Palaeobiodiversity and Palaeoenvironments

, Volume 94, Issue 2, pp 307–325 | Cite as

Divaricate growth habit in Williamsoniaceae (Bennettitales): unravelling the ecology of a key Mesozoic plant group

  • Christian PottEmail author
  • Stephen McLoughlin
Original Paper


Representatives of Williamsoniacae (Bennettitales) are usually restored as small-leafed shrubs or low-growing trees with densely interlaced stems bifurcating or trifurcating at broad angles—a growth form referred to as divaricating. A divaricate plant architecture has evolved independently in at least 18 modern plant families, of which the majority occur in New Zealand, where they constitute more than 10 % of the flora. Botanists favour two or three hypotheses on the benefits of a divaricating habit for modern plants. One hypothesis favours the evolution of this habit to protect the foliage and reproductive structures from browsing by large mammals or large flightless birds, such as the recently extinct moa or other ratites. Another argues that this habit evolved in response to a dry, windy or frosty climate, whereas a third regards divarication as having evolved to optimise foliar light harvesting. Our evaluation of these hypotheses with respect to the ecological pressures known to have been experienced by Williamsoniaceae in the mid-Mesozoic reveals that although defence against browsing tetrapods cannot be excluded as a selective pressure that promoted divarication in Williamsoniaceae, many of the anatomical and morphological features of this family appear to represent responses to local environmental conditions. In this context, representatives of Williamsoniaceae have many characters that are convergent with members of Banksiinae (Proteaceae), suggesting adaptation to open vegetation communities on nutrient-deficient soils.


Browsing protection Sauropods Herbivorous dinosaurs Banksia Daohugou Scania 



Svend Funder from the Natural History Museum of Denmark, Copenhagen, is thanked for making the Greenland fossils available for study, and Cornelia Dilger-Endrulat from the Botanical Institute of the University of Tübingen, Germany, allowed the loan and study of the Yorkshire specimen. Wang Jun from the Nanjing Institute of Geology and Palaeontology, Academia Sinica (NIGPAS), Nanjing, PR China, and Zheng Xiaoting and Zhang Xiaomei from the Shandong Tianyu Museum of Nature, Pingyi, Shandong, PR China, permitted the publication of the Anomozamites villosus specimens. Pollyanna von Knorring, Palaeobiology Department, Swedish Museum of Natural History, Stockholm, Sweden, made the beautiful illustrations of the reconstructed Williamsoniaceae. CP and SM acknowledge research grants from the Swedish Research Council (Vetenskapsrådet), Stockholm. Sidney Ash (University of New Mexico, Albuquerque, USA) and Michael Krings (Ludwig-Maximilians-University, Munich, Germany) are sincerely thanked for their comments on the manuscript.


  1. Angiosperm Phylogeny Group (APG) III (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  2. Atkinson IAE, Greenwood RM (1989) Relationships between moas and plants. NZ J Ecol 12[Suppl]:67–97Google Scholar
  3. Barrett PM, Willis KJ (2001) Did dinosaurs invent flowers? Dinosaur–angiosperm coevolution revisited. Biol Rev 76:411–447CrossRefGoogle Scholar
  4. Barrett PM, Butler RJ, Nesbitt SJ (2011) The roles of herbivory and omnivory in early dinosaur evolution. Earth Environ Sci Trans R Soc Edinburgh 101:383–396CrossRefGoogle Scholar
  5. Bell AD (2008) Plant form. Timber Press, PortlandGoogle Scholar
  6. Benton MJ (2005) Vertebrate palaeontology, 3rd edn. Blackwell, New YorkGoogle Scholar
  7. Benton MJ, Spencer PS (1995) Fossil reptiles of Great Britain. Chapman & Hall, LondonCrossRefGoogle Scholar
  8. Blakey R (2005) Global earth history. Available at:∼rcb7/RCB.html. Accessed 24 Oct 2013
  9. Bond WJ, Lee WG, Craine JM (2004) Plant structural defences against browsing birds: a legacy of New Zealand’s extinct moas. OIKOS 104:500–508CrossRefGoogle Scholar
  10. Bose MN, Pal PK, Harris TM (1985) The Pentoxylon plant. Phil Trans R Soc Lond B 310:77–108CrossRefGoogle Scholar
  11. Bresinsky A, Körner C, Kadereit JW, Neuhaus G, Sonnewald U (2008) Strasburger—Lehrbuch der Botanik. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  12. Brockie B (2012) Native plants and animals—Unusual plant features. Te Ara–The Encyclopedia of New Zealand. Available at: Accessed 24 Oct 2013
  13. Burrows CJ (1980) Some empirical information concerning the diet of moas. NZ J Ecol 3:125–130Google Scholar
  14. Burrows CJ (1989) Moa browsing: evidence from the Pyramid Valley mire. NZ J Ecol 12[Suppl]:51–56Google Scholar
  15. Burrows CJ, McCulloch B, Trotter M (1981) The diet of moas based on gizzard samples from Pyramid Valley, North Canterbury, and Scaife’s Lagoon, Lake Wanaka, Otago. Rec Canterb Mus 9:309–336Google Scholar
  16. Carpenter RJ (2012) Proteaceae leaf fossils: phylogeny, diversity, ecology and austral distributions. Bot Rev 78:261–287CrossRefGoogle Scholar
  17. Chin K (2007) The paleobiological implications of herbivorous dinosaur coprolites from the Upper Cretaceous Two Medicine Formation of Montana: why eat wood? Palaios 22:554–566CrossRefGoogle Scholar
  18. Cleal CJ, McAllister Rees P, Zijlstra G, Cantrill DJ (2006) A clarification of the type of Nilssoniopteris Nathorst (fossil Gymnospermophyta, Bennettitales). Taxon 55:219–222Google Scholar
  19. Cockayne L (1912) Observations concerning evolution, derived from ecological studies in New Zealand. Trans Proc NZ Inst 44:1–30Google Scholar
  20. Collins K, Collins K, George AS (2009) Banksias. Bloomings Books, ToorakGoogle Scholar
  21. Cooper A, Atkinson IAE, Lee WG, Worthy TH (1993) Evolution of the moa and their effect on the flora of New Zealand. Trends Ecol Evol 8:433–437CrossRefGoogle Scholar
  22. Dawson JW (1988) Forest vines to snow tussocks: the story of New Zealand plants. Victoria University Press, WellingtonGoogle Scholar
  23. Delevoryas T, Hope RC (1976) More evidence for a slender growth habit in Mesozoic cycadophytes. Rev Palaeobot Palynol 2:93–100CrossRefGoogle Scholar
  24. Diels L (1897) Vegetationsbiologie von Neu-Seeland. Bot Jahrb Syst Pflanzengesch Pflanzengeogr 22:202–300Google Scholar
  25. Fahn A, Cutler DF (1992) Xérophytes. Gebr. Borntraeger, StuttgartGoogle Scholar
  26. Fastovsky DE, Smith JB (2004) Dinosaur paleoecology. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria, 2nd edn. University of California Press, Berkeley, pp 614–626Google Scholar
  27. Friis EM, Crane PR, Pedersen KR (2011) Early flowers and angiosperm evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. George AS, Gardner CA (1984) The Banksia book. Kangaroo Press, RosevilleGoogle Scholar
  29. Gierliński G, Ahlberg A (1994) Late Triassic and Early Jurassic dinosaur footprints in the Höganäs Formation of southern Sweden. Ichnos 3:99–105CrossRefGoogle Scholar
  30. Gothan W, Weyland H (1973) Lehrbuch der Paläobotanik. BLV, MunichGoogle Scholar
  31. Greenwood RM, Atkinson IAE (1977) Evolution of divaricating plants in New Zealand in relation to moa browsing. Proc NZ Ecol Soc 24:21–33Google Scholar
  32. Harris TM (1926) The Rhaetic flora of Scoresby Sound, East Greenland. Medd Grønl 68:45–148Google Scholar
  33. Harris TM (1937) The fossil flora of Scoresby Sound, East Greenland. Part 5: Stratigraphic relations of the plant beds. Medd Grønl 112:1–114Google Scholar
  34. Harris TM (1944) A revision of Williamsoniella. Phil Trans R Soc Lond B 231:313–328CrossRefGoogle Scholar
  35. Harris TM (1952) Floral successions in the Estuarine Series of Yorkshire. In: Int Geological Congr: report of the 18th Session, 1948, vol 10. International Geological Congress, London, pp 64–66Google Scholar
  36. Harris TM (1964) The Yorkshire Jurassic flora II. Caytoniales, Cycadales & Pteridosperms. Trustees of the British Museum (Natural History), LondonGoogle Scholar
  37. Harris TM (1969) The Yorkshire Jurassic Flora III. Bennettitales. Trustees of the British Museum (Natural History), LondonGoogle Scholar
  38. Hilton J, Bateman RM (2006) Pteridosperms are the backbone of seed-plant phylogeny. J Torrey Bot Soc 133:119–168CrossRefGoogle Scholar
  39. Howe J, Cantrill DJ (2001) Palaeoecology and taxonomy of Pentoxylales from the Albian of Antarctica. Cretac Res 22:779–793CrossRefGoogle Scholar
  40. Hutchings P, Saenger P (1987) Ecology of mangroves. University of Queensland Press, St LuciaGoogle Scholar
  41. Jin F, Zhang FC, Li ZH, Zhang JY, Li C, Zhou ZH (2008) On the horizon of Protopteryx and the early vertebrate fossil assemblages of the Jehol Biota. Chin Sci Bull 53:2820–2827CrossRefGoogle Scholar
  42. Jordan GJ, Weston PH, Carpenter RJ, Dillon RA, Brodribb TJ (2008) The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. Am J Bot 95:521–530CrossRefGoogle Scholar
  43. Kelly D (1994) Towards a numerical definition for divaricate (interlaced small-leaved) shrubs. NZ J Bot 32:509–518CrossRefGoogle Scholar
  44. Kelly D, Ogle MR (1990) A test of the climate hypothesis for divaricate plants. NZ J Ecol 13:51–61Google Scholar
  45. Kimura T, Sekido S (1975) Nilssoniocladus n. gen. (Nilssoniaceae n. fam.), newly found from the early Lower Cretaceous of Japan. Palaeontographica B 153:111–118Google Scholar
  46. Labandeira CC (2010) The pollination of mid-Mesozoic seed plants and the early history of long-proboscid insects. Ann Mo Bot Gard 9:469–513CrossRefGoogle Scholar
  47. Labandeira CC, Kvaček J, Mostovski MB (2007) Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. Taxon 56:663–695CrossRefGoogle Scholar
  48. Liu Y, Liu Y, Ji S, Yang Z (2006a) U-Pb zircon age for the Daohugou Biota at Ningcheng of Inner Mongolia and comments on related issues. Chin Sci Bull 51:2634–2644CrossRefGoogle Scholar
  49. Liu Y, Liu Y, Zhang H (2006b) LA-ICPMS zircon U-Pb dating in the Jurassic Daohugou Beds and correlative strata in Ningcheng of Inner Mongolia. Acta Geol Sin (Engl Ed) 80:733–742Google Scholar
  50. Macphail MK, Alley NF, Truswell EM, Sluiter IRK (1994) Early tertiary vegetation: evidence from spores and pollen. In: Hill RS (ed) History of the Australian vegetation: Cretaceous to recent. Cambridge University Press, Cambridge, pp 189–261Google Scholar
  51. Mägdefrau K (1956) Paläobiologie der Pflanzen. VEB Gustav Fischer, JenaGoogle Scholar
  52. Manaaki Whenua/Landcare research (2013) Ngā Tipu o Aotearoa–New Zealand plants. Available at: Accessed 24 Oct 2013
  53. Mast AR, Thiele K (2007) The transfer of Dryandra R.Br to Banksia L.f. (Proteaceae). Aust Syst Bot 20:63–71CrossRefGoogle Scholar
  54. McGlone MS, Webb CJ (1981) Selective forces influencing the evolution of divaricating plants. NZ J Ecol 4:20–28Google Scholar
  55. McLoughlin S, Tosolini A-M, Nagalingum N, Drinnan AN (2002) The Early Cretaceous (Neocomian) flora and fauna of the lower Strzelecki Group, Gippsland Basin, Victoria, Australia. Assoc Aust Palaeontol Mem 26:1–144Google Scholar
  56. McLoughlin S, Carpenter RJ, Pott C (2011) Ptilophyllum muelleri (Ettingsh.) comb. nov. from the Oligocene of Australia—last of the Bennettitales? Int J Plant Sci 172:574–585Google Scholar
  57. McLoughlin S, Martin SK, Beattie R (2014) The record of Australian Jurassic plant–arthropod interactions. Gondwana Res. doi: 10.1016/ Google Scholar
  58. McQueen DR (2000) Divaricating shrubs in Patagonia and New Zealand. NZ J Ecol 24:69–80Google Scholar
  59. Meyen SV (1987) Fundamentals of palaeobotany. Chapman & Hall, New YorkCrossRefGoogle Scholar
  60. Milàn J, Gierliński G (2004) A probable thyreophoran (Dinosauria, Ornithischia) footprint from the Upper Triassic of southern Sweden. Bull Geol Soc Den 51:71–75Google Scholar
  61. Morgans HS (1997) Early to Middle Jurassic vegetation, climate change and stratigraphic development in north-eastern Europe. PhD dissertation. Oxford University, OxfordGoogle Scholar
  62. Morgans HS, Hesselbo SP, Spicer RA (1999) The seasonal climate of the Early–Middle Jurassic, Cleveland Basin, England. Palaios 14:261–272CrossRefGoogle Scholar
  63. Nathorst AG (1888) Nya anmärkningar om Williamsonia. Öfvers K Vetensk Akad Förh 6:359–365Google Scholar
  64. Nathorst AG (1902) Beiträge zur Kenntnis einiger mesozoischer Cycadophyten. K Sven Vetenskapsakad Handl 36:1–28Google Scholar
  65. Nathorst AG (1909a) Paläobotanische Mitteilungen 8. Über Williamsonia, Wielandia, Cycadocephalus und Weltrichia. K Sven Vetenskapsakad Handl 45:3–37Google Scholar
  66. Nathorst AG (1909b) Über die Gattung Nilssonia Brongn. mit besonderer Berücksichtigung schwedischer Arten. K Sven Vetenskapsakad Handl 43:3–37Google Scholar
  67. Norling E, Ahlberg A, Erlström M, Sivhed U (1993) Guide to the Upper Triassic and Jurassic geology of Sweden. Sver Geol Unders Ser Ca 82:1–71Google Scholar
  68. Norman B (2001) Dinosaur feeding. eLS. doi: 10.1038/npg.els.0003321 Google Scholar
  69. Pellew RA (1984) Feeding ecology of a selective browser, the giraffe (Giraffa camelopardalis tippelskirchi). J Zool (Lond) 202:57–81CrossRefGoogle Scholar
  70. Pollock ML, Lee WG, Walker S, Forrester G (2007) Ratite and ungulate preferences for woody New Zealand plants: influence of chemical and physical traits. NZ J Ecol 31:68–78Google Scholar
  71. Pott C (2014) A revision of Wielandiella angustifolia—a shrub-sized bennettite from the Rhaetian–Hettangian of Scania, Sweden, and Jameson Land, Greenland. Int J Plant Sci 175:467–499. doi: 10.1086/675577
  72. Pott C, McLoughlin S (2009) Bennettitalean foliage from the Rhaetian-Bajocian (latest Triassic–Middle Jurassic) floras of Scania, southern Sweden. Rev Palaeobot Palynol 158:117–166CrossRefGoogle Scholar
  73. Pott C, McLoughlin S (2011) The Rhaeto-Liassic flora from Rögla, northern Scania, Sweden. Palaeontology 54:1025–1051CrossRefGoogle Scholar
  74. Pott C, Krings M, Kerp H (2007a) A surface micro-relief on the leaves of Glossophyllum florinii (?Ginkgoales) from the Upper Triassic of Lunz, Austria. Bot J Linn Soc 153:87–95CrossRefGoogle Scholar
  75. Pott C, Van Konijnenburg-van Cittert JHA, Kerp H, Krings M (2007b) Revision of the Pterophyllum species (Cycadophytina: Bennettitales) in the Carnian (Late Triassic) flora from Lunz, Lower Austria. Rev Palaeobot Palynol 147:3–27CrossRefGoogle Scholar
  76. Pott C, Krings M, Kerp H (2008a) The Carnian (Late Triassic) flora from Lunz in Lower Austria: Palaeoecological considerations. Palaeoworld 17:172–182CrossRefGoogle Scholar
  77. Pott C, Labandeira CC, Krings M, Kerp H (2008b) Fossil insect eggs and ovipositional damage on bennettitalean leaf cuticles from the Carnian (Upper Triassic) of Austria. J Paleontol 82:778–789CrossRefGoogle Scholar
  78. Pott C, Krings M, Kerp H, Friis EM (2010) Reconstruction of a bennettitalean flower from the Carnian (Upper Triassic) of Lunz, Lower Austria. Rev Palaeobot Palynol 159:94–111CrossRefGoogle Scholar
  79. Pott C, McLoughlin S, Lindström A, Wu SQ, Friis EM (2012a) Baikalophyllum lobatum and Rehezamites anisolobus: two seed plants with “cycadophyte” foliage from the Early Cretaceous of eastern Asia. Int J Plant Sci 173:192–208Google Scholar
  80. Pott C, McLoughlin S, Wu SQ, Friis EM (2012b) Trichomes on the leaves of Anomozamites villosus sp. nov. (Bennettitales) from the Daohugou beds (Middle Jurassic), Inner Mongolia, China: mechanical defense against herbivorous arthropods? Rev Palaeobot Palynol 169:48–60CrossRefGoogle Scholar
  81. Retallack GJ, Dilcher DL (1988) Reconstructions of selected seed ferns. Ann Mo Bot Gard 75:1010–1057CrossRefGoogle Scholar
  82. Romano M, Whyte MA (2003) Jurassic dinosaur tracks and trackways of the Cleveland Basin, Yorkshire: preservation, diversity and distribution. Proc Yorks Geol Soc 54:185–215CrossRefGoogle Scholar
  83. Sahni B (1932) A petrified Williamsonia (W. sewardiana, sp. nov.) from the Rajmahal Hills, India. Palaeontol Ind 20:1–19Google Scholar
  84. Sahni B (1948) The Pentoxyleae: a new group of Jurassic gymnosperms from the Rajmahal Hills of India. Bot Gaz 110:47–80CrossRefGoogle Scholar
  85. Sampson SD (2001) Speculations on the socioecology of ceratopsid dinosaurs (Orinthischia: Neoceratopsia). In: Tanke DH, Carpenter K (eds) Mesozoic vertebrate life. Indiana University Press, Bloomington, pp 263–276Google Scholar
  86. Schmeissner S, Hauptmann S (1998) Ein Blattschopf von Nilsonia acuminata (Presl) Goeppert aus dem unteren Lias Oberfrankens. Doc Nat 117:1–11Google Scholar
  87. Schneiderheinze J (2006) Photoinhibition under drought and high light loads in New Zealand’s divaricate shrubs. PhD dissertation. University of Canterbury, CanterburyGoogle Scholar
  88. Schweitzer H-J, Kirchner M (2003) Die rhäto-jurassischen Floren des Iran und Afghanistans: 13. Cycadophyta III. Bennettitales. Palaeontographica B 264:1–166Google Scholar
  89. Schweitzer H-J, Kirchner M, Van Konijnenburg-van Cittert JHA (2000) The Rhaeto-Jurassic flora of Iran and Afghanistan. 12. Cycadophyta II. Nilssoniales. Palaeontographica B 254:1–63Google Scholar
  90. Seward AC (1917) Fossil plants—A textbook for students of botany and geology, vol III. Cambridge University Press, CambridgeGoogle Scholar
  91. Sitte P, Ziegler H, Ehrendorfer F, Bresinsky A (1998) Strasburger—Lehrbuch der Botanik. Gustav Fischer, StuttgartGoogle Scholar
  92. Spicer RA, Herman AB (1996) Nilssoniocladus in the Cretaceous Arctic: new species and biological insights. Rev Palaeobot Palynol 92:229–243CrossRefGoogle Scholar
  93. Stampfli GM, Borel G (2002) The evolution of the circum-Mediterranean area and the Alpine orogeny. Available at: Accessed 24 Oct 2013
  94. Stearns SC, Hoekstra RF (2005) Evolution—An introduction. Oxford University Press, OxfordGoogle Scholar
  95. Strullu-Derrien C, McLoughlin S, Philippe M, Mørk A, Strullu DG (2012) Arthropod interactions with bennettitalean roots in a Triassic permineralized peat from Hopen, Svalbard Archipelago (Arctic). Palaeogeogr Palaeoclimatol Palaeoecol 348–349:45–58CrossRefGoogle Scholar
  96. Sweedman L, Merritt D (2006) Australian seeds: a guide to their collection, identification and biology. CSIRO Publishing, MelbourneGoogle Scholar
  97. Takimoto H, Ohana T, Kimura T (1997) Two new Nilssoniocladus species from the Jurassic (Oxfordian) Tochikubo Formation, northeast Honshu, Japan. Paleontol Res 1:180–187Google Scholar
  98. Taylor TN, Taylor EL, Krings M (2009) Paleobotany—The biology and evolution of fossil plants. Academic Press/Elsevier, Burlington/AmsterdamGoogle Scholar
  99. Thomas HH (1915) On Williamsoniella, a new type of bennettitalean flower. Phil Trans R Soc Lond B 207:113–148CrossRefGoogle Scholar
  100. Tidwell WD, Britt BB, Wright WW (2013) Donponoxylon gen. nov., a new spermatophyte axis from the Middle to Late Jurassic of Australia and New Zealand. Rev Palaeobot Palynol 196:36–50CrossRefGoogle Scholar
  101. Tucker JM (1974) Patterns of parallel evolution of leaf form in new world oaks. Taxon 23:129–154CrossRefGoogle Scholar
  102. Vajda V, Calner M, Ahlberg A (2013) Palynostratigraphy of dinosaur footprint-bearing deposits from the Triassic–Jurassic boundary interval of Sweden. GFF 135:120–130CrossRefGoogle Scholar
  103. Van Konijnenburg-van Cittert JHA, Morgans HS (1999) The Jurassic flora of Yorkshire. The Palaeontological Association, LondonGoogle Scholar
  104. Vishnu-Mitre (1957) Studies on the fossil flora of Nipania (Rajmahal Series) India—Pentoxylae. Palaeobotanist 6:31–46Google Scholar
  105. Volynets EB (2010) A new species of Nilssoniocladus Kimura et Sekido from the Lower Cretaceous of the Markovsky Peninsula (southern Primorye). Paleontol J 44:1348–1352CrossRefGoogle Scholar
  106. Watson J, Cusack HA (2005) Cycadales of the English Wealden. Monogr Palaeontogr Soc 622:1–189Google Scholar
  107. Watson J, Sincock CA (1992) Bennettitales of the English Wealden. Monogr Palaeontogr Soc 588:1–228Google Scholar
  108. Weishampel DB (1984) Interactions between Mesozoic plants and vertebrates: fructifications and seed predation. N Jb Geol Paläontol, Abh 167:224–250Google Scholar
  109. Whitlock JA (2011) Inferences of diplodocoid (Sauropoda: Dinosauria) feeding behavior from snout shape and microwear analyses. PLoS ONE 6:e18304. doi: 10.1371/journal.pone.0018304 CrossRefGoogle Scholar
  110. Whyte MA, Romano M (1993) Footprints of a sauropod dinosaur from the Middle Jurassic of Yorkshire. Proc Geol Assoc 104:195–199CrossRefGoogle Scholar
  111. Whyte MA, Romano M (2001) Probable stegosaurian dinosaur tracks from the Saltwick Formation (Middle Jurassic) of Yorkshire, England. Proc Geol Assoc 112:45–54CrossRefGoogle Scholar
  112. Willis KJ (2003) Evolution and function of earth’s biomes: temperate forest. In: Cilek V, Smith RH (eds) Encyclopaedia of life support systems (ELOSS), earth system history and natural variability, vol 3. ELOSS Publishers, Isle of ManGoogle Scholar
  113. Worthy TH (1990) An analysis of the distribution and relative abundance of moa species (Aves: Dinornithiformes). NZ J Zool 17:213–241CrossRefGoogle Scholar
  114. Wrigley JW, Fagg M (1991) Banksias, Waratahs and Grevilleas and all other plants in the Australian Proteaceae family. Collins Angus & Robertson, North RydeGoogle Scholar
  115. Wu SQ (1999) A preliminary study of the Jehol flora from western Liaoning. Palaeoworld 11:7–37Google Scholar
  116. Zheng XT, You HL, Xu X, Dong ZM (2009) An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature 458:333–336CrossRefGoogle Scholar
  117. Zhou Q, Barrett PM, Eberth DA (2007) Social behaviour and mass mortality in the basal ceratopsian dinosaur Psittacosaurus (Early Cretaceous, People’s Republic of China). Palaeontology 50:1023–1029CrossRefGoogle Scholar
  118. Zimmermann W (1933) Paläobotanische und phylogenetische Beiträge I–V. Palaeobiologica 5:321–348Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Palaeobiology Department, Swedish Museum of Natural HistoryStockholmSweden

Personalised recommendations