Advertisement

Palaeobiodiversity and Palaeoenvironments

, Volume 96, Issue 4, pp 559–587 | Cite as

The new rare record of the late Oligocene lizards and amphisbaenians from Germany and its impact on our knowledge of the European terminal Palaeogene

  • Andrej Čerňanský
  • Jozef Klembara
  • Johannes Műller
Original Paper

Abstract

There have been only a few studies on squamates from the late Oligocene of Europe, resulting in significant gaps in our knowledge of the reptile faunas from the latest Paleogene. Here, we report on new late Oligocene fossil material from two German localities, Herrlingen 11 (MP 28) and Herrlingen 9 (MP 29). The material can be assigned to the following major clades: Iguanidae, Gekkota, Lacertidae, Amphisbaenia, and Anguimorpha. The iguanid material shows that this clade was much more widely distributed in the Oligocene of Europe than previously thought, and also represents the youngest known record of this clade for Eurasia and Africa, with the exception of Madagascar. Although very fragmentary, the gekkotan material appears to be more similar to early Miocene forms such as Euleptes or Gerandogekko, rather than to early Oligocene taxa like Cadurcogekko, as indicated by the small size and morphology. The resemblance of the gekkotan fossils to Miocene forms suggests potential faunal turnover prior to the Paleogene–Neogene transition. The amphisbaenian material is represented by several types; the first can be allocated to Blanidae based on tooth count and the presence of a small 4th and an enlarged 3rd tooth, which is a derived feature. The second type is attributed to Palaeoblanus. Other cranial material is assigned to Amphisbaenia indet. The lacertid material consists of several amblyodont forms such as Dracaenosaurus, Pseudeumeces and Mediolacerta, as typically seen in other Oligocene deposits from Europe, but also includes non-ambylodont taxa such as Plesiolacerta and an undetermined lacertid. Especially common among the material are anguimorphs, which are here represented by Ophisaurus and a form that appears identical to the French Oligocene taxon described as Dopasia coderetensis. Reinvestigation of the European Oligocene "Dopasia" (=Ophisaurus) shows that the taxa described as D. frayssensis and D. coderetensis are markedly different from the members of the clade Ophisaurus in the morphology of the posterior dentary region and that those taxa cannot be allocated to this genus. For this reason, we erected a new generic name: Ophisauromimus gen. nov. The composition of the Herrlingen fauna shows an interesting mix of ancient Paleogene and more modern Neogene faunal elements, while overall bearing many similarities to contemporaneous faunas from France.

Keywords

Palaeogene Squamata Diversity Anatomy Europe 

Abbreviations

NMB

Natural History Museum, Basel, Switzerland

SMNS

Staatliches Museum für Naturkunde, Stuttgart, Germany

Notes

Acknowledgements

For the access to this material, we are greatly indebted to Dieter Seegis, Ronald Boettcher, and Rainer Schoch (Stuttgart Museum). We also appreciate the help of Marc Augé (Muséum National d’Histoire Naturelle) and Annelise Folie (Institut Royal Sciences Naturelles de Belgique) for providing accesss to additional relevant material for comparison, and we would like to thank Krister Smith (Senckenberg Institute in Frankfurt) and Juan D. Daza (Sam Houston State University, USA) for helpful advice. Kristin Mahlow (Museum für Naturkunde Berlin) was instrumental in the generation of the CT images. The SEM pictures were taken by N. Halašiová (Slovak Academy of Sciences). For critically reading the manuscript, we thank Jean-Claude Rage (Muséum National d’Histoire Naturelle) and Krister Smith (Senckenberg Research Institute and Natural History Museum Frankfurt). Funding was provided by the Alexander von Humboldt Foundation in Germany, the Slovak Research and Development Agency, Grant Nr. APVV-15-0080 and by the Deutsche Forschungsgemeinschaft (MU 1760/7-1).

References

  1. Augé, M. (1986). Les Lacertiliens (Reptilia, Squamata) de l’Eocène supèrieur et de l’ Oligocène ouest europèen. PhD thesis. Paris: Université Pierre et Marie Curie.Google Scholar
  2. Augé, M. (1992). Une espèce nouvelle d’Ophisaurus (Lacertilia, Anguidae) de l’Oligocène des phosphorites du Quercy. Révision de la sous-famille des Anguinae. Paläontologische Zeitschrift, 66, 159–175.CrossRefGoogle Scholar
  3. Augé, M. (2005). Evolution des lézards du Paléogène en Europe. Mémoires du Muséum national d’Histoire naturelle, 192, 5–369.Google Scholar
  4. Augé, M. (2012). Amphisbaenians from the European Eocene: a biogeographical review. In T. Lehmann & S.F.K. Schaal (Eds) Messel and the terrestrial Eocene - Proceedings of the 22nd Senckenberg Conference. Palaeobiodiversity and Palaeoenvironments, 92, 425–443.Google Scholar
  5. Augé, M., & Hervet, S. (2009). Fossil lizards from the locality of Gannat (late Oligocene-early Miocene, France) and a revision of the genus Pseudeumeces (Squamata, Lacertidae). Palaeobiodiverity and Palaeoenvironments, 89, 191–201.CrossRefGoogle Scholar
  6. Augé, M., & Pouit, D. (2012). Presence of iguanid lizards in the European Oligocene Lazarus taxa and fossil abundance. Bulletin de la Societe Geologique de France, 183, 653–660.Google Scholar
  7. Augé, M., & Smith, R. (2009). An assemblage of early Oligocene lizards (Squamata) from the locality of Boutersem (Belgium), with comments on the Eocene-Oligocene transition. Zoological Journal of the Linnean Society, 155, 148–170.CrossRefGoogle Scholar
  8. Bailon, S. (1991). Amphibiens et Reptiles du Pliocène et du Quaternaire de France et d’Espagne: mise en place et évolution des faunes. PhD thesis. France: Université Paris.Google Scholar
  9. Bailon, S., & Augé, M. (2012). Un nouveau genre, Ragesaurus (Squamata, Anguidae, Anguinae), du Pléistocène inférieur des îles Medas (Catalogne, Espagne). Bulletin de la Societe Geologique de France, 183, 683–688.CrossRefGoogle Scholar
  10. Bell, T. (1825). On a new genus of Iguanidae. The Zoological Journal, 2, 204–207.Google Scholar
  11. Böhme, M. (2008). Ectothermic vertebrates (Teleostei, Allocaudata, Urodela, Anura, Testudines, Choristodera, Crocodylia, Squamata) from the Upper Oligocene of Oberleichtersbach (Northern Bavaria, Germany). Courier Forschungsinstitut Senckenberg, 206, 161–183.Google Scholar
  12. Böhme, M. & Ilg, A. (2003). FosFARbase. www.wahrestaerke. com (accessed on January 2014).Google Scholar
  13. Bolet, A., Delfino, M., Fortuny, J., Almécija, S., Robles, J. M., & Alba, D. M. (2014). An Amphisbaenian skull from the European Miocene and the evolution of mediterranean worm lizards. Plos One, 9, e98082. doi: 10.1371/journal.pone.0098082.CrossRefGoogle Scholar
  14. Boulenger, G. A. (1899). On a collection of reptiles and batrachians made by Mr. J. D. La Touche in N.W. Fokien, China. Proceedings of the Zoological Society of London, 1899, 159–172.Google Scholar
  15. Camp, C. L. (1923). Classification of the lizards. Bulletin of the American Museum of Natural History, 48, 289–481.Google Scholar
  16. Čerňanský, A., & Augé, M. (2012). Additions to the lizard fauna (Squamata: Lacertilia) of the Upper Oligocene (MP28) of Herrlingen 8, Souther Germany. Neues Jahrbuch für Geologie und Paläontologie ( Abhandlungen), 264, 11–19.CrossRefGoogle Scholar
  17. Čerňanský, A., & Augé, M. (2013). New species of the genus Plesiolacerta (Squamata: Lacertidae) from the upper Oligocene (MP 28) of southern Germany and a revision of the type species Plesiolacerta lydekkeri. Palaeontology, 56, 79–94.CrossRefGoogle Scholar
  18. Čerňanský, A., Rage, J. C., & Klembara, J. (2015). The early Miocene squamates of Amöneburg (Germany): the first stages of modern squamates in Europe. Journal of Systematic Palaeontology, 13, 97–128.CrossRefGoogle Scholar
  19. Čerňanský, A., Augé, M. & Rage, J. C. (2015b). A complete mandible of a new Amphisbaenian reptile (Squamata, Amphisbaenia) from the late Middle Eocene (Bartonian, MP 16) of France. Journal of Vertebrate Paleontology, 35, DOI:10.1080/02724634.2014.902379Google Scholar
  20. Čerňanský, A., Klembara, J. & Smith, K. T. (2016) Fossil lizard from central Europe resolves the origin of large body size and herbivory in giant Canary Island lacertids. Zoological Journal of the Linnean Society. doi: 10.1111/zoj.12340
  21. Christian, K. A., Webb, J. K., & Schultz, T. J. (2003). Energetics of bluetongue lizards (Tiliqua scincoides) in a seasonal tropical environment. Oecologia, 136, 515–523.CrossRefGoogle Scholar
  22. Çiçek, K., Tok, C. V., Hayretdağ, S., & Ayaz, D. (2014). Data on the food composition of European glass lizard, Pseudopus apodus (Pallas, 1775) (Squamata: Anguidae) from Çanakkale (Western Anatolia, Turkey). Acta Zoologica Bulgarica, 66, 433–436.Google Scholar
  23. Cope, E. D. (1864). On the characters of the higher groups of Reptilia Squamata: and especially of the Diploglossa. Proceedings of the Academy of Natural Sciences of Philadelphia, 16, 224–231.Google Scholar
  24. Daudin, F. M. (1803). Histoire Naturelle Generale et Particuliere des Reptiles (Vol. 6). Paris: F. Dufart.Google Scholar
  25. Daza, J. D., Abdala, V., Thomas, R., Aaron, M., & Bauer, A. M. (2008). Skull anatomy of the Miniaturized Gecko Sphaerodactylus roosevelti (Squamata: Gekkota). Journal of Morphology, 269, 1340–1364.Google Scholar
  26. Daza, J. D., Bauer, A. M., & Snively, E. D. (2014). On the fossil record of the Gekkota. The Anatomical Record, 297, 433–462.CrossRefGoogle Scholar
  27. Digimorph.org. (2002–2012). Digital morphology: a national science foundation digital library at the University of Texas at Austin [internet]. Austin, TX: The High Resolution X-ray Computed Tomography Facility at the University of Texas at Austin. Available at: http://www.digimorph.org/.
  28. Estes, R. (1983). Sauria Terrestria, Amphisbaenia. In P. Wellnhofer (Ed.), Handbuch der Paläoherpetologie, Part 10A (pp. 1–245). Stuttgart: Gustav Fischer Verlag.Google Scholar
  29. Estes, R., de Queiroz, K. & Gauthier, J. A. (1988). Phylogenetic relationships of the lizard families. In R. Estes, G. K. Pregill (Eds), Stanford, California. Pp. 119–281. Stanford University Press.Google Scholar
  30. Etheridge, R. & de Queiroz, K. (1988). A phylogeny of Iguanidae. In R. Estes & G. Pregill (Eds.), Phylogenetic relationships of lizard families: essays commemorating C. L. Camp. Pp. 283–367. Stanford University Press.Google Scholar
  31. Filhol, H. (1877). Recherches sur les Phosphorites du Quercy Pt. II. Annales de Sciences géologiques, 8, 1–338.Google Scholar
  32. Folie, A., Smith, R., & Smith, T. (2013). New amphisbaenian lizards from the early Paleogene of Europe and their implications for the early evolution of modern amphisbaenians. Geologica Belgica, 16, 227–235.Google Scholar
  33. Fürbringer, M. (1900). Zur vergleichenden Anatomie des Brustschulterapparatus und der Schultermuskeln. Jenaische Zeitschrift für Naturwissenschaft, 34, 215–718.Google Scholar
  34. Gans, C. (1974). Biomechanics, an approach to vertebrate biology (p. 261). Philadelphia: J. B Lippincott.Google Scholar
  35. Gans, C., & Montero, R. (2008). An Atlas of Amphisbaenian Skull Anatomy. In C. Gans, A. S. Gaunt, & K. Adler (Eds.), Biology of the Reptilia Vol 21 Morphology I (pp. 621–738). Ithaca: Society for the Study of Amphibians and Reptiles.Google Scholar
  36. Gauthier, J. (1982). Fossil xenosaurid and anguid lizards from the early Eocene Wasatch Formation, southeast Wyoming, and a revision of the Anguioidea. Contribution to Geology, University of Wyoming, 21, 7–54.Google Scholar
  37. Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., & Behlke, A. D. B. (2012). Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of Peabody Museum of Natural History, 53, 3–308.CrossRefGoogle Scholar
  38. Gervais, P. (18481852). Zoologie et Paléontologie Françaises (animaux vertebras). (1st edition) Arthus Bertrand, Paris.Google Scholar
  39. Gray, J. E. (1825). A synopsis of the genera of reptiles and amphibia, with a description of some new species. Annals of Philosophy, London, 10, 193–217.Google Scholar
  40. Gray, J. E. (1844). Catalogue of Tortoises, Crocodilians, and Amphisbaenians in the Collection of the British Museum (p. 80). London: British Museum (Natural History).Google Scholar
  41. Gray, J. E. (1853). Descriptions of some undescribed species of reptiles collected by Dr. Joseph Hooker in the Khassia Mountains, East Bengal, and Sikkim Himalaya. Annals and Magazine of Natural History, 12, 386–392.CrossRefGoogle Scholar
  42. Haq, B., Hardenbol, J., & Vail, P. (1987). The chronology of fluctuating sea levels since the Triassic. Science, 235, 156–1166.CrossRefGoogle Scholar
  43. Hoffstetter, R. (1942). Sur les restes de Sauria du Nummulitique européen rapportés à la famille Iguanidae. Bulletin du Muséum National d’Histoire Naturelle, Paris, 14, 233–240.Google Scholar
  44. Hoffstetter, R. (1944). Sur les Scincidae fossiles. I. Formes européennes et nord-américaines. Bulletin du Muséum national d’histoire naturelle, Paris, 16, 547–553.Google Scholar
  45. Hoffstetter, P. (1946). Sur les Gekkonidae fossils. Bulletin du Muséum national d’histoire naturelle, Paris, 18, 195–203.Google Scholar
  46. Hoffstetter, P., & Gasc, J. P. (1969). Vertebrae and ribs of modern reptiles. In C. Gans (Ed.), Biology of the Reptilia, Vol. 1, Morphology A (pp. 201–210). New York: Academic Press.Google Scholar
  47. Jacobs, B. F., Kingston, J. D., & Jacobs, L. L. (1999). The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden, 86, 590–643.CrossRefGoogle Scholar
  48. Kearney, M. (2003). Systematics of the Amphisbaenia (Lepidosauria: Squamata) based on morphological evidence from recent and fossil forms. Herpetological Monographs, 17, 1–74.CrossRefGoogle Scholar
  49. Kiefer, M. C., & Sazima, I. (2002). Diet of juvenile Tupinambis merianae (Teiidae) in southeastern Brazil. Amphibia-Reptilia, 23, 105–108.Google Scholar
  50. Klembara, J. (2012). A new species of Pseudopus (Squamata, Anguidae) from the early Miocene of North-West Bohemia (Czech Republic). Journal of Vertebrate Paleontology, 32, 854–866.CrossRefGoogle Scholar
  51. Klembara, J. (2015). New finds of anguines (Squamata, Anguidae) from the Early Miocene of Northwest Bohemia (Czech Republic). Paläontologishe Zeitschrift, 89, 171–195.CrossRefGoogle Scholar
  52. Klembara, J., Hain, M., & Dobiašová, K. (2014). Comparative anatomy of the lower jaw and dentition of Pseudopus apodus and the interrelationships of species of subfamily Anguinae (Anguimorpha, Anguidae). The Anatomical Record, 297, 516–544.CrossRefGoogle Scholar
  53. Klembara, A., Klembara, J., & Smith, K. T. (2015). Fossil lizard from central Europe resolves the origin of large body size and herbivory in giant Canary Island lacertis. Zoological Journal of the Linnean Society. doi: 10.1111/zoj.12340.Google Scholar
  54. Kluge, A. G. (1995). Cladistic relationships of sphaerodactyl lizards. American Museum Novitates, 3139, 1–23.Google Scholar
  55. Kosma, R. (2004). The dentition of recent and fossil scincomorphan lizards (Lacertilia, Squamata)—Systematics, Functional Morphology, Palecology. PhD thesis, University of Hannover.Google Scholar
  56. Manegold, A. (2008). Passerine diversity in the late Oligocene of Germany: earliest evidence for the sympatric coexistence of Suboscines and Oscines. Ibis, 150, 377–387.CrossRefGoogle Scholar
  57. Mercolli, C., & Yanosky, A. A. (1994). The diet of adult Tupinambis teguixin (Sauria, Teiidae) in the eastern chaco of Argentina. Herpetological Journal, 4, 15–19.Google Scholar
  58. Meszoely, C. A. (1970). North american fossil Anguid lizards. Bulletin of the Museum of Comparative Zoology, Harvard University, 139, 87–149.Google Scholar
  59. Montero, R., & Gans, C. (1999). The head skeleton of Amphisbaena alba Linnaeus. Annals of the Carnegie Museum, 68, 15–79.Google Scholar
  60. Mörs, T. (1995). Die Sedimentationsgeschichte der Fossillagerstätte Rott und ihre Alterseinstufung anhand neuer Säugetierfunde (Oberoligozän, Rheinland). Courier Forschungsinstitut Senckenberg, 187, 1–129.Google Scholar
  61. Müller, J. (2001). A new fossil species of Euleptes from the early Miocene of Montaigu, France (Reptilia, Gekkonidae). Amphibia-Reptilia, 22, 341–348.CrossRefGoogle Scholar
  62. Müller, J. (2004). Cranial osteology of Dracaenosaurus croizeti, a lacertid lizard from the Oligocene of France (Reptilia, Squamata). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 232, 101–114.Google Scholar
  63. Müller, J., & Mödden, C. (2001). A fossil leaf-toed gecko from the Oppenheim/Nierstein Quarry (Lower Miocene, Germany). Journal of Herpetology, 35, 529–532.CrossRefGoogle Scholar
  64. Nydam, R. L., Eaton, J. G., & Sankey, J. (2007). New taxa of transversely-toothed lizards (Squamata: Scincomorpha) and new information on the evolutionary history of ''teiids''. Journal of Paleontology, 81, 538–549.CrossRefGoogle Scholar
  65. Oppel, M. (1811). Die Ordnung, Familien und Gattungen der Reptilien als Prodrom einer Naturgeschichte derselben (p. 86). München: Lindauer.CrossRefGoogle Scholar
  66. Pomel, A. (1846). Mémoire pour servir a la géologie paléontologique des terrains tertiaires du département de l'Allier. Société géologique de France, Bulletin, 3, 353–373.Google Scholar
  67. Pough, F. H., Andrews, R. M., Cadle, J. E., Crump, M. L., Savitzky, A. H., & Wells, K. D. (2004). Herpetology (3rd ed.). Upper Saddle River: Pearson.Google Scholar
  68. Pyron, R. A., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 93.CrossRefGoogle Scholar
  69. Rage, J. C. (2013). Mesozoic and Cenozoic squamates of Europe. In J.D. Gardner & R.L. Nydam (Eds), Mesozoic and Cenozoic lissamphibian and squamate assemblages of Laurasia. Palaeobiodiversity and Palaeoenvironments, 93, 517–534Google Scholar
  70. Rage, J. C., & Augé, M. (1993). Squamates from the Cenozoic of the western part of Europe. A review. Revue de Paléobiologie, 7, 199–216.Google Scholar
  71. Rage, J. C., & Augé, M. (2010). Squamate reptiles from the middle Eocene of Lissieu (France) A landmark in the middle Eocene of Europe. Geobios, 43, 253–268.CrossRefGoogle Scholar
  72. Rage, J. C., & Augé, M. (2015). Valbro: A new site of vertebrates from the early Oligocene (MP 22) of France (Quercy)III - Amphibians and squamates. Annales de Paleontologie, 101, 29–41.CrossRefGoogle Scholar
  73. Rage, J. C., & Szyndlar, Z. (2005). Latest Oligocene-Early Miocene in Europe: Dark Period for booid snakes. Comptes Rendus Palevol, 4, 428–435.CrossRefGoogle Scholar
  74. Rifai, L., Baker, M. B., Shafei, D. A., Disi, A., Mahasneh, A., & Amr, Z. (2005). Pseudopus apodus (Pallas, 1775) from Jordan, with notes on its ecology (Sqamata: Sauria: Anguidae). Herpetozoa, 18, 133–140.Google Scholar
  75. Roček, Z. (1984). Lizards (Reptilia, Sauria) from the lower Miocene locality Dolnice (Bohemia, Czecho-Slovakia). Rozpravy Ceskoslovenské Akademie Ved, Rada Matematickych a prírodních Ved, 94, 3–69.Google Scholar
  76. Schleich, H. H. (1988a). Paläoherpetologische Materialien und Faunenspektren aus dem Kalktertiär des Mainzer Beckens (Oberoligozän – Untermiozän). Geologisches Jahrbuch, 110, 289–306.Google Scholar
  77. Schleich, H. H. (1988b). Neue Reptilienfunde aus dem Tertiär Deutschlands 8. Palaeoblanus tobieni n. gen., n. sp.- neue Doppelschleichen aus dem Tertiär Deutschlands. Paläontologische Zeitschrift, 62, 95–105.Google Scholar
  78. Schmidt-Kittler, N., & Vianey-Liaud, M. (1975). Les relations entre les faunes de rongeurs d’Allemagne du Sud et de France pendant l’Oligocène. Comptes Rendus de l’Académie des Sciences, Paris, 281, 511–514.Google Scholar
  79. Shea, G. M. (2006). Diet of two species of bluetongue skink, Tiliqua multifasciata and Tiliqua occipitalis (Squamata:Scincidae). Australian Zoologist, 33, 359–368.CrossRefGoogle Scholar
  80. Smith, K. T. (2009a). A new lizard assemblage from the earliest Eocene (zone Wa0) of the Bighorn Basin, Wyoming, USA: biogeography during the warmest interval of the Cenozoic. Journal of Systematic Palaeontology, 7, 299–358.CrossRefGoogle Scholar
  81. Smith, K. T. (2009b). Eocene lizards of the clade Geiseltaliellus from Messel and Geiseltal, Germany, and the early radiation of Iguanidae (Reptilia: Squamata). Bulletin Yale Peabody Museum of Natural History, 50, 219–306.CrossRefGoogle Scholar
  82. Strömberg, C. A. E. (2002). The origin and spread of grass-dominated ecosystems in the late Tertiary of North America: preliminary results concerning the evolution of hypsodonty. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 59–75.CrossRefGoogle Scholar
  83. Strömberg, C. A. E. (2004). Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the Great Plains during the late Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 207, 239–275.CrossRefGoogle Scholar
  84. Szyndlar, Z., & Rage, J. C. (2003). Non-erycine Booidea from the Oligocene and Miocene of Europe. Institute of Systematics and Evolution of Animals (p. 111). Kraków: Polish Academy of Sciences.Google Scholar
  85. Townsend, T. M., Larson, A., Louis, E., & Macey, J. R. (2004). Molecular phylogenetics of Squamata: The position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology, 53, 735–757.CrossRefGoogle Scholar
  86. Vanhooydonck, B., Herrel, A., & Van Damme, R. (2007). Interactions between habitat use, behavior, and the trophic niche of lacertid lizards. In S. M. Reilly, L. D. McBrayer, & D. B. Miles (Eds.), Lizard Ecology: The Evolutionary Consequences of Foraging Mode (pp. 427–449). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  87. Venczel, M., & Ştiucă, E. (2008). Late middle Miocene amphibians and squamate reptiles from Taut, Romania. Geodiversitas, 30, 731–763.Google Scholar
  88. Vidal, N., & Hedges, S. B. (2009). The molecular evolutionary tree of lizards, snakes, and amphisbaenians. Comptes Rendus Biologies, 332, 129–139.CrossRefGoogle Scholar
  89. Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H., & Flower, B. P. (2001). Climate Response to Orbital Forcing Across the Oligocene-Miocene Boundary. Science, 292, 274–278.CrossRefGoogle Scholar
  90. Ziegler, R. (1994). Rodentia (Mammalia) aus den oberoligozänen Spaltenfüllungen Herrlingen 8 und Herrlingen 9 bei Ulm (Baden-Württemberg). Stuttgarter Beiträge zur Naturkunde (B), 196, 81.Google Scholar
  91. Ziegler, R. (1998). Marsupialia und lnsectivora (Mammalia) aus den oberoligozänen Spaltenfüllungen Herrlingen 8 und Herrlingen 9 bei Ulm (Baden-Württemberg). Senckenbergiana lethaea, 77, 101–143.CrossRefGoogle Scholar
  92. Ziegler, R. (2000). The bats (Chiroptera, Mammalia) from the Late Oligocene fissure fillings Herrlingen 8 and Herrlingen 9 near Ulm (Baden-Württemberg). Senckenbergiana lethaea, 80, 647–683.Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andrej Čerňanský
    • 1
    • 2
  • Jozef Klembara
    • 1
  • Johannes Műller
    • 2
  1. 1.Faculty of Natural Sciences, Department of EcologyComenius University in BratislavaBratislavaSlovakia
  2. 2.Museum für Naturkunde – Leibniz-Institut für EvolutionsBiodiversitätsforschung an der Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations