Palaeobiodiversity and Palaeoenvironments

, Volume 94, Issue 2, pp 237–270 | Cite as

Floodplain habitats of braided river systems: depositional environment, flora and fauna of the Solling Formation (Buntsandstein, Lower Triassic) from Bremke and Fürstenberg (Germany)

  • Evelyn KustatscherEmail author
  • Matthias Franz
  • Carmen Heunisch
  • Mike Reich
  • Torsten Wappler
Original Paper


The Solling Formation is the most distinctive unit of the Early Triassic Buntsandstein of the epicontinental Central European Basin. The Solling Formation of Bremke and Fürstenberg has yielded one of the richest and most diversified plant collections of the Middle Buntsandstein to date, one of the oldest floras in Europe after the end-Permian mass extinction. Based on the plant fossils, the Middle Buntsandstein ecosystem from Bremke and Fürstenberg represents not only one of the earliest floras in Europe after the end-Permian extinction but also one of the earliest Triassic occurrences of insect herbivory from any documented flora worldwide and thus provides a rare glimpse into the third pulse of herbivore expansion. Integrated palaeobotanical, palaeontological and sedimentological studies have enabled reconstruction of two different floodplain environmental settings of the Solling Formation, including their vegetation, the plant–insect interactions and revealing how important taphonomy and environmental settings were for the preservation of Middle Buntsandstein plants. At Bremke a levee-crevasse splay complex is reconstructed that tributed into perennial backwsamps and at Fürstenberg unconfined subaerial flows formed a sandy aggradational floodplain with ephemeral ponds. A rich plant community was established and became preserved in backswamps and ponds. This suggests that the scarcity of Buntsandstein floras is clearly related to taphonomical processes and not to extreme environmental conditions under arid or semi-arid climates.


Olenekian Crevasse splay levee Pleuromeia Tongchuanophyllum Voltzia 



This article is dedicated to Johanna H.A. van Konijnenburg-van Cittert on the occasion of her 70th birthday. We join the palaeobotanical community in saluting Han, who was a wonderful mentor (E.K.) and inspiration with her love and passion for research and her knowledge on palaeobotany and palynology. We appreciate the technical assistance of G. Hundertmark and T.R. Stegemann (Göttingen). Stimulating discussions (M.R.) on the Buntsandstein with J. Paul (Göttingen) are also gratefully acknowledged. The concluding drawing was made by Mattia Guberti (Ravenna). The authors acknowledge careful reviews by H.-G. Röhling (Hannover) and an anonymous reviewer. This paper is part of the project “The Permian-Triassic ecological crisis in the Dolomites: extinction and recovery dynamics in terrestrial ecosystems” funded by the Promotion of Educational Policies, University and Research Department of the Autonomous Province of Bolzano–South Tyrol. E.K. acknowledges financial support from the Alexander von Humboldt-Foundation (3.3-ITA/1141759STP).


  1. Abdullatif OM (1989) Channel-fill and sheet-flood facies sequences in the ephemeral terminal River Gash, Kassala, Sudan. Sed Geol 63:171–184Google Scholar
  2. Abel O (1939) Das Reich der Tiere. In: Ergänzungsband Tiere der Vorzeit in ihrem Lebensraum. Deutscher Verlag, BerlinGoogle Scholar
  3. Alberti F von (1834) Beitrag zu einer Monographie des Bunten Sandsteins, Muschelkalks und Keupers, und die Verbindung dieser Gebilde zu einer Formation. Cotta, Stuttgart and TübingenGoogle Scholar
  4. Allen JRL (1965) A review of the origin and characteristics of recent alluvial sediments. Sedimentology 5:89–191Google Scholar
  5. Allen JRL (1970) Physical processes of sedimentation. George Allen and Unwin, LondonGoogle Scholar
  6. Allen JRL (1982) Sedimentary structures; their character and physical basis, vol 1. Developments in sedimentology. Elsevier Science, AmsterdamGoogle Scholar
  7. Ansorge J (1999) Depository and publishing dates of the types described by Anton Handlirsch from the Upper Liassic of Dobbertin (Mecklenburg, Germany). Meganeura 1999:7–8Google Scholar
  8. Ansorge J, Brauckmann C (2008) Chaulioditidae from Germany with a description of a new specimen from the early Middle Triassic of Gambach/Main, Bavaria (Insecta: Grylloblattida). Entomol Gener 31:251–260Google Scholar
  9. Aristov DS (2004) Grylloblattids of the Family Chaulioditidae (=Tomiidae syn. nov.) (Insecta: Grylloblattida) from the Upper Permian of the Orenburg Region. Paleontol Zh 38[Suppl 2]:S146–S149Google Scholar
  10. Aristov DS (2011) New and little known Grylloblattida (Insecta) from Intertrappean deposits of the Tunguska Basin of Sibiria. Paleontol Zh 45:537–545Google Scholar
  11. Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sed Petrol 60:160–172Google Scholar
  12. Bachmann GH, Geluk MC, Warrington G, Becker-Roman A, Beutler G, Hagdorn H, Hounslow MW, Nitsch E, Röhling H-G, Simon T, Szulc A, with contributions by Michiel Dusar M, Nielsen LH, Barnasch J, Franz M (2010) Triassic. In: Doornenbal JC, Stevenson AG (eds) Petroleum geological atlas of the Southern Permian Basin area. EAGE Publications, Houten, pp 149–173Google Scholar
  13. Bachmann GH, Grosse S (1989) Struktur und Entstehung des Norddeutschen Beckens-geologische und geophysikalische Interpretation einer verbesserten Bouguer-Schwerekarte. Niedersächs Akad Geowiss Veröff 2:23–47Google Scholar
  14. Bachmann GH, Kozur H (2004) The Germanic Triassic: correlations with the international chronostratigraphic scale, numerical ages and Milankovitch cyclicity. Hallesches Jb Geowiss B 26:17–62Google Scholar
  15. Backhaus E (1974) Limnische und fluviatile Sedimentation im südwestdeutschen Buntsandstein. Geol Rundsch 63:925–942Google Scholar
  16. Bindig M (1991) Räumliche und zeitliche Entwicklung der fluviatilen Environments der Solling-Formation (Buntsandstein, Germanische Trias). PhD thesis. Technical University Darmstadt, DarmstadtGoogle Scholar
  17. Blanckenhorn M (1886) Die fossile Flora des Buntsandsteins und des Muschelkalks der Umgebung von Commern. Palaeontographica 32(4):117–154Google Scholar
  18. Boigk H (1959) Zur Gliederung und Fazies des Buntsandsteins zwischen Harz und Emsland. Geol Jb 76:597–636Google Scholar
  19. Bourke MC (1994) Cyclical construction and destruction of flood dominated floodplains in semiarid Australia. In: Olive LJ, Loughran RJ, Kesby JA (eds) Variability in stream erosion and sediment transport. Int Assoc Hydrol Sci 224:113–123Google Scholar
  20. Bown TM, Kraus MJ (1987) Integration of channel and floodplain suites. I. Developmental sequence and lateral relations of alluvial paleosols. J Sed Petrol 57:587–601Google Scholar
  21. Bridge JS (2003) Rivers and floodplains: forms, processes, and sedimentary record. Blackwell, OxfordGoogle Scholar
  22. Bridge JS, Best JL (1988) Flow, sediment transport and bedform dynamics over the transition from dunes to upper-stage plane beds: implications for the formation of planar laminae. Sedimentology 35:753–763Google Scholar
  23. Brierley GJ (1996) Channel morphology and element assemblages: a constructivist approach to facies modelling. In: Carling PA, Dawson MR (eds) Advances in Fluvial Dynamics and Stratigraphy. Wiley, Chichester, pp 263–298Google Scholar
  24. Brierley GJ, Ferguson RJ, Woolfe KJ (1997) What is a fluvial levee? Sed Geol 114:1–9Google Scholar
  25. Bristow CS, Skelly RL, Ethridge FG (1999) Crevasse splays from the rapidly aggrading, sand-bed, braided Niobrara River, Nebraska: effect of base-level rise. Sedimentology 46:1029–1049Google Scholar
  26. Broglio-Loriga C, Fugagnoli A, Van Konijnenburg-van Cittert JHA, Kustatscher E, Posenato R, Wachtler M (2002) The Anisian Macroflora from the Northern Dolomites (Kühwiesenkopf / Monte Pra della Vacca, Braies): a first report. Riv Ital Paleont Strat 108(3):381–389Google Scholar
  27. Brongniart AT (1828–1837) Histoire des végétaux fossiles, ou recherches botaniques et géologiques sur les végétaux renfermés dans les divers couches du globe. I. Dufour/d’Ocagne, Paris, AmsterdamGoogle Scholar
  28. Brüning U (1984) Zur Stratigraphie und Lithofazies des Unteren Buntsandsteins in Südniedersachsen und Nordhessen. PhD thesis. University of Würzburg, WürzburgGoogle Scholar
  29. Butler RJ, Brusatte SL, Reich M, Nesbitt SJ, Schoch RR, Hornung JJ (2011) The sail-backed reptile Ctenosauriscus from the latest early triassic of Germany and the timing and biogeography of the early archosaur radiation. PLoS ONE 6(10):1–28Google Scholar
  30. Béthoux O, Papier F, Nel A (2005) The Triassic radiation of the entomofauna. CR Palevol 4:609–621Google Scholar
  31. Chen ZQ, Benton MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geosci 5:375–383Google Scholar
  32. Clemmensen LB (1979) Triassic lacustrine red-beds and paleoclimate: The “Buntsandstein” of Helgoland and the Malmros Klingt Member of East Greenland. Geol Rundsch 68:748–774Google Scholar
  33. Coleman JM (1969) Brahmaputra River: channel processes and sedimentation. Sed Geol 3:129–239Google Scholar
  34. Collinson JD (1996) Alluvial sediments. In: Reading HG (ed) Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd edn. Blackwell Science, Oxford, pp 37–82Google Scholar
  35. Colombera L, Mountney NP, McCaffrey WD (2013) A quantitative approach to fluvial facies models: Methods and example results. Sedimentology 60:1526–1558Google Scholar
  36. Davies NS, Gibling MR (2010) Cambrian to Devonian evolution of alluvial systems: The sedimentological impact of the earliest land plants. Earth-Sci Rev 98:171–200Google Scholar
  37. Davies NS, Gibling MR (2013) The sedimentary record of Carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems. Earth-Sci Rev 120:40–79Google Scholar
  38. Diez JB, Broutin J, Grauvogel-Stamm L, Bourquin S, Bercovici A, Ferrer J (2010) Anisian floras from the NE Iberian Peninsula and Balearic Islands: a synthesis. Rev Palaeobot Palynol 162:522–542Google Scholar
  39. Diez JB, Grauvogel-Stamm L, Broutin J, Ferrer J, Gisbert J, Linana E (1996) Première découverte d’une paléoflore anisienne dans le faciès «Buntsandstein» de la branche ragonaise de la Cordillère Ibérique (Espagne). CR Acad Sci Paris 323:341–347Google Scholar
  40. DiMichele WA, Lucas SG, Krainer K (2012) Vertebrate trackways among a stand of Supaia white plants on an early Permian floodplain, New Mexico. J Paleontol 86:584–594Google Scholar
  41. Djordjevic-Milutinovic (2010) An overview of Paleozoic and Mesozoic sites with macroflora in Serbia. Bull Nat Hist Mus 3:27–46Google Scholar
  42. Dzik J (2008) Gill structure and relationships of the Triassic cycloid crustaceans. J Morphol 269:1501–1519Google Scholar
  43. Feist-Burkhardt S, Götz AE, Szulc J, Borkhataria R, Geluk M, Haas J, Hornung J, Jordan P, Kempf O, Michalik J, Nawrocki J, Reinhardt L, Ricken W, Röhling H-G, Rüffer T, Török A, Zühlke R (2008) Triassic. In: McCann T (ed) The geology of Central Europe. The Geological Society, London, pp 749–821Google Scholar
  44. Fisk HN (1944) Geological Investigation of the Alluvial Valley of the Lower Mississippi River. Mississippi River Commission, VicksburgGoogle Scholar
  45. Franke F (1936a) Equisetites asperrimus, ein neuer Equisetit aus dem Keuper Mittel-Deutschlands. Jb Preuss Geol LA 56(A):219–221Google Scholar
  46. Franke F (1936b) Eine Flora mit Farnstämmen aus dem unteren Keuper von Erfurt. Jb Preuss Geol LA 57(A):518–522Google Scholar
  47. Frentzen K (1915) Die Flora des Buntsandsteins Badens. Mitt Badisch Geol LA 8(1):63–162Google Scholar
  48. Fuchs G, Grauvogel-Stamm L, Mader D (1991) Une remarquable flore à Pleuromeia et Anomopteris in situ du Buntsandstein moyen (Trias Inferieur) de l’Eifel (R. F. Allemagne), Morphologie, Paléoécologie et Paléogéographie. Palaeontographica (B) 222(4–6):89–120Google Scholar
  49. Geluk MC (2005) Stratigraphy and tectonics of Permo-Triassic basins in the Netherlands and surrounding countries. PhD thesis. University of Utrecht, UtrechtGoogle Scholar
  50. Geluk MC, Röhling HG (1997) High-resolution sequence stratigraphy of the Lower Triassic „Buntsandstein“ in the Netherlands and northwestern Germany. Geol Mijnb 76:227–246Google Scholar
  51. Giebel CG (1853) Referat über Spieker. Zeitschrift für die gesamten Naturwissenschaften 2(7):34Google Scholar
  52. Glasspool I, Hilton J, Collinson ME, Wang S-J (2003) Foliar herbivory in Late Palaeozoic Cathaysian gigantopterids. Rev Palaeobot Palynol 127:125–132Google Scholar
  53. Goeppert HR (1836) Die fossilen Farnkräuter. Grass, Barth & Co., BreslauGoogle Scholar
  54. Grauvogel-Stamm L (1969) Nouveaux types d’organes reproducteurs male de coniféres du Grés á Voltzia (Trias inferieur) des Vosges. Bull Serv Carte Géol d’Alsaye et de Lorraine 22(2):93–120Google Scholar
  55. Grauvogel-Stamm L (1978) La flore du Grès à Voltzia (Buntsandstein supérieur) des Vosges du Nord (France). Morphologie, anatomie, interpretation phylogénétique et paléogéographie. Sci Geol Mem 50:1–255Google Scholar
  56. Grauvogel-Stamm L (1999) Pleuromeia sternbergii (Münster) Corda, eine charakteristische Pflanze des deutschen Buntsandsteins. In: Hauschke N, Wilde V (eds) Trias - Eine ganz andere Welt. Verlag Dr. Friedrich Pfeil, München, pp 271–282Google Scholar
  57. Grauvogel-Stamm L, Ash SR (2005) Recovery of the Triassic land flora from the end-Permian life crisis. CR Palevol. Gen Palaeont (Palaeoecol) 4:525–540Google Scholar
  58. Grauvogel-Stamm L, Kelber KP (1996) Plant-insect interactions and coevolution during the Triassic in Western Europe. Paleont Lombardia (NS) 5:5–23Google Scholar
  59. Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge University Press, CambridgeGoogle Scholar
  60. Grumbt E (1974) Sedimentgefüge im Buntsandstein Südwest- und Südthüringens. Schriftenr Geol Wiss 1:1–205Google Scholar
  61. Handlirsch A (1906–1908) Die fossilen Insekten und die Phylogenie der rezenten Formen. Ein Handbuch für Paläontologen und Zoologen. W. Engelmann, Leipzig, ix+ pp 1430 [the issue including the Chaulioditidae was published in 1906; cf. Ansorge 1999]Google Scholar
  62. Handlirsch A (1939) Neue Untersuchungen über die fossilen Insekten mit Ergänzungen und Nachträgen sowie Ausblicken auf phylogenetische, palaeogeographische und allgemein biologische Probleme. 2. Teil. Ann Naturhist Mus Wien 49:1–240Google Scholar
  63. Haubold (1966) Therapsiden- und Rhynchocephalen-Fährten aus dem Buntsandstein Südthüringens. Hercynia 3(2):147–183Google Scholar
  64. Haubold H (1971) Die Tetrapodenfährten des Buntsandsteins in der Deutschen Demokratischen Republik und in Westdeutschland und ihre Äquivalente in der gesamten Trias. Paläont Abh (A: Paläozool) 4(3):395–600Google Scholar
  65. Heer O (1865) Ueber die fossilen Kakerlaken. Vierteljahreschr Naturforsch Gesell Zürich 9(4):273–303Google Scholar
  66. Hornstein F (1876) Mittheilung an Professor H. B. Geinitz. N Jb Min Geol Paläont 1876:923–924Google Scholar
  67. Iannuzzi R, Labandeira CC (2008) The oldest record and early history of insect folivory. Ann Entomol Soc Am 101:79–94Google Scholar
  68. Jones TR (1862) A monograph of the fossil Estheriae. Palaeontogr Soc London 1862:1–134Google Scholar
  69. Jopling AV (1965) Hydraulic factors controlling the shape of laminae in laboratory deltas. J Sed Petrol 35:777–791Google Scholar
  70. Jopling AV, Walker RG (1968) Morphology and origin of ripple-drift cross-lamination, with examples from the Pleistocene of Massachusetts. J Sed Petrol 38:971–984Google Scholar
  71. Kelber KP (1983) Schizoneura paradoxa Schimper and Mougeout aus dem Unterem Keuper Frankens. Naturwiss Jb Schweinfurt 1:19–33Google Scholar
  72. Kelber KP, Hansch W (1995) Keuperpflanzen. Die Enträtselung einer über 200 Millionen Jahre alten Flora. Museo 11:1–157Google Scholar
  73. Kelber KP, Van Konijnenburg-van Cittert JHA (1998) Equisetites arenaceus from the Upper Triassic of Germany with evidence for reproductive strategies. Rev Palaeobot Palynol 100:1–26Google Scholar
  74. Kozur H (1976) Ökologisch-fazielle Probleme bei der stratigraphischen Gliederung und Korrelation der germanischen Trias. Jb Geol 7(8):70–90Google Scholar
  75. Kozur H, Seidel G (1983a) Revision der Conchostraken-Faunen des unteren und mittleren Buntsandsteins. Teil I. Z geol Wiss 11(3):295–423Google Scholar
  76. Kozur H, Seidel G (1983b) Die Biostratigraphie des unteren und mittleren Buntsandsteins des Germanischen Beckens unter besonderer Berücksichtigung der Conchostracen. Teil II zur Revision der Conchostracen-Faunen des unteren und mittleren Buntsandsteins. Z geol Wiss 11:429–464Google Scholar
  77. Kozur H, Weems RE (2010) The biostratigraphic importance of conchostracans in the continental Triassic of the northern hemisphere. In: Lucas SG (ed) The Triassic Timescale. Geol Soc London Spec Publ 334:315–417Google Scholar
  78. Krebs B (1969) Ctenosauriscus koeneni (v. Huene), die Pseudosuchia und die Buntsandstein-Reptilien. Ecl Geol Helvetiae 62:697–714Google Scholar
  79. Krämer F, Kunz H (1964) Fährtenfunde von Chirotherium barthi Kaup in der untersten Solling-Folge (Oberer Buntsandstein). Naturwiss 51:11Google Scholar
  80. Krämer F, Kunz H (1966) Chirotherium, das ‚unbekannte‘ Tier. Natur und Museum 96:12–19Google Scholar
  81. Krämer F, Kunz H (1969) Leithorizonte und Schichtausfälle im Buntsandstein Hessens und Thüringens. Oberrhein geol Abh 18:67–76Google Scholar
  82. Kustatscher E, Giordano D, Riva A (2011) La flora anisica della Valle di San Lucano. In: Aldighieri B, Testa B (eds) L'armonia fra uomo e natura nelle valli dolomitiche—Atti delle giornate di studio di Agordo. Aracne, RomeGoogle Scholar
  83. Kustatscher E, Heunisch C, Van Konijnenburg-van Cittert JHA (2012) Taphonomical implications of the Ladinian megaflora and Palynoflora of Thale (Germany). Palaios 27(11):753–764Google Scholar
  84. Kustatscher E, Van Konijnenburg-van Cittert JHA (2005) The Ladinian Flora (Middle Triassic) of the Dolomites: palaeoenvironmental reconstructions and palaeoclimatic considerations. Geo.Alp 2:31–51Google Scholar
  85. Kustatscher E, Van Konijnenburg-van Cittert JHA (2008) Lycophytes and horsetails from the Triassic Flora of Thale (Germany). N Jb Geol Paläont 250(1):65–77Google Scholar
  86. Kustatscher E, Van Konijnenburg-van Cittert JHA (2011) The ferns from the Triassic Flora of Thale (Germany). N Jb Geol Paläont 261:209–248Google Scholar
  87. Kustatscher E, Van Konijnenburg-van Cittert JHA (2013) Seed ferns from the European Triassic, an overview. In: Tanner LH, Spielmann J A, Lucas SG (eds) The Triassic System: New Developments in Stratigraphy and Paleontology. New Mexico Mus Nat Hist Sci Bull 61:331–344Google Scholar
  88. Kustatscher E, Van Konijnenburg-van Cittert JHA, Roghi G (2010) Macrofloras and palynomorphs as possible proxies for palaeoclimatic and palaeoecological studies: a case study of Kühwiesenkopf/Monte Prà della Vacca (Olang Dolomites, N-Italy). Palaeogeogr Palaeoclimatol Palaeoecol 291(1–2):71–80Google Scholar
  89. Labandeira CC (2005) The fossil record of insect extinction: new approaches and future directions. Am Entomol 51:14–29Google Scholar
  90. Labandeira CC (2006a) The four phases of plant–arthropod associations in deep time. Geol Acta 4:409–438Google Scholar
  91. Labandeira CC (2006b) Silurian to Triassic plant and hexapod clades and their associations: new data, a review, and interpretations. Arthropod Syst Phylogeny 64:53–94Google Scholar
  92. Labandeira CC (2013) A paleobiologic perspective on plant-insect interactions. Curr Opin Plant Biol 16:414–421Google Scholar
  93. Labandeira CC, Allen EG (2007) Minimal insect herbivory for the Lower Permian Coprolite Bone Bed site of north-central Texas, USA, and comparison to other Late Paleozoic floras. Palaeogeogr Palaeoclimatol Palaeoecol 245:197–219Google Scholar
  94. Labandeira CC, Johnson KR, Lang PJ (2002a) Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: Major extinction and minimum rebound. In: Hartman JH, Johnson KR, Nichols DJ (eds) The Hell Creek Formation of the Northern Great Plains. Geol Soc Am Spec Pap, Boulder, pp 297–327Google Scholar
  95. Labandeira CC, Johnson KR, Wilf P (2002b) Impact of the terminal Cretaceous event on plant-insect associations. Proc Natl Acad Sci USA 99:2061–2066Google Scholar
  96. Lange W (1922) Über neue Fossilfunde aus der Trias von Göttingen. Z Dt Geol Ges 74:162–168Google Scholar
  97. Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. Freeman, San FranciscoGoogle Scholar
  98. Lepper J (1976). Erläuterungen zur Geologischen Karte von Nordrhein-Westfalen, 1:25 000 Blatt 4322 Karlshafen. Geol LA NRW, KrefeldGoogle Scholar
  99. Lepper J, Rambow D, Röhling HG (2005) Der Buntandstein in der stratigraphischen Tabelle von Deutschland 2002. Newsl Stratigr 41:129–142Google Scholar
  100. Lepper J, Röhling HG (1998) Buntsandstein: In: Bachmann GH, Beutler G, Lerche I (eds) Epicontinental 1 Triassic International Symposium—Excursions. Hallesches Jb Geowiss (B) Beih 6:27–34Google Scholar
  101. Littke R, Scheck-Wenderoth M, Brix MR, Nelskamp S (2008) Subsidence inversion and evolution of the thermal field. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex sedimentary basins. The example of the Central European basin system. Springer, Berlin, pp 125–152Google Scholar
  102. Looy CV, Brugman WA, Dilcher DL, Visscher H (1999) The delayed resurgence of equatorial forests after the Permian-Triassic ecologic crisis. Proc Natl Acad Sci USA 96:13857–13862Google Scholar
  103. Mader D (1982) Genese des mitteleuropäischen Buntsandsteins. Entwicklungsgeschichte einer kontinentalen Rotformation. Naturwiss 69:311–325Google Scholar
  104. Mader D (1984) Fossil-Lagerstätten des mitteleuropäischen Buntsandsteins. Naturwiss 71:137–146Google Scholar
  105. Mader D (1990) Palaeoecology of the Flora in Buntsandstein and Keuper in the Triassic of Middle Europe, vol. 1 (Buntsandstein) and vol. 2 (Keuper and Index). Gustav Fischer Verlag, StuttgartGoogle Scholar
  106. McLoughlin S (1993) Plant fossil distributions in some Australian Permian non-marine sediments. Sed Geol 85:601–619Google Scholar
  107. Meischner KD (1962) Neue Funde von Psammolimulus gottingensis (Merostomata, Xiphosura) aus dem Mittleren Buntsandstein von Göttingen. In: Rabien A (coord) Festband Hermann Schmidt zur Vollendung des 70. Lebensjahres am 3. Paläont Gesell, Stuttgart, pp 185–193Google Scholar
  108. Meischner KD (1963) Psammolimulus und Halicyne im Göttinger Buntsandstein. In: Anonymous (ed) Kurzberichte zu den Vorträgen der Tübinger Tagung. Paläontol Z 37:16Google Scholar
  109. Meng F (1996) Floral palaeoecological environment of Badong Formation in the Yangtze Gorge area. Geol Min Resour South China 1996–04:1–13Google Scholar
  110. Meng F, Zhenlai Z, Zhijun N, Dayou C (2000) Primitive lycopsid flora in the Yangtze Valles of China and systematics and evolution of Isoëtales. Science and Technology Press, ChangskaGoogle Scholar
  111. Miall AD (1977) A review of the braided river depositional environment. Earth Sci Rev 13:1–62Google Scholar
  112. Miall AD (1996) The geology of fluvial deposits. Springer, BerlinGoogle Scholar
  113. Middleton GV (1976) Hydraulic interpretation of sand size distributions. J Geol 84:405–426Google Scholar
  114. Mägdefrau K (1931) Die fossile Flora von Singen in Thüringen und die pflanzengeografischen Verhältnisse in Mitteleuropa zur Buntsandsteinzeit. Beih Dt Bot Ges 49(6):298–308Google Scholar
  115. Mägdefrau K (1936) Die fossile Flora von Singen in Thüringen. Ein Lebensbild aus der Buntsandsteinzeit. Thüringer Fähnlein 1:3–11Google Scholar
  116. Mägdefrau K (1968) Paläobiologie der Pflanzen, 4th edn. Gustav Fischer, JenaGoogle Scholar
  117. Müller AH (1982) Über Hyponome fossiler und rezenter Insekten, erster Beitrag. Freiberger Forschh (C) 366:7–27Google Scholar
  118. Nanson GC, Croke JC (1992) A genetic classification of floodplains. In: Brakenridge GR, Hagedorn J (eds) Floodplain evolution. Geomorphology 4:459–486Google Scholar
  119. North CP, Davidson SK (2012) Unconfined alluvial flow processes: recognition and interpretation of their deposits, and the significance for palaeogeographic reconstructions. Earth-Sci Rev 111:199–223Google Scholar
  120. Olsen H (1988) The architecture of a sandy braided–meandering river system: an example from the Lower Triassic Solling Formation (M Buntsandstein) in W-Germany. Geol Rundsch 77:797–814Google Scholar
  121. Paola C, Wiele SM, Reinhart MA (1989) Upper-regime parallel lamination as the result of turbulent sediment transport and low-amplitude bed forms. Sedimentology 36:47–59Google Scholar
  122. Parkash B, Awasthi AK, Gohain K (1983) Lithofacies of the Markanda terminal fan, Kurukshetra district, Haryana, India. In: Collinson JD, Lewin J (eds) Modern and ancient fluvial systems. Int Assoc Sediment Spec Publ 6:337–344Google Scholar
  123. Paul J (1982) Der Untere Buntsandstein des Germanischen Beckens. Geol Rundsch 71:795–811Google Scholar
  124. Paul J (1993) Anatomie und Entwicklung eines permo-triassischen Hochgebietes: die Eichsfeld-Altmark-Schwelle. Geol Jb (A) 131:197–218Google Scholar
  125. Paul J (2013) Die Beckenfazies des Buntsandsteins: Playa- und Fluss-Ablagerungen, Stromatolithen und Klimazyklen (Exkursion C am 4. April 2013). In: Geologische Exkursionen in die Region um Göttingen. Jber Mitt oberrhein geol Ver (N.F.) 95:49–70Google Scholar
  126. Paul J, Klarr K (1988) Feinstratigraphie und Fazies des Unteren und Mittleren Buntsandsteins in der Bohrung Remlingen 5. GSF-Bericht 8(87):1–148Google Scholar
  127. Prevec R, Labandeira CC, Neveling J, Gastaldo RA, Looy CV, Bamford M (2009) Portrait of a Gondwanan ecosystem: a new late Permian fossil locality from KwaZulu-Natal, South Africa. Rev Palaeobot Palynol 156:454–493Google Scholar
  128. Reible P (1962) Die Conchostraken (Branchiopoda, Crustacea) der Germanischen Trias. N Jb Geol Paläont, Abh 114:169–244Google Scholar
  129. Reineck HE (1963) Sedimentgefüge im Bereich der südlichen Nordsee. Abh Senckenberg naturforsch Ges 505:1–138Google Scholar
  130. Reineck HE, Singh IB (1973) Depositional sedimentary environments—with reference to terrigenous clastics. Springer, BerlinGoogle Scholar
  131. Rettig B (1996) Die Solling-Folge (Mittlerer Buntsandstein) im Grenzgebiet Niedersachsen–Thüringen–Hessen. Mitt Geol Inst Univ Hannover 35:1–107Google Scholar
  132. Roman A (2004) Sequenzstratigraphie und Fazies des Unteren und Mittleren Buntsandsteins im östlichen Teil des Germanischen Beckens (Deutschland, Polen). PhD thesis. University of Halle, Halle (Saale)Google Scholar
  133. Roth LM (1991) Blattodea, Blattaria (Cockroaches). In: Commonwealth Scientific and Industrial Research Organization (ed) The insects of Australia: A textbook for students and research workers. Melbourne University Press, Melbourne, pp 320–329Google Scholar
  134. Roopnarine PD, Angielczyk KD, Wang SC, Hertog R (2007) Trophic network models explain instability of Early Triassic terrestrial communities. Proc R Soc Lond Biol 272:2077–2086Google Scholar
  135. Rouse H (1939) Experiments on the mechanics of sediment suspension. In: 5th International Congress on Applied Mechanics. Wiley, New York, pp 550–554Google Scholar
  136. Röhling HG (1986) Die Gliederung des Unteren und Mittleren Buntsandsteins nach Bohrlochmessungen (Gamma-Ray und Sonic-Log) im Nordwestdeutschen Becken. Ber Bundesanst Geowiss Rohstoffe, 92 ppGoogle Scholar
  137. Röhling HG (1991) A lithostratigraphic subdivision of the Lower Triassic in the Northwest German Lowlands and the German sector of the North Sea, based on Gamma-Ray and Sonic Iogs. Geol Jb (A) 119:3–24Google Scholar
  138. Röhling HG, Stollhofen H, Tietze KW (2002) Trias-Exkursion I. Buntsandstein zwischen Hannover und Würzburg. In: Niebuhr B (ed) Geo2002 Planet Erde: Vergangenheit, Entwicklung. Zukunft. Schriftenreihe Dt Geol Ges 22:5–28Google Scholar
  139. Sander M, Gee CT (1994) Der Buntsandstein der Eifel. In: Koenigswald K, Meyer W (eds) Erdgeschichte im Rheinland. Verlag Dr. Friedrich Pfeil, München pp 117–124Google Scholar
  140. Schenk A (1864) Beiträge zur Flora des Keupers und der rhätischen Formation. Ber naturforsch Ges Bamberg 7:51–142Google Scholar
  141. Schimper WP, Mougeot A (1844) Monographie des Plants fossiles du Grès Bigarré de la chaine des Vosges. Chez Guillaume Engelmann, LeipzigGoogle Scholar
  142. Schlüter H, Schmidt H (1927) Voltzia, Yuccites und andere neue Funde aus dem südhannoverschen Buntsandstein. N Jb Min Paläont (B: Geol u Paläont), Beil-Bd 57:12–27Google Scholar
  143. Schmidt H (1927) Exkursion nach Diemarden und Bremke (Muschelkalk und Buntsandstein). In: Schmidt H (Ed) Die Tagung der Palaeontologischen Gesellschaft in Göttingen (29. September bis 4. Oktober 1926): Die Exkursionen. Paläontol Z 9:2–4Google Scholar
  144. Schmidt M (1928) Die Lebewelt unserer Trias. F. Rau, OehringenGoogle Scholar
  145. Schmidt M (1938) Die Lebewelt unserer Trias. Nachtrag. F. Rau, OehringenGoogle Scholar
  146. Schneider J (1984) Zur Entomofauna des Jungpaläozoikums der Boskovicer Furche (ČSSR) Teil II: Phyloblattidae (Insecta, Blattodea). Freiberger Forschh (C) 395:19–37Google Scholar
  147. Schram FR, Vonk R, Hof CHJ (1997) Mazon Creek Cycloidea. J Paleontol 71:261–284Google Scholar
  148. Schröder B (1982) Entwicklung des Sedimentbeckens und Stratigraphie der klassischen germanischen Trias. Geol Rundsch 71:783–794Google Scholar
  149. Schulz R, Röhling H-G (2000) Geothermische Ressourcen in Nordwestdeutschland. Z angew Geol 46:122–129Google Scholar
  150. Schumm SA (1968) Speculations concerning paleohydrologic controls of terrestrial sedimentation. GSA Bull 79:1573–1588Google Scholar
  151. Scott AC, Anderson JM, Anderson HM (2004) Evidence of plant-insect interactions in the Upper Triassic Molteno Formation of South Africa. J Geol Soc 161:401–410Google Scholar
  152. Scott AC, Stephenson J, Chaloner WG (1992) Interaction and coevolution of plants and arthropods during the Palaeozoic and Mesozoic. Phil Trans R Soc B 335:129–165Google Scholar
  153. Seward AC (1917) Fossil plants, III Pteridospermae, Cycadofilices, Cordaitales, Cycadophyta. University Press, CambridgeGoogle Scholar
  154. Seyfullah LJ, Kustatscher E, Taylor W (2013) Middle Triassic plants from Bromsgrove (Worcestershire, U.K.) with the first discovery of in situ Verrucosisporites applanatus spores. Rev Palaeobot Palynol 197:15–25Google Scholar
  155. Sharov AG (1962) Otryad Paraplecoptera. In: Orlov YA (ed) Osnovy Paleontologii 9:119–134Google Scholar
  156. Shcherbakov DE (2008a) Insect recovery after the Permian/Triassic crisis. Alavesia 2:125–131Google Scholar
  157. Shcherbakov DE (2008b) On Permian and Triassic insect faunas in relation to biogeography and the Permian–Triassic crisis. Paleontol Zh 42:15–31Google Scholar
  158. Shen G (1990) Neocalamites rugosus Sze and Equisetites asperrimus Franke are synonymum. Sci Geol Sinica 7(33):302–305Google Scholar
  159. Shukla UK, Singh IB (2004) Signature of palaeofloods in sandbar-levee deposits, Ganga Plain, India. J Geol Soc India 64:455–460Google Scholar
  160. Smith ND (1972) Flume experiments on the durability of mudclasts. J Sediment Petrol 42:378–384Google Scholar
  161. Stampfli G, Kozur H (2006) Europe from the Variscan to the Alpine cycles. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Mem Geol Soc London 32:57–82Google Scholar
  162. Stollhofen H, Barnasch J, Bayer U, Beutler G, Franz M, Kästner M, Legler B, Mutterlose J, Radies D mit Beiträgen, von Bachmann GH, Littke R, Maystrenko Y, Voigt T, Winsemann J (2008) Upper Rotliegend to Lower Cretaceous basin development. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex sedimentary basins. The example of the Central European basin system. Springer, Berlin, pp 181–210Google Scholar
  163. Sze HC (1956) Mesozoic plants from the Yenchang Formation, Northern Shensi. Palaeont Sinica (NS A) 5:1–127Google Scholar
  164. Szulc J (2000) Middle Triassic evolution of the northern Peri-Tethys area as influenced by early opening of the Tethys Ocean. Ann Soc Geol Pol 70:1–48Google Scholar
  165. Szurlies M (2001) Zyklische Stratigraphie und Magnetostratigraphie des Unteren Buntsandsteins in Mitteldeutschland, PhD thesis. University of Halle, Halle (Saale)Google Scholar
  166. Szurlies M (2005) Buntsandstein. In: Menning, M, Gast R, Hagdorn H, Käding KC, Simon T, Szurlies M, Nitsch E (eds) Zeitskala für Perm und Trias in der Stratigraphischen Tabelle von Deutschland 2002, zyklostratigraphische Kalibrierung der höheren Dyas und Germanischen Trias und das Alter der Stufen Roadium bis Rhaetium 2005. Newsl Stratigr 43:173–210Google Scholar
  167. Szurlies M (2007) Latest Permian to Middle Triassic cyclomagnetostratigraphy from the Central European Basin: Germany: Implications for the geomagnetic polarity timescale. Earth Planet Sci Lett 261:602–619Google Scholar
  168. Szurlies M, Bachmann GH, Menning M, Nowaczyk NR, Kading KC (2003) Magnetostratigraphy and high-resolution lithostratigraphy of the Permian-Triassic boundary interval in Central Germany. Earth Planet Sci Lett 212:263–278Google Scholar
  169. Tasch P (1969) Branchiopoda. In: Moore RC (ed) Treatise on Invertebrate Paleontology. Part R, Arthropoda 4. Geological Society of America/University of Kansas Press, Boulder/Lawrence, pp 128–191Google Scholar
  170. Thiéry P (1996) Branchiopodes. I. Orderes des anostracés, notostracés, Spinicaudata et Laevicaudata (Anostraca Sars, 1867. Notostraca Sars, 1867. Spinicaudata Linder, 1945. Laevicaudata Linder, 1945). In: Forest J (ed) Traité de Zoologie, anatomie, systématique, biologie, Crustacés généralités (suite) et systématique. Masson, Paris, pp 285–351Google Scholar
  171. Tietze KW (1982) Zur Geometrie einiger Flüsse im Mittleren Buntsandstein (Trias). Geol Rundsch 71:813–828Google Scholar
  172. Todesco R, Wachtler M, Kustatscher E, Avanzini M (2008) Preliminary report on a new vertebrate track and flora site from Piz da Peres (Anisian-Illyrian): Olanger Dolomites, Northern Italy. Geo Alp 5:121–137Google Scholar
  173. Tomsich CS, McCarthy PJ, Fowell SJ, Sunderlin D (2010) Paleofloristic and paleoenvironmental information from a Late Cretaceous (Maastrichtian) flora of the lower Cantwell Formation near Sable Mountain, Denali National Park, Alaska. Palaeogeogr Palaeoclimatol Palaeoecol 295:389–408Google Scholar
  174. Tong J, Zhang S, Zuo J, Xiong X (2007) Events during Early Triassic recovery from the end-Permian extinction. Glob Planet Change 55:66–80Google Scholar
  175. Tooth S (1999) Downstream changes in floodplain character on the Northern Plains of arid central Australia. In: Smith ND, Rogers J (eds) Fluvial Sedimentology VI. IAS Spec Pub 28:93–112Google Scholar
  176. Trendell AM, Nordt LC, Atchley SC, Leblanc SL, Dworkin SI (2013) Determing floodplain plant distributions and populations using paleopedology and fossil root traces: upper Triassic Sonsela Member of the Chinle Formation at Petrified Forest National Park, Arizona. Palaios 28:471–490Google Scholar
  177. Trusheim F (1961) Über Diskordanzen im Mittleren Buntsandstein Norddeutschlands zwischen Ems und Weser. Erdöl-Z 77:361–367Google Scholar
  178. Trusheim F (1963) Zur Gliederung des Buntsandsteins. Erdöl-Z 79:277–292Google Scholar
  179. van Ameron HWJ (1966) Phagophytichnus ekowski nov. ichnogen. & nov. ichnosp., eine Missbildung infolge von Insektenfrass, aus dem spanischen Stephanien (Provinz Leon). Leidse Geol Meded 38:181–184Google Scholar
  180. Van Konijnenburg-van Cittert JHA, Kustatscher E, Wachtler M (2006) Middle Triassic (Anisian) ferns from Kühwiesenkopf (Prà della Vacca, Dolomites, Northern Italy). Palaeontology 49(5):943–968Google Scholar
  181. Vishnyakova VN (1998) Cockroaches (Insecta, Blattoidea) from the Triassic Madygen Locality, Central Asia. Paleontol Zh 32(5):69–79Google Scholar
  182. von Huene F (1902) Übersicht über die Reptilien der Trias. Geol Paläont Abh 10:1–84Google Scholar
  183. von Huene F (1914) Neue Beschreibung von Ctenosaurus aus dem Göttinger Buntsandstein. Centralbl Min. Geol Paläont 1914:496–499Google Scholar
  184. von Huene F (1942) Zur Auffassung von Ctenosaurus. Centralbl Min Geol Paläont 1942:220–222Google Scholar
  185. Vršanský P (2010) A new genus and species of cockroach (Blattida: Phyloblattidae) from the Permian/Triassic boundary beds of Tunguska Basin in eastern Siberia, Russia. Zootaxa 2353:55–61Google Scholar
  186. Wang ZQ (1996) Recovery of vegetation from the terminal Permian mass extinction in North China. Rev Palaeobot Palynol 91:121–142Google Scholar
  187. Wappler T, Currano ED, Wilf P, Rust J, Labandeira CC (2009) No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverse middle Palaeocene plants, Menat, France. Proc R Soc Lond Biol 276:4271–4277Google Scholar
  188. Weber J (2000) Kieselsäurediagenese und gekoppelte Sedimentarchitektur—eine Beckenanalyse des Reinhardswald-Troges (Norddeutsches Becken, Solling-Folge, Mittlerer Buntsandstein). Kölner Forum Geol u Paläont 7:1–165Google Scholar
  189. Weber J, Ricken W (2005) Quartz cementation and related sedimentary architecture of the Triassic Solling Formation, Reinhardswald Basin, Germany. Sediment Geol 175:459–477Google Scholar
  190. Wilf P, Labandeira CC, Johnson KR, Ellis B (2006) Decoupled plant and insect diversity after the End-Cretaceous extinction. Science 313:1112–1115Google Scholar
  191. Wills LJ (1910) On the fossiliferous Lower Keuper rocks of Worcestershire with descriptions of some of the plant and animals discovered therein. Proc Geol Assoc 21(5):249–332Google Scholar
  192. Wolman MG, Leopold LB (1957) River flood plains: some observations on their formation. US Geol Surv Prof Pap 282C:87–107Google Scholar
  193. Wycisk P (1984) Faziesinterpretation eines kontinentalen Sedimentationstroges (Mittlerer Buntsandstein/Hessische Senke). Berliner Geowiss Abh (A) 54:1–104Google Scholar
  194. Xiong C, Wang Q (2011) Permian–Triassic land-plant diversity in South China: Was there a mass extinction at the Permian/Triassic boundary? Paleobiology 37:157–167Google Scholar
  195. Zhou H, Huang Z (1980) In: Huang Z, Zhou H (ed) Fossil plants. Mesozoic stratigraphy and palaentology of the basins of Shanxi Gansu and Ningxia, Geol. Publ. House, Beijing (in Chinese), 1:43–104Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Evelyn Kustatscher
    • 1
    • 2
    Email author
  • Matthias Franz
    • 3
  • Carmen Heunisch
    • 4
  • Mike Reich
    • 5
  • Torsten Wappler
    • 6
  1. 1.Naturmuseum SüdtirolBolzano-BozenItaly
  2. 2.Department für Geo- und Umweltwissenschaften, Paläontologie und GeobiologieLudwig-Maximilians-Universität München and Bayerische Staatssammlung für Paläontologie und GeobiologieMunichGermany
  3. 3.TU Bergakademie Freiberg, Institut für GeologieFreibergGermany
  4. 4.Landesamt für Bergbau, Energie und GeologieHannoverGermany
  5. 5.Department of GeobiologyUniversity of Göttingen, Geoscience Museum and Geoscience CentreGöttingenGermany
  6. 6.Steinmann Institut für Geologie, Mineralogie und PaläontologieUniversität BonnBonnGermany

Personalised recommendations