Advertisement

Palaeobiodiversity and Palaeoenvironments

, Volume 95, Issue 4, pp 521–529 | Cite as

Enigmatic spheres from the Upper Triassic Lockatong Formation, Newark Basin of eastern Pennsylvania: evidence for microbial activity in marginal-lacustrine strandline deposits

  • Edward L. Simpson
  • David L. Fillmore
  • Michael J. Szajna
  • Emily Bogner
  • Margariete G. Malenda
  • Kelsey M. Livingston
  • Brian Hartline
Original Paper

Abstract

Microbes within sediments often create films or thick mats that interact with mobile sediment, producing microbially induced sedimentary structures (MISS). Preserved microbes in these sedimentary features are difficult to find, especially in oxygen-rich environments. The study of recent discoveries in the Upper Triassic Norian Lockatong Formation, a dominantly lacustrine facies of the Newark Supergroup strata, has revealed rarely reported structures that are assignable as MISS, namely, sand-cored spheres encapsulated in thin mudstone which range in diameter from the sub-millimetre to millimetre scale. These spheres are embedded in a thin layer of very fine silt and mudstone developed in an interpreted marginal-lacustrine shoreline setting. The cores of the spheres consist of randomly oriented, graded, fine-grained sandstone to siltstone; this eliminates previously proposed physical and biological origins for spheres, leaving a microbial origin. The microbial bound sand balls are localised and generated from a graded bed bound by microbial mats both above and below. The bounded bed was eroded and shaped into spheres during transport. The mats added cohesion by providing extrapolymeric substances which prevented the breakdown of the spheres into individual grains. The mats were rolled into spheres during transportation, thus preserving the microbial bound core. These sand balls add to the catalog of microbial diversity that can be used to increase our understanding of biological systems in lacustrine settings.

Keywords

Microbially induced sedimentary structures Triassic Lockatong formation Lacustrine Microbial mats 

Notes

Acknowledgements

We wish to thank the journal reviewers, Paul E. Olsen and Nora Noffke, and the owners of the property at the collection site who were kind enough to give us permission to explore their home sites. We extend our thanks to Helen Fitzgerald-Malenda who constructively commented on the earlier version of the paper.

References

  1. Acton, E. (1916). On the structure and origin of “Cladophora balls”. New Phytologist, 15, 1–10.CrossRefGoogle Scholar
  2. Amos, C. L., Brylinsky, M., Sutherland, T. F., O’Brian, D., Lee, S., & Cramp, A. (1998). The stability of a mudflat in Humber estuary South Yorkshire UK. In K. S. Black, D. M. Paterson, & A. Cramp (Eds.), Sedimentary processes in the intertidal zone (pp. 25–43). London: Geologic Society of London.Google Scholar
  3. Beraldi-Campesi, H., & Garcia-Pichel, F. (2011). The biogenicity of modern terrestrial roll-up structures and its significance for ancient life. Geobiology, 9, 10–23.CrossRefGoogle Scholar
  4. Beraldi-Campesi, H., Hartnett, H. E., Anbar, A., Gordon, G. W., & Garcia-Pichel, F. (2009). Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land. Geobiology, 7, 348–359.CrossRefGoogle Scholar
  5. Beraldi-Campesi, H., Farmer, J. D., & Garcia-Pichel, F. (2014). Modern terrestrial sedimentary biostructures and their fossil analogs in Mesoproterozoic subaerial deposits. Palaios, 29, 45–54.CrossRefGoogle Scholar
  6. Berg, T. M., Edmunds, W. E., Geyer, A. R., et al. compilers (1980). Geologic map of Pennsylvania. Pennsylvania Geological Survey, 4th ser., Map 1. Available at: http://www.dcnr.state.pa.us/topogeo/publications/pgspub/map/map1/index.htm
  7. Boedeker, C., Eggert, A., Immers, A., & Smets, E. (2010). Global decline of and threats to Aegagropila linnaei, with special reference to the lake ball habit. Bioscience, 60, 187–198.CrossRefGoogle Scholar
  8. Bottjer, D., & Hagadorn, J. W. (2007). 4(a) Mat growth features. In J. Schieber, B. K. Bose, P. G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann, & O. Catuneanu (Eds.), Atlas in geosciences 2 (pp. 53–71). Amsterdam: Elsevier.Google Scholar
  9. Buatois, L. A., Mángano, G. M., et al. (2012). The trace fossil record of organism-matground interactions in space and time. In H. Chafetz (Ed.), Microbial mats in siliciclastic depositional systems through time (pp. 15–28). Tulsa: Society of Economic Paleontologists and Mineralogists Special Publication 101.Google Scholar
  10. Cornet, B. (1977). The palynostratigraphy and age of the Newark Supergroup. Ph.D. thesis. University Park, PA: Pennsylvania State University.Google Scholar
  11. Cornet, B. (1993). Application and limitations of palynology in age, climate, and paleoenvironmental analysis of Triassic sequences in North America. In S. G. Lucas & M. Morales (Eds.), The nonmarine Triassic (pp. 85–93). Albuquerque: New Mexico Museum Natural History and Science Bulletin 3.Google Scholar
  12. Dongyan, W., Zhenmin, L., Xiaolin, D., & Shaokang, X. (1998). Biomineralization of mirabilite deposits of Barkol Lake, China. Carbonates and Evaporites, 13, 86–89.CrossRefGoogle Scholar
  13. Eriksson, P. G., Simpson, E. L., Eriksson, K. A., Bumby, A. J., Steyn, G. L., & Sarkar, S. (2000). Muddy roll-up structures in clastic playa beds of the c. 1.8 Ga Waterberg group, South Africa. Palaios, 15, 177–183.CrossRefGoogle Scholar
  14. Fagerstrom, J. A. (1967). Development, flotation and transportation of mud crusts—neglected factors in sedimentology. Journal Sedimentary Petrololgy, 37, 73–79.Google Scholar
  15. Gerdes, G., Klenke, T., & Noffke, N. (2000). Microbial signatures in peritidal siliciclastic sediments, a catalogue. Sedimentology, 47, 279–308.CrossRefGoogle Scholar
  16. Gore, P. J. W. (1988). Paleoecology and sedimentology of a late Triassic lake, Culpeper basin, Virginia, U.S.A. Palaeogeography Palaeoclimatology Palaeoecology, 62, 593–608.CrossRefGoogle Scholar
  17. Haberyan, K. A. (1985). The role of copepod fecal pellets in the deposition of diatoms in Lake Tanganyika. Liminolgy Oceanography, 30, 1010–1023.CrossRefGoogle Scholar
  18. Hagadorn, J. W., & Bottjer, D. J. (1997). Wrinkle structures: microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology, 25, 1047–1050.CrossRefGoogle Scholar
  19. Hagadorn, J. W., & McDowell, C. (2012). Microbial influence on erosion, grain transport and bedform genesis in sandy substrates under unidirectional flow. Sedimentology, 59, 795–808.CrossRefGoogle Scholar
  20. Houten, F. B. van (1964). Cyclic lacustrine sedimentation, Upper Triassic Lockatong formation, central New Jersey and adjacent Pennsylvania. In O. F. Mermaid (Ed.), Symposium on cyclic sedimentation (pp. 497–531). Lawrence: Kansas Geological Survey Bulletin 169.Google Scholar
  21. Hunt, A. P., & Lucas, S. G. (2012). Descriptive terminology of coprolites and recent feces. In A. P. Hunt, G. Milàn, S. G. Lucas, & J. A. Spielmann (Eds.), Vertebrate coprolites (pp. 153–160). Albuquerque: New Mexico Museum Natural History and Science Bulletin 57.Google Scholar
  22. Hunt, A. P., Milàn, G., Lucas, S. G., & Spielmann, J. A. (Eds.). (2012). Vertebrate coprolites. Albuquerque: New Mexico Museum Natural History and Science Bulletin 57.Google Scholar
  23. Kurogi, M. E. (1980). Lake ball “marimo” in Lake Akan. Japanese Journal Phycology, 28, 752–760.Google Scholar
  24. Leliaert, F., & Boedeker, C. (2007). Cladophorates. In J. Brodie, C. A. Maggs, & D. M. John (Eds.), Green seaweeds of Britian and Ireland (pp. 131–183). London: British Phycology Society.Google Scholar
  25. Lucas, S. G., Szajna, M. J., Lockley, M. G., Fillmore, D. L., Simpson, E. L., Klein, H., Boyland, J., & Hartline, B. W. (2013). The middle-late Triassic tetrapod footprint ichnogenus Gwyneddichnium. In M. G. Lockley & S. G. Lucas (Eds.), Fossil footprints of western North America (pp. 135–156). Albuquerque: New Mexico Museum Natural History and Science Bulletin 62.Google Scholar
  26. Luther, H. (1951). Verbreitung und Ökologie der höheren Wasserpflanzen im Brackwasser der Ekenäs-Gegend in Südfinnland. II Spezieller Teil. Acta Botanica Fennica, 50, 1–370.Google Scholar
  27. McLaughlin, D. B. (1933). A note on the stratigraphy of the Brunswick formation (Newark) in Pennsylvania. Michigan Academy of Science, Arts, and Letters, 18, 59–74.Google Scholar
  28. McLaughlin, D. B. (1943). The revere well and Triassic stratigraphy. Pennsylvania Academy Science Proceedings, 17, 104–110.Google Scholar
  29. McLaughlin, D. B. (1959). Mesozoic rocks. In B. Willard et al. (Eds.), Geology and mineral resources of bucks county, Pennsylvania (pp. 55–114). Harrisburg: Pennsylvania Geological Survey Bulletin C-9.Google Scholar
  30. Meadows, P. S., Tait, J., & Hussain, S. A. (1990). Effects of estuarine infauna on sediment stability and particle sediment. Hydrobiology, 190, 263–290.CrossRefGoogle Scholar
  31. Noffke, N. (2008). Turbulent lifestyle: Microbial mats on Earth’s sandy beaches—Today and 3 billion years ago. GSA Today, 18(10), 4–9.CrossRefGoogle Scholar
  32. Noffke, N. (2009). The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth Science Reviews, 96, 173–180.CrossRefGoogle Scholar
  33. Noffke, N. (2010). Geobiology: microbial mats in sandy deposits from the archean Era to today. Berlin: Springer.CrossRefGoogle Scholar
  34. Noffke, N. (2015). Ancient sedimentary structures in the < 3.7 Ga Gillespie lake member, mars, that compare in macroscopic morphology, spatial associations, and temporal succession with terrestrial microbialites. Astrobiology, 15(2), 169–192.CrossRefGoogle Scholar
  35. Noffke, N., & Chafetz, H. (Eds.). (2012). Microbial mats in siliciclastic depositional systems through time. Tulsa: Society of Economic Paleontologists and Mineralogists Special Publication 101.Google Scholar
  36. Noffke, N., Gerdes, G., Klenke, T., & Krumbein, W. E. (1996). Microbial induced sedimentary structures – examples from modern siliciclastic tidal flat sediments. Zentralblatt für Geologie und Paläontologie, 1995, 307–316.Google Scholar
  37. Noffke, N., Gerdes, G., Klenke, T., & Krumbein, W. E. (2001). Microbially induced sedimentary structures indicating climatological, hydrologically, and depositional conditions within recent and Pleistocene coastal facies zones (southern Tunisia). Facies, 44, 23–30.CrossRefGoogle Scholar
  38. Noffke, N., Knoll, A. H., & Grotzinger, J. P. (2002). Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: a case study from the upper neoproterozoic nama group, Namibia. Palaios, 17, 533–544.CrossRefGoogle Scholar
  39. Noffke, N., Eriksson, K. A., Hazen, R. M., & Simpson, E. L. (2006). A new window into early archean life: microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 GaMoodies group, South Africa). Geology, 34, 253–256.CrossRefGoogle Scholar
  40. Noffke, N., Beukes, N., Bower, D., Hazen, R. M., & Swift, D. J. P. (2008). An actualisitic perspective into Archean worlds – (cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Pongola Supergroup, South Africa. Geobiology, 6, 5–20.CrossRefGoogle Scholar
  41. Ohlson, B. (1961). Observations on Recent lake balls and ancient Corycium inclusions in Finland. Bulletin de la Commission gèologique de la Finlande, 196, 377–390.Google Scholar
  42. Olsen, P. E. (1986). A 40-Million-year lake record of early Mesozoic orbital climatic forcing. Science, 234, 842–848.CrossRefGoogle Scholar
  43. Olsen, P. E. (2005). Implications of radiometric ages from stromatolites, coprolites, and caliches from the Newark and Hartford Triassic-Jurassic rift basins. Geological Society of America Abstracts with Programs, 37(1), 7.Google Scholar
  44. Olsen, P. E. (2010). Fossil great lakes of the Newark Supergroup—30 years later. In A. I. Benimoff, (Ed.), Field trip guidebook, New York State Geological Association, 83nd Annual Meeting (pp. 101–162).Google Scholar
  45. Olsen, P. E., & Kent, D. V. (1996). Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic. Palaeogeography Palaeoclimatology Palaeoecology, 122, 1–26.CrossRefGoogle Scholar
  46. Olsen, P. E., Kent, D. V., Cornet, B., Witte, W. K., & Schlische, R. W. (1996). High-resolution stratigraphy of the Newark rift basin (early Mesozoic, eastern North America). Geological Society America Bulletin, 108, 40–77.CrossRefGoogle Scholar
  47. Olsen, P. E., Kent, D. V., & Whiteside, J. H. (2010). Implications of the Newark Supergroup-based astrochronology and geomagnetic polarity scale (Newark-APTS) for the tempo and mode of the early diversification of Dinosauria. Earth Environmental Science Transactions Royal Society Edinburgh, 101, 201–229.CrossRefGoogle Scholar
  48. Paterson, D. M. (1997). Biological mediation of sediment erodibility: ecology and physical dynamics. In N. Burt, R. Parker, & J. Watts (Eds.), Cohesive sediments (pp. 215–229). New York: Wiley.Google Scholar
  49. Schieber, J. (2004). Microbial mats in siliciclastic rock record: a summary of the diagnostic features. In P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Mueller, & O. Catuneanu (Eds.), The Precambrian earth: tempos and events (Developments Precambrian geology 12, pp. 663–673). Amsterdam: Elsevier.Google Scholar
  50. Schieber, J., & Southard, J. B. (2009). Bedload transport of mud floccule ripples – direct observation of ripple migration processes and their implications. Geology, 37, 483–486.CrossRefGoogle Scholar
  51. Schieber, J., Southard, J. B., & Thaisen, K. (2007). Accretion of mudstone beds from migrating floccule ripples. Science, 318, 1760–1763.CrossRefGoogle Scholar
  52. Schlische, R. W., & Olsen, P. E. (1990). Quantitative filling model for continental extensional basins with applications to early Mesozoic rifts of eastern North America. Journal of Geology, 98, 135–155.CrossRefGoogle Scholar
  53. Simpson, E. L., Heness, E. A., Bumby, A., Eriksson, P. G., Eriksson, K. A., Hilbert-Wolf, H. L., Linnevelt, S., Fitzgerald-Malenda, H., Modungwa, T., & Okafor, O. J. (2013). Evidence for 2.0 Ga continental microbial mats in a paleodesert setting. Precambrian Research, 237, 36–50.CrossRefGoogle Scholar
  54. Smoot, J. P. (1991). Sedimentary facies and depositional environment of early Mesozoic Newark Supergroup basins, eastern North America. Palaeogeography Palaeoclimatology Palaeoecology, 84, 369–423.CrossRefGoogle Scholar
  55. Smoot, J. P., & Olsen, P. E. (1988). Massive mudstones in basin analysis and paleoclimatic interpretation of the Newark Supergroup. In W. Manspeizer (Ed.), Triassic-Jurassic rifting and the opening of the Atlantic Ocean (pp. 249–274). Amsterdam: Elsevier.Google Scholar
  56. Smoot, J. P., & Olsen, P. E. (1994). Climatic cycles as sedimentary controls of rift basin lacustrine deposits in the early Mesozoic Newark basin based on continuous core. In A. Lomando & M. Harris (Eds.), Lacustrine depositional systems (SEPM core workshop notes 19, pp. 201–237). Tulsa: Society of Economic Paleontologists Mineralogists: Tulsa.Google Scholar
  57. Tolhursf, T. J., Gust, G., & Paterson, D. M. (2002). The influence of an extracellular polymeric substance (EPS) on cohesive sediment stability. Proceedings Marine Science, 5, 409–425.CrossRefGoogle Scholar
  58. Troy, R. E. (2003). U-Pb age of stromatolite calcite from the Triassic Passaic Formation of the Newark Basin. Geological Society America Abstracts with Programs, 35(6), 508.Google Scholar
  59. Walker, J. D., Geissman, J. W., Bowring, S. A., Babcock, L. E., compilers. (2012). Geologic time scale, v. 4.0. Boulder, CO: Geological Society of America. doi:  10.1130/2012.CTA004R3C.
  60. Whiteside, J. H. (2004). Arboreal stromatolites: a 210-million year record. In M. D. Lowman, (Ed.), Forest Canopies (Physiological Ecology Series), 2nd ed (pp. 147–149). New York, Amsterdam: Academic Press.Google Scholar
  61. Willard, B., Freedman, J., McLaughlin, D.B., Ryan, J.D., Wherry, E.T., Peltier, L.C., Gault, H. R. (1959). Geology and mineral resources of Bucks County Pennsylvania. Pennsylvania Topographic Geological Survey Bulletin C 9.Google Scholar
  62. Wings, O. (2007). Review of gastrolith function with implications for fossil vertebrates and a revised classification. Acta Palaeontologica Polonica, 52, 1–16.Google Scholar
  63. Wings, O. (2012). Gasroliths in coprolites—a call to search. In A. P. Hunt, J. Milàn, S. G. Lucas, & J. A. Spielmann (Eds.), Vertebrate coprolites (pp. 73–77). Albuquerque: New Mexico Museum Natural History and Science Bulletin 57.Google Scholar
  64. Wings, O., & Sander, P. M. (2007). No gastric mill in sauropod dinosaurs: new evidence from analysis of gastrolith mass and function in ostriches. Proceedings Royal Society B: Biological Sciences, 274, 635–640.CrossRefGoogle Scholar
  65. Yallop, M. L., de Winder, B., Paterson, D. M., & Stal, L. J. (1994). Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuarine, Coastal and Shelf Science, 39, 565–582.CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Edward L. Simpson
    • 1
  • David L. Fillmore
    • 1
  • Michael J. Szajna
    • 2
  • Emily Bogner
    • 1
  • Margariete G. Malenda
    • 1
  • Kelsey M. Livingston
    • 1
  • Brian Hartline
    • 2
  1. 1.Department of Physical SciencesKutztown University of PennsylvaniaKutztownUSA
  2. 2.State Museum of PennsylvaniaHarrisburgUSA

Personalised recommendations