Palaeobiodiversity and Palaeoenvironments

, Volume 96, Issue 2, pp 281–303 | Cite as

Turtle remains from the Wadi Milk Formation (Upper Cretaceous) of Northern Sudan

  • Nicole Klein
  • Robert Bussert
  • David Evans
  • Khalaf Allah O. Salih
  • Ali A. M. Eisawi
  • Mutwakil Nafi
  • Johannes Müller
Original Paper


We describe here turtle remains from lag-type concentrations in channels and scours in the Wadi Milk Formation (Upper Cretaceous) of the Wadi Abu Hashim region in northern Sudan. Due to the isolated nature of the finds and the lack of any diagnostic material, such as skulls or more complete shell fragments, low-level taxonomic assignment was not possible. However, the morphology as well as the superficial ornamentation of most plates indicates pelomedusoid (Pleurodira) affinities, which is consistent with the geographically isolated nature of continental Africa during much of the Upper Cretaceous. The fauna contains one or two smaller sized pelomedusoid taxa as well as at least two large forms that are identified as members of Bothremydidae. A few plates may indicate the presence of other turtle lineages. Bothremydidae are known to have inhabited a variety of fluviatile and marine–littoral/near-coastal environments and thus are poor palaeoenvironmental indicators. However, bone compactness of one of the four peripheral morphotypes indicates the presence of a taxon that was more aquatic than typical Bothremydidae. Many plates show bioerosional traces that are interpreted as bore holes of clionid sponges, indicating a connection to a coastal environment exposed to marine influences. A marine or tidal influence is additionally suggested by sedimentological indicators, such as inclined heterolithic stratification, very variable palaeocurrent directions and partly intense bioturbation.


East Africa Cretaceous Pelomedusoid turtles Environment Sedimentology 



We wish to thank M. Schöle (Museum of Natural History, Berlin) as well as the students T. Gabler and J. Appel (both University of Tübingen) who cleaned, prepared and inventoried the material. O. Dülfer (Steinmann-Institute, Division of Paleontology, University of Bonn) and Ch. Wimmer-Pfeil (State Museum of Natural History Stuttgart) are thanked for the production of the thin sections. We would like to thank Silvia Danise (University of Georgia) for her determination of the trace fossils on some turtle plates. T. Scheyer (Paleontological Institute and Museum, University of Zurich) is acknowledged for some comments on the thin sections and Y. Nakajima (Steinmann-Institute, Division of Paleontology, University of Bonn) helped with the identification of long bones. We also wish to thank M. Mahir and his team (Khartoum) for very valuable logistical support in Sudan, and Al-Neelain University and the Geological Research Authority of Sudan (GRAS) for permission and administrative support. This study was financially supported by the Deutsche Forschungsgemeinschaft (MU 1760/6-1) and the Royal Ontario Museum. We are grateful to the helpful comments of the two reviewers, D. Brinkman (Royal Tyrell Museum) and W. Joyce (Université de Fribourg).


  1. Antunes, M. T., & de Broin, F. (1988). Le Crétacé terminal de Beira Litoral, Portugal: Remarques stratigraphiques et écologiques, étude complémentaire de Rosasia soutoi (Chelonii, Bothremydidae). Ciencias da Terra, 9, 153–200.Google Scholar
  2. Barazi, N. (1985). Sedimentologie und Stratigraphie des Abyad-Beckens (NW-Sudan). Berliner Geowissenschaftliche Abhandlungen A, 64, 1–85.Google Scholar
  3. Batsch, A. J. G. C. (1788). Versuch einer Anleitung, zur Kenntniß und Geschichte der Thiere und Mineralien, für akademische Vorlesungen entworfen, und mit den nöthigsten Abbildungen versehen. Erster Theil. Allgemeine Geschichte der Natur; besondre der Säugthiere, Vögel, Amphibien und Fische. Akademische Buchhandlung, Jena.Google Scholar
  4. Bromley, R. G. (1970). Borings as trace fossils and Entobia cretacea Portlock, as an example. In T. P. Crimes & J. C. Harper (Eds.), Trace fossils (pp. 49–90). Liverpool: Seel House Press.Google Scholar
  5. Bromley, R. G., & D’Alessandro, A. (1984). The inchnogenus Entobia from the Miocene, Pliocene and Pleistocene of Southern Italy. Rivista Italiana di Paleontologia e Stratigrafia, 90(2), 227–296.Google Scholar
  6. Buffetaut, E., Bussert, R., & Brinkmann, W. (1990). A new nonmarine vertebrate fauna in the Upper Cretaceous of northern Sudan. Berliner Geowissenschaftliche Abhandlungen A, 120(1), 183–202.Google Scholar
  7. Bussert, R. (1998). Die Entwicklung intrakratonaler Becken im Nordsudan. Berliner Geowissenschaftliche Abhandlungen A, 196, 1–329.Google Scholar
  8. Cadena, E. A., & Schweizer, M. H. (2014). A Pelomedusoid Turtle from the Paleocene–Eocene of Colombia Exhibiting Preservation of Blood Vessels and Osteocytes. Journal of Herpetology, 48(4), 461–465.CrossRefGoogle Scholar
  9. Canoville, A., & Laurin, M. (2010). Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on paleobiological inferences. Biological Journal of the Linnean Society, 100, 384–406.CrossRefGoogle Scholar
  10. Cope, E. D. (1865). Third contribution to the herpetology of tropical America. Proceedings of the Academy of Natural Sciences of Philadelphia, 17, 185–198.Google Scholar
  11. Eisawi, A. A. M., Elbashir, O. M., Babikir, I. A. A., & Ali, O. E. (2012). Palynology and sedimentology of the Campanian-Maastrichtian Shendi Formation, central Sudan: Paleoecological and Paleoclimatical Implications. SAPEG Fifth Conference (Abstract volume), pp 83–84.Google Scholar
  12. Evans, S., Milner, A. R., & Werner, C. (1996). New salamander and caecilian material from the Late Cretaceous of the Sudan. Palaeontology, 39, 77–95.Google Scholar
  13. Fairhead, J. D., & Binks, R. M. (1991). Differential opening of the Central and South Atlantic Oceans and the opening of the West African rift system. Tectonophysics, 187, 191–203.CrossRefGoogle Scholar
  14. Francillon-Vieillot, H., de Buffrénil, V., Castanet, J., Géraudie, J., Meunier, F. J., Sire, J. Y., Zylberberg, L., & de Ricqlès, A. (1990). Microstructure and mineralization of vertebrate skeletal tissues. In J. G. Carter (Ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends (pp. 471–530). New York: Van Nostrand Reinhold.Google Scholar
  15. Frick, M., Williams, K., & Robinson, M. (1998). Epibionts associated with nesting loggerhead sea turtles (Caretta caretta) in Georgia, USA. Herpetological Review, 29(4), 211–213.Google Scholar
  16. Gaffney, E. S. (1979). Comparative cranial morphology of recent and fossil turtles. Bulletin of the American Museum of Natural History, 164(2), 1–376.Google Scholar
  17. Gaffney, E. S., & Meylan, P. A. (1991). Primitive pelomedusid turtle. In J. G. Maisey (Ed.), Santana fossils: an illustrated atlas (pp. 335–339). Neptune: Tropical Fish Hobbyist Publications.Google Scholar
  18. Gaffney, E. S., & Zangerl, R. (1968). A revision of chelonian genus Bothremys (Pleurodira: Pelomedusidae). Fieldiana Geology, 16, 193–239.Google Scholar
  19. Gaffney, E. S., Campos de Almeida, D., & Hirayama, R. (2001a). Cearachelys, a new side-necked turtle (Pelomedusoides: Bothremydidae) from the Early Cretaceous of Brazil. American Museum Novitates, 3319, 1–20.CrossRefGoogle Scholar
  20. Gaffney, E. S., Moody, R. T. J., & Walker, C. A. (2001b). Azabbaremys, a new side-necked turtle (Pelomedusoides: Bothremydidae) from the Paleocene of Mali. American Museum Novitates, 3320, 1–16.CrossRefGoogle Scholar
  21. Gaffney, E. S., Tong, H., & Meylan, P. A. (2006). Evolution of the side-necked turtles: the families Bothremydidae, Euraxemydidae, and Araripemydidae. Bulletin of the American Museum of Natural History, 300, 1–698.CrossRefGoogle Scholar
  22. Higgs, N. D., Little, C. T. S., Glover, A. G., Dahlgren, T. G., Smith, C. R., & Dominicie, S. (2011). Evidence of Osedax worm borings in Pliocene (3 Ma) whale bone from the Mediterranean. Historical Biology, 2011, 1–9.CrossRefGoogle Scholar
  23. Hirayama, R. (1997). Distribution and diversity of Cretaceous chelonioids. In J. M. Callaway & E. L. Nicholls (Eds.), Ancient marine reptiles (pp. 225–241). San Diego: Academic Press.CrossRefGoogle Scholar
  24. Holroyd, P. A., & Parham, J. F. (2003). The Antiquity of African tortoises. Journal of Vertebrate Paleontology, 23(3), 688–690.CrossRefGoogle Scholar
  25. Joyce, W. G., Parham, J. F., Lyson, T. R., Warnock, R. C. M., & Donoghue, P. C. J. (2013). A divergence dating analysis of turtles using fossil calibrations: an example of best practices. Journal of Paleontology, 87, 612–634.CrossRefGoogle Scholar
  26. Lapparent de Broin, (1977). Contribution à l’étude des chéloniens; chéloniens continentaux du Crétacé et du Tertiaire de France (Contribution to the study of turtles; continental turtles of the Cretaceous and Tertiary of France). Mémoires du Muséum National d’Histoire Naturelle (Paris) Serie C Geologie, 38, 1–366.Google Scholar
  27. Lapparent de Broin, (1988). Les tortues et le Gondwana. Examen des rapports entre le fractionnement du Gondwana au Crétacé et la dispersion géographique des tortues pleurodires à partir du Crétacé. Studia Salmanticensia, Studia Palaeocheloniologica, 2(5), 103–142.Google Scholar
  28. Lapparent de Broin, (2000). African chelonians from the Jurassic to the present: phases of development and preliminary catalogue of the fossil record. Palaeontologia Africana, 36, 43–82.Google Scholar
  29. Lapparent de Broin,, & Werner, C. (1998). New Late Cretaceous turtles from the Western Desert, Egypt. Annales de Paleontologie, 84(2), 131–214.Google Scholar
  30. Lapparent de Broin,, Bardet, N., Amaghzaz, M., & Meslouh, S. (2014). A strange new chelonioid turtle from the latest Cretaceous phosphates of Morocco. Comptes Rendus Palevol, 13(2), 87–95.Google Scholar
  31. Mateus, O., Jacobs, L., Polcyn, M., Schulp, A. S., Vineyard, D., Buta Neto, A., & Antunes, M. T. (2009). The oldest African eucryptodiran turtle from the Cretaceous of Angola. Acta Palaeontologica Polonica, 54(4), 581–588.CrossRefGoogle Scholar
  32. Moody, R. T. J. (1997). The paleogeography of marine and coastal turtles of the North Atlantic and trans-saharan regions. In J. M. Callaway & E. L. Nicholls (Eds.), Ancient marine reptiles (pp. 259–278). San Diego: Academic Press.CrossRefGoogle Scholar
  33. Nakajima, Y., Hirayama, R., & Endo, H. (2014). Turtle humeral microanatomy and its relationship to lifestyle. Biological Journal of the Linnean Society, 112, 719–734.CrossRefGoogle Scholar
  34. Rabi, M., Tong, H., & Botfalvai, G. (2012). A new species of the side-necked turtle Foxemys (Pelomedusoides: Bothremydidae) from the Late Cretaceous of Hungary and the historical biogeography of the Bothremydini. Geological Magazine, 149(4), 662–674.CrossRefGoogle Scholar
  35. Rage, J. C., & Werner, C. (1999). Mid-Cretaceous (Cenomanian) snakes from Wadi Abu Hashim, Sudan: The earliest snake assemblage. Palaeontologica Africana, 35, 85–110.Google Scholar
  36. Rauhut, O. W. M. (1999). A dinosaur fauna from the late Cretaceous (Cenomanian) of Northern Sudan. Palaeontologica Africana, 35, 61–84.Google Scholar
  37. Rauhut, O. W. M., & Werner, C. (1995). First record of the family Dromaeosauridae (Dinosauria: Theropoda) in the Cretaceous of Gondwana (Wadi Milk Formation, northern Sudan). Paläontologische Zeitschrift, 69(3/4), 475–489.CrossRefGoogle Scholar
  38. Romano, P. S. R., Gallo, V., Ramos, R. R. C., & Antonioli, L. (2014). Atolchelys lepida, a new side-necked turtle from the Early Cretaceous of Brazil and the age of crown Pleurodira. Biological Letters, 10, 20140290. doi: 10.1098/rsbl.2014.0290.CrossRefGoogle Scholar
  39. Salih, K. A., Evans, D. C., Bussert, R., Klein, N., Nafi, M., & Müller, J. (2015). A new species of the genus Hyposaurus (Crocodylia, Dyrosauridae) from the Upper Cretaceous Shendi Formation of Sudan. Journal of Vertebrate Paleontology. doi: 10.1080/02724634.2015.1115408.
  40. Schandelmeier, H., & Pudlo, D. (1990). The Central African Fault Zone (CAFZ) in Sudan - a possible continental transform fault. Berliner Geowissenschaftliche Abhandlungen A, 120(1), 33–44.Google Scholar
  41. Scheyer, T. M. (2007). Comparative bone histology of the turtle shell (carapace and plastron): implications for turtle systematics, functional morphology, and turtle origins. PhD thesis. Bonn: University of Bonn. Available at:
  42. Scheyer, T. M., & Sánchez-Villagra, M. R. (2007). Carapace bone histology in the giant pleurodiran turtle Stupendemys geographicus: phylogeny and function. Acta Palaeontologica Polonica, 52, 137–154.Google Scholar
  43. Scheyer, T. M., & Sander, P. M. (2007). Shell bone histology indicates terrestrial palaeoecology of basal turtles. Proceedings of the Royal Society of London, Series B: Biological Sciences, 274, 1885–1893.CrossRefGoogle Scholar
  44. Scheyer, T. M., Danilov, I. G., Sukhanov, V. B., & Syromyatnikova, E. V. (2014). The shell bone histology of fossil and extant marine turtles revisited. Biological Journal of the Linnean Society, 112, 701–718.CrossRefGoogle Scholar
  45. Schrank, E. (1990). Palynology of the clastic Cretaceous sediments between Dongola and Wadi Muqaddam, northern Sudan. Berliner Geowissenschaftliche Abhandlungen A, 120(1), 149–168.Google Scholar
  46. Schwimmer, D. A. (2002). King of the crocodylians: the paleobiology of Deinosuchus. In D. A. Schwimmer (Ed.), Deinosuchus localities and their ancient environments (pp. 81–106). Bloomington: Indiana University Press.Google Scholar
  47. Sereno, P. C., & ElSafie, S. J. (2014). A new long-necked turtle, Laganemys tenerensis (Pleurodira: Araripemydidae) from the Elrhaz Formation (Aptila-Albian) of Niger. In D. B. Brinkman, P. A. Holroyd, & J. D. Gardner (Eds.), Morphology and Evolution of turtles (pp. 215–250). Dordrecht: Springer Press.Google Scholar
  48. Thomas, R. G., Smith, D. G., Wood, J. M., Visser, J., et al. (1987). Inclined heterolithic stratification—Terminology, description, interpretation and significance. Sedimentary Geology, 53(1–2), 123–179.CrossRefGoogle Scholar
  49. Thulborn, R. A. (1991). Morphology, preservation and palaeobiological significance of dinosaur coprolites. Palaeogeography, Palaeoclimatology, Palaeoecology, 83, 341–366.CrossRefGoogle Scholar
  50. Tong, H., Gaffney, E. S., & Buffetaut, E. (1998). Foxemys, a new side-necked turtle (Bothremydidae: Pelomedusoides) from the Late Cretaceous of France. American Museum Novitates, 3251, 1–19.Google Scholar
  51. Werner, C. (1991). Aspects on terrestrial Upper Cretaceous Ecosystems of Egypt and Northern Sudan. In Z. Kielan-Jaworowska, N. Heintz, & H. A. Narkrem (Eds.), First symposium on Mesozoic terrestrial ecosystems and biota. Contributions from the Paleontological Museum 364, Extended abstracts (p. 72). Oslo: Univeristy of Oslo.Google Scholar
  52. Werner, C. (1993). Eine neue Fundstelle terrestrischer Wirbeltiere aus der Kreide des Sudan. Berliner Geowissenschaftliche Abhandlungen E, 9, 201–209.Google Scholar
  53. Werner, C. (1994a). Die kontinentale Wirbeltierfauna aus der unteren Oberkreide des Sudan (Wadi Milk Formation). Berliner Geowissenschaftliche Abhandlungen E, 13, 221–249.Google Scholar
  54. Werner, C. (1994b). Der erste Nachweis von Gymnophionen (Amphibia) in der Kreide (Wadi-Milk-Formation, Sudan). Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1994, 633–640.Google Scholar
  55. Werner, C. (1996). Contributions to the first Late Cretaceous terrestrial vertebrate fauna of northern Sudan. Mitteilungen aus dem Geologisch-Palaontologischen Institut der Universitat Hamburg, 77, 637–640.Google Scholar
  56. Werner, C. (1999). Kontinentale Wirbeltierfaunen aus der Oberkreide des Nordsudan. In E. Klitzsch & U. Thorweihe (Eds.), Nordost-Afrika. Strukturen und Resourcen (pp. 163–193). Weinheim: Wiley-VCH Verlag.Google Scholar
  57. Wycisk, P., Klitzsch, E., Jas, C., & Reynolds, O. (1990). Intracratonal sequence development and structural control of Phanerozoic strata in Sudan. Berliner Geowissenschaftliche Abhandlungen A, 120(1), 45–86.Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nicole Klein
    • 1
  • Robert Bussert
    • 2
  • David Evans
    • 3
  • Khalaf Allah O. Salih
    • 4
    • 5
  • Ali A. M. Eisawi
    • 5
  • Mutwakil Nafi
    • 6
  • Johannes Müller
    • 4
  1. 1.Institut für Angewandte GeowissenschaftenStaatliches Museum für Naturkunde StuttgartBerlinGermany
  2. 2.Institut für Angewandte GeowissenschaftenTechnische Universität BerlinBerlinGermany
  3. 3.Department of Natural HistoryRoyal Ontario MuseumTorontoCanada
  4. 4.Museum für Naturkunde Leibniz-Institut für Evolutions- und BiodiversitätsforschungBerlinGermany
  5. 5.Faculty of Petroleum and MineralsAl Neelain UniversityKhartoumSudan
  6. 6.Department of Petroleum Geology, Faculty of Earth Sciences and MiningDongola UniversityDongolaSudan

Personalised recommendations