springer.Google Scholar
  43. Tyson, R. V. (1995). Sedimentary organic matter: organic facies and palynofacies. London: Chapman & Hall.Google Scholar
  44. Vidal, G. (1988). A palynological preparation method. Palynology, 12, 215–220.CrossRefGoogle Scholar
  45. Visser, J. N. J. (1986). Lateral lithofacies relationships in the glacigene Dwyka Formation in the western and central parts of the Karoo Basin. Transactions of the Geological Society of South Africa, 89, 373–383.Google Scholar
  46. Wheeler, A., & Götz, A. E. (2016). Palynofacies patterns of the Highveld coal deposits (Karoo Basin, South Africa): clues to reconstruction of palaeoenvironment and palaeoclimate. Acta Palaeobotanica, 56, 3–15.CrossRefGoogle Scholar
  47. Wopfner, H. (1999). The Early Permian deglaciation event between East Africa and northwestern Australia. Journal of African Earth Sciences, 29, 77–90.CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Earth SciencesThe University of QueenslandSt. LuciaAustralia
  2. 2.School of Physical and Geographical SciencesKeele UniversityKeeleUK
  3. 3.Kazan Federal UniversityKazanRussian Federation

Personalised recommendations