Palaeobiodiversity and Palaeoenvironments

, Volume 95, Issue 4, pp 531–536 | Cite as

Cyclones and the formation of plant beds in late Carboniferous tropical swamps

Original Paper

Abstract

Rapid deposition of sediments over the Euramerican Carboniferous swamps has resulted in exceptionally well-preserved plant fossils that often contain fragments of both swamp- and levee-living plants. There is virtually no evidence that the fragments were the result of natural abscission; a fact emphasised by the presence of mature cones that are still full of spores, fern fronds that rarely appear withered or enrolled, and pteridosperm fronds with glandular trichomes still containing the remains of exudant. Very strong winds of cyclone intensity would have been needed to cause such damage to the vegetation while, at the same time, producing flooding with sediment-laden water.

Keywords

Carboniferous Swamp forests Cyclone Plant fossils 

References

  1. Appleton, P., Malpas, J., Thomas, B. A., & Cleal, C. J. (2011). The Brymbo Fossil Forest. Geology Today, 27, 107–113.CrossRefGoogle Scholar
  2. Belt, E. S., Heckel, P. H., Lentz, L. J., Bragonier, W. A., & Lyons, T. W. (2011). Record of glacial–eustatic sea-level fluctuations in complex middle to late Pennsylvanian facies in the Northern Appalachian Basin and relation to similar events in the Midcontinent basin. Sedimentary Geology, 238, 79–100.CrossRefGoogle Scholar
  3. Broadhurst, F. M., Simpson, I. M., & Hardy, P. G. (1980). Seasonal sedimentation in the Upper Carboniferous of England. Journal of Geology, 88, 639–651.CrossRefGoogle Scholar
  4. Cleal, C. J., & Shute, C. H. (1991). The Carboniferous pteridosperm frond Neuropteris heterophylla (Brongniart) Sternberg. Bulletin of the British Museum (Natural History). Geology, 46, 153–174.Google Scholar
  5. Cleal, C. J., & Shute, C. H. (2012). The systematic and palaeoecological value of foliage anatomy in Late Palaeozoic medullosalean seed-plants. Journal of Systematic Palaeontology, 10, 765–800.CrossRefGoogle Scholar
  6. Cleal, C. J., & Thomas, B. A. (1999). Tectonics, tropical forest destruction and global warming in the Late Palaeozoic. Acta Palaeobotanica, 2(Suppl), 17–19.Google Scholar
  7. Cleal, C. J., & Thomas, B. A. (2005). Palaeozoic rain forests and their effect on global climates. Is the past the key to the present? Geobiology, 3, 13–31.CrossRefGoogle Scholar
  8. Cleal, C. J., Opluštil, S., Thomas, B. A., & Tenchov, Y. (2010). Late Moscovian terrestrial biotas and palaeoenvironments of Variscan Euramerica. Netherlands Journal of Geosciences, 88, 181–278.Google Scholar
  9. Cleal, C. J., Opluštil, S., Thomas, B. A., & Tenchov, Y. (2011). Pennsylvanian vegetation and climate in tropical Variscan Euramerica. Episodes, 34, 3–12.Google Scholar
  10. Cleal, C. J., Uhl, D., Cascales-Miñana, B., Thomas, B. A., Bashforth, A. R., King, S. C., & Zodrow, E. L. (2012). Plant biodiversity changes in Carboniferous tropical wetlands. Earth-Science Reviews, 114, 124–155.CrossRefGoogle Scholar
  11. Craighead, F. C., & Gilbert, V. C. (1962). The effects of Hurricane Donna on the vegetation of southern Florida. Quarterly Journal of the Florida Academy of Sciences, 25, 1–28.Google Scholar
  12. DiMichele, W. A. (2014). Wetland-Dryland vegetational dynamics in the Pennsylvanian ice age tropics. International Journal of Plant Sciences, 175, 123–164.CrossRefGoogle Scholar
  13. DiMichele, W. A., & Falcon-Lang, H. J. (2011). Pennsylvanian ‘fossil forests' in growth position (T0 assemblages): origin, taphonomic bias and palaeoecological insights. Journal of the Geological Society, 168, 585–605.CrossRefGoogle Scholar
  14. DiMichele, W. A., Gastaldo, R. A., & Pfefferkorn, H. W. (2005). Plant biodiversity partitioning in the Late Carboniferous and Early Permian and its implications for ecosystem assembly. Proceedings of the California Academy of Sciences, 56(Suppl 1), 32–49.Google Scholar
  15. DiMichele, W. A., Elrick, S. D., & Bateman, R. M. (2013). Growth habit of the late Paleozoicrhizomorphic tree-lycopsid family Diaphorodendra-ceae: Phylogenetic, evolutionary, and paleoecological significance. American Journal of Botany, 100, 1604–1625.Google Scholar
  16. Donnelly, J. P., Roll, S., Wengren, M., Butler, J., Lederer, R., & Webb, T. (2001). Sedimentary evidence of intense hurricane strikes from New Jersey. Geology, 29, 615–618.CrossRefGoogle Scholar
  17. Friese, F. (1936). Das Binnenklima von Urwälden im subtropischen Brazilien. Petermanns Geographische Mitteilungen, 82, 301–305.Google Scholar
  18. Gastaldo, R. A. (1985) Upper Carboniferous paleoecological reconstructions: observations and reconsiderations. Compte rendu 10e Congrès International de Stratigraphie et de Géologie Carbonifère (Madrid, 1983), 2, 281–296.Google Scholar
  19. Gastaldo, R. A. (1987). Confirmation of Carboniferous clastic swamp communities. Nature, 326, 869–871.CrossRefGoogle Scholar
  20. Gastaldo, R. A., Pfefferkorn, H. W., & DiMichele, W. A. (1995). Taphonomic and sedimentological characterization of roof-shale floras. Geological Society of America Memoirs, 185, 341–352.CrossRefGoogle Scholar
  21. Gastaldo, R. A., DiMichele, W. A., & Pfefferkorn, H. W. (1996). Out of the Icehouse into the Greenhouse: a Late Paleozoicanalog for modern global vegetational change. GSA Today, 6, 1–7.Google Scholar
  22. Gibling, M. R., & Davies, N. S. (2012). Palaeozoic landscapes shaped by plant evolution. Nature Geosciences, 5, 99–105.CrossRefGoogle Scholar
  23. Gibling, M. R., Saunders, K. I., Tibert, N. E., & White, J. A. (2004) Sequence sets, high accommodation events, and the Coal Window in the Carboniferous Sydney Coalfield, Atlantic Canada. In: J. C. Pashin & R. A. Gastaldo (Eds), Sequence stratigraphy, paleoclimate, and tectonics of coal-bearing strata (pp.169–197). Boulder Co: American Association of Petroleum Geologists (Studies in Geology, 51).Google Scholar
  24. Gibling, M. R., Davies, N. S., Falcon-Lang, H. J., Bashforth, A. R., DiMichele, W. A., Rygel, M. C., & Ielpi, A. (2013). Palaeozoic co-evolution of rivers and vegetation: a synthesis of current knowledge. Proceedings of the Geologists Association, 125, 524–533.CrossRefGoogle Scholar
  25. Hartley, A. J. (1993). A depositional model for the mid-Westphalian A to late Westphalian B Coal Measures of South Wales. Journal of the Geological Society, London, 150, 1121–1136.CrossRefGoogle Scholar
  26. Isbell, J. L., Miller, M. F., Wolfe, K. L., & Lenaker, P. A. (2011). Timing of late Paleozoic glaciation in Gondwana: was glaciation responsible for the development of northern hemisphere cyclothems? Geological Society of America Special Papers, 370, 5–24.Google Scholar
  27. Jerrett, R. M., Davies, R. C., Hodgson, D. M., Flint, S. S., & Chiverrell, C. (2011a). The significance of hiatal surfaces in coal seams. Journal of the Geological Society, London, 168, 629–632.CrossRefGoogle Scholar
  28. Jerrett, R. M., Flint, S. S., Davies, R. C., & Hodgson, D. M. (2011b). Sequence stratigraphic interpretation of a Pennsylvanian (Upper Carboniferous) coal from the central Appalachian Basin, USA. Sedimentology, 58, 1180–1207.CrossRefGoogle Scholar
  29. Liu, K., & Fearn, M. L. (2000). Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records. Quaternary Research, 54, 238–245.CrossRefGoogle Scholar
  30. Large, D. J. & Marshall, C. (2014) Use of carbonaccumulation rates to estimate the duration of coalseams and the influence of atmospheric dust depositionon coal composition. In D. G. Smith, R. J. Bailey, P. M. Burgess & A. J. Fraser (Eds), Strata and time: probing the gaps in our understanding. London: Geological Society (Special Publication 404). doi: 10.1144/SP404.15.
  31. Leary, R. L., & Thomas, B. A. (1989). Lepidodendron aculeatum with attached foliage: evidence of stem morphology and fossilization processes. American Journal of Botany, 76, 283–288.CrossRefGoogle Scholar
  32. Marsaglia, K. M., & Klein, G. D. (1983). The paleogeography of Paleozoic and Mesozoic storm depositional systems. The Journal of Geology, 91, 117–142.CrossRefGoogle Scholar
  33. Parrish, J. T. (1993). Climate of the supercontinent Pangea. The Journal of Geology, 101, 215–233.CrossRefGoogle Scholar
  34. Pfefferkorn, H. W. (1976). Pennsylvanian tree fern compression Caulopteris, Megaphyton, and Artisophyton gen. nov. in Illinois. Illinois State Geological Survey Circular, 492, 1–31.Google Scholar
  35. Phillips, T. L., & DiMichele, W. A. (1992). Comparative ecology and life-history biology of arborescent lycopsids in Late Carboniferous swamps on Euramerica. Annals of the Missouri Botanical Gardens, 79, 560–588.CrossRefGoogle Scholar
  36. Rowley, D. B., Raymond, A., Parrish, J. T., Lottes, A. L., Scotese, C. R., & Ziegler, A. M. (1985). Carboniferous paleogeographic, paleogeographic, and paleoclimatic reconstructions. International Journal of Coal Geology, 5, 7–42.CrossRefGoogle Scholar
  37. Scheihing, M. H. (1980). Reduction of wind velocity by the forest canopy and the rarity of non-arborescent plants in the Upper Carboniferous fossil record. Argumenta Palaeobotanica, 6, 133–138.Google Scholar
  38. Schultze, H.-P. (2009). Interpretation of marine and freshwater paleoenvironments in Permo–Carboniferous deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 281, 126–136.Google Scholar
  39. Scott, A. C. (1978). Sedimentological and ecological control of Westphalian B plant assemblages from West Yorkshire. Proceedings of the Yorkshire Geological Society, 41, 461–508.CrossRefGoogle Scholar
  40. Scott, A. C. & Stephens, R. S. (2014) British Pennsylvanian (Carboniferous) coal-bearing sequences: where is the time? In D. G. Smith, R. J. Bailey, P. M. Burgess & A. J. Fraser (Eds), Strata and time: probing the gaps in our understanding. London: Geological Society (Special Publication 404).doi:10.1144/SP404.14.
  41. Staub, J. R., Aming, H. L., & Gastaldo, R. A. (2000). Seasonal sediment transport and deposition in the Rajjang River delta, Sarawak, East Malasia. Sedimentary Geology, 133, 249–264.CrossRefGoogle Scholar
  42. Sumner, G. (1996). Precipitation weather. Geography, 81, 327–345.Google Scholar
  43. Tabor, N. J., & Montañez, I. P. (2002). Shifts in late Paleozoic atmospheric circulation over western equatorial Pangea: Insights from pedogenic mineral δ18O compositions. Geology, 30, 1127–1130.CrossRefGoogle Scholar
  44. Thomas, B. A. (2013). In situ stems: preservation states and growth habits of the Pennsylvanian (Carboniferous) calamitaleans based upon new studies of Calamites Sternberg, 1829 in the Duckmantian at Brymbo, North Wales, UK. Palaeontology, 57, 21–36.CrossRefGoogle Scholar
  45. Thomas, B. A., & Bek, J. (2014). A reassessment of the Pennsylvanian lycophyte cone Triplosporite Brown. Acta Geologica Polonica, 64, 139–145.CrossRefGoogle Scholar
  46. Thomas, B. A., & Cleal, C. J. (1999) Abscission in the fossil record. In M. R. Kurmann & A. R.Hemsley (Eds), Evolution of plant architecture (pp.183-203). Kew: Royal Botanic Gardens.Google Scholar
  47. van Soelen, E. E., Wagner-Cremer, F., Damste, J. S., & Reichart, G. J. (2013). Reconstructing tropical cyclone frequency using hydrogen isotope ratios of sedimentary n-alkanes in northern Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 376, 66–72.CrossRefGoogle Scholar
  48. Waters, C. N., & Condon, D. J. (2012). Nature and timing of Late Mississippian to Mid-Pennsylvanian glacio-eustatic sea-level changes of the Pennine Basin, UK. Journal of the Geological Society, London, 169, 37–51.CrossRefGoogle Scholar
  49. White, T. C., Gibling, M. R., & Kalkreuth, W. D. (1994). The Backpit seam, Sydney Mines Formation, Nova Scotia: a record of peat accumulation and drowning in a Westphalian coastal mire. Palaeogeography, Palaeoclimatology, Palaeoecology, 106, 223–239.CrossRefGoogle Scholar
  50. Wittry, J., Glasspool, I. J., Béthoux, O., Koll, R., & Cleal, C. J. (2014). A revision of the Pennsylvanian marattialean fern Lobatopteris vestita auct. and related species. Journal of Systematic Palaeontology. doi:10.1080/14772019.2014.936915.Google Scholar
  51. Wnuk, C., & Pfefferkorn, H. W. (1984). The life habits and palaeoecology of Middle Pennsylvanian medullosan pteridosperms based on an in situ assemblage from the Bernice Basin (Sullivan County, Pennsylvania, U.S.A.). Review of Palaeobotany and Palynology, 41, 329–351.CrossRefGoogle Scholar
  52. Wnuk, C., & Pfefferkorn, H. W. (1987). A Pennsylvanian-age storm deposit: using plant fossils to characterise the history and processes of sediment accumulation. Journal of Sedimentary Petrology, 57, 212–221.Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Biological, Environmental & Rural SciencesAberystwyth UniversityAberystwythUK
  2. 2.Department of Natural SciencesNational Museum WalesCardiffUK

Personalised recommendations