Palaeobiodiversity and Palaeoenvironments

, Volume 95, Issue 2, pp 149–158 | Cite as

Palynology of the Kazanian stratotype section (Permian, Russia): palaeoenvironmental and palaeoclimatic implications

  • Annette E. GötzEmail author
  • Vladimir V. Silantiev
Original Paper


Palynomorph assemblages reflect changes in land plant communities and are thus significant proxies to interpret palaeoenvironmental and palaeoclimatic changes. The Middle Permian of the East European Platform is crucial to the understanding of marine and non-marine palaeoclimate archives and interregional correlations of marine and non-marine successions, utilising palaeoclimate signatures documented in the palynological record. New palynological data from the Kazanian stratotype section are presented and interpreted with respect to palaeoenvironment and palaeoclimate. This dataset will serve as a basis for ongoing studies on the type area of the Kazanian and the mid-Permian biodiversity patterns, preceding the end-Guadalupian crisis and the changes of the end-Permian biotic diversification followed by the most severe extinction event in Earth’s history at the Permian-Triassic boundary.


Palaeoenvironment Palaeoclimate Palynology Permian Russia 



The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. We kindly acknowledge the constructive comments of Jörg W. Schneider (TU Bergakademie Freiberg) and Katrin Ruckwied (Shell International Exploration and Production, Houston).


  1. Balme BE (1980) Palynology of Permian–Triassic boundary beds at Kap Stosch, east Greenland. Medd Grønland 200(6)Google Scholar
  2. Bogov AV (1971) Stratigraphic significance of the spore and pollen assemblages in the Permian deposits of the Tatar ASSR. In: Ignatyev VI (ed) Geology of the Volga and Kama regions. Kazan University Press, Kazan, USSR, pp 157–164 (in Russian)Google Scholar
  3. Chalimbadja VG, Silantiev VV (1997) Conodonts from the upper Permian type strata of European Russia. Proc R Soc Victoria 110(1/2):137–145Google Scholar
  4. Chernykh VV, Chalimbadja VG, Silantiev VV (2001) Representatives of the Kamagnathus gen. nov. (conodonts) from Kazanian Stage of Volga region. Ekaterinburg. Inst Geol Geokhim Collected Articles 6:74–82 (in Russian)Google Scholar
  5. Chuvashov BI, Dyupina GV (1973) Upper Palaeozoic terrigenous deposits of western slope of Middle Urals. Trudy Inst Geol Geokhim Sverdlovsk 105:3–208 (in Russian)Google Scholar
  6. Esaulova NK, Lozovsky VR, Rozanov AY (eds) (1998) Stratotypes and reference sections of the Upper Permian in the regions of the Volga and Kama Rivers. Moscow, GEOS, 300 pGoogle Scholar
  7. Faddeyeva IZ (1974) Palynological characteristics of the stratotypes of the Permian stages in the USSR. In: Palynology of the Proterophytic and the Paleophytic. Proceedings of the 3rd International Palynological Conference, Nauka, Moscow, USSR, pp. 135–139Google Scholar
  8. Forsh NN (1955) The Permian deposits. The Ufa formation and the Kazanian stage. Tr Vsesoyuz Nauchno-issledov Inst Nov Ser 92:1–156 (in Russian)Google Scholar
  9. Gayazova AK (1974) Spore-pollen assemblages of the lower Kazanian deposits of the western part of the Orenburg oblast. In: Palynology of the Proterophytic and the Paleophytic. Proceedings of the 3rd International Palynological Conference, Nauka, Moscow, USSR, pp. 160–165Google Scholar
  10. Golubev VK (2000) The faunal assemblages of Permian terrestrial vertebrates from Eastern Europe. Palaeontol J 34(2):211–224Google Scholar
  11. Golubev VK (2001) Event stratigraphy and correlation of Kazanian marine deposits in the stratotype area. Strat Geol Corr 01/2001 9(5):454–472Google Scholar
  12. Gomankov AV (1992) The interregional correlation of the Tatarian and the problem of the Permian upper boundary. Int Geol Rev 34:1015–1020CrossRefGoogle Scholar
  13. Götz AE, Ruckwied K (2014) Palynological records of the Early Permian postglacial climate amelioration (Karoo Basin, South Africa). Palaeobio Palaeoenv 94(2):229–235CrossRefGoogle Scholar
  14. Götz AE, Ruckwied K, Barbacka M (2011) Reconstruction of Late Triassic (Rhaetian) and Early Jurassic (Hettangian) palaeoecology and palaeoenvironment of the Mecsek Coal Formation (S Hungary): implications from macro- and microfloral assemblages. Palaeobio Palaeoenv 91(2):75–88CrossRefGoogle Scholar
  15. Götz AE, Hancox J, Lloyd A (2013) Mozambique’s coal deposits: unique palaeoclimate archives of the Permian period. Mozambique Coal Conference, Fossil Fuel Foundation, 2 October 2013; JohannesburgGoogle Scholar
  16. Kotlyar GV, Golubev VK, Silantiev VV (2013) General stratigraphic scale of the Permian system: current state of affairs. In: Zakharov VA (ed) General stratigraphic scale of Russia. Geological Institute Press, Moscow, pp 171–179 (in Russian)Google Scholar
  17. Larochkina IA, Silantiev VV (2007) (eds.) Geologicheskie pamiatniki prirody Respubliki Tatarstan [Geological heritage of Tatarstan Republic]. Akvarel, Kazan, Russian Federation. (in Russian)Google Scholar
  18. Leonova TB (2007) Correlation of the Kazanian of the Volga–Urals with the Roadian of the global Permian scale. Palaeoworld 16:246–253CrossRefGoogle Scholar
  19. Makarova OV (2007) Miospores. In: Larochkina IA, Silantiev VV (eds) Geologicheskie pamiatniki prirody Respubliki Tatarstan [Geological heritage of Tatarstan Republic]. Akvarel, Kazan, Russian Federation, pp 82–83 (in Russian)Google Scholar
  20. Mangerud G (1994) Palynostratigraphy of the Permian and lowermost Triassic succession, Finnmark Platform, Barents Sea. Rev Palaeobot Palynol 82:317–349CrossRefGoogle Scholar
  21. Molin VA, Koloda NA (1972) Upper Permian spore and pollen assemblages of the north of the Russian platform. Nauka, Leningrad, 76 p; (in Russian)Google Scholar
  22. Ruckwied K, Götz AE, Pálfy J, Török Á (2008) Palynology of a terrestrial coal-bearing series across the Triassic/Jurassic boundary (Mecsek Mts., Hungary). Cent Eur Geol 51(1):1–15CrossRefGoogle Scholar
  23. Ruckwied K, Götz AE, Jones P (2014) Palynological records of the Permian Ecca Group (South Africa): Utilizing climatic icehouse-greenhouse signals for cross basin correlations. Palaeogeogr Palaeoclimatol Palaeoecol 413:167–172Google Scholar
  24. Shen SZ, Schneider JW, Angiolini L, Henderson CM (2013) The International Permian Timescale: March 2013 update. In: Lucas SG, DiMichele W, Barrick JE, Schneider JW, Spielmann JA (eds) The Carboniferous-Permian Transition. New Mexico Museum of Natural History and Science, Bulletin 60:411–416Google Scholar
  25. Silantiev VV (2001) The organic world of Kazan Ages on the East European platform. The Evolution of the Organic World. Evolution of Biota. Tomsk University Press, Tomsk, Russia, pp 732–737 (in Russian)Google Scholar
  26. Solodukho MG, Gusev AK, Ignatyev VI et al (1993) Permian system: guides to geological excursions in the Uralian type localities. Part 5. Volga Region. Occasional Publications. Earth Sci Res Inst N Ser 10:269–303Google Scholar
  27. Stratigraphic Code of Russia (2006) The third edition. VSEGEI, St. Petersburg, Russia, 96 p; (in Russian)Google Scholar
  28. Utting J, Esaulova NK, Silantiev VV, Makarova OV (1997) Late Permian palynomorph assemblages from Ufimian and Kazanian type sequences in Russia, and comparison with Roadian and Wordian assemblages from the Canadian Arctic. Can J Earth Sci 34:1–16CrossRefGoogle Scholar
  29. Varyukhina LM (1971) The spores and pollen of red-coloured and coal bearing deposits of the Permian and Triassic in the northeast part of Russia. Academy of Sciences, USSR, Komi Branch, Institute of Geology, Nauka, Leningrad, USSR, 159 p. (in Russian)Google Scholar
  30. Varyukhina LM, Koloda NA, Molin VA, Fefilova LA, Chalyshev VI (1975) Biogeographical zonation of the European North of the USSR (Permian and Triassic). Nauka, Leningrad, USSR, pp 100–229 (in Russian)Google Scholar
  31. Virbitskas AB (1983) Miospores. In: Meyen SV (ed) Paleontological atlas of Permian deposits from the Pechora coal basin. Nauka, Leningrad, pp 93–201 (in Russian)Google Scholar
  32. Ziegler AM, Hulver ML, Rowley DB (1997) Permian world topography and climate. In: Late glacial and postglacial environmental changes: Pleistocene, Carboniferous-Permian, and Proterozoic. Oxford University Press, Oxford: pp. 111–146Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of GeologyUniversity of PretoriaPretoriaSouth Africa
  2. 2.Kazan Federal UniversityKazanRepublic of Tatarstan, Russian Federation

Personalised recommendations