Palaeobiodiversity and Palaeoenvironments

, Volume 93, Issue 3, pp 299–316 | Cite as

What do latest Famennian and Mississippian miospores from South American diamictites tell us?

  • M. Streel
  • M. V. Caputo
  • J. H. G. Melo
  • M. Perez-Leyton
Original Paper


Cores from shallow boreholes penetrating the Mississippian Poti Formation, in the western margin of the Parnaíba Basin, contain dark grey diamictites which are extremely rich in well-preserved palynomorphs. Eighty-eight miospore taxa have been identified, and almost half of these are obviously reworked. The presence of these early Late Viséan-age diamictites might possibly contradict the accepted climatic implications of the Paraca Flora, which is also recorded in the Poti Formation. However, a time span of ca. 4 Ma, corresponding to almost the entire Late Viséan, probably allowed the warmer-climate Paraca Flora to exist between the early Late Viséan and Serpukhovian ice ages. Cores from a deep borehole penetrating the upper Cabeças strata of latest Famennian age, in central Parnaíba Basin, contain tillites and varve-like rhythmites, usually laminated siltstones and sandstones, with scattered clasts. Forty-one miospore taxa have been identified from these diamictites and associated siltstones, most of which (70 %) were reworked from Middle and Upper Devonian sediments. An 18-m-thick diamictite section in the lower portion of the Itacua Formation at Bermejo, southeast Bolivia, was reported to display the three successive Strunian miospore zones (LL–LE–LN) established in Western Europe, and thus interpreted as a composite that records several deglaciation events occurring over 3 million years. However, we challenge the presence of the three successive Strunian miospore zones in the Bolivian diamictites which for us correspond only to parts of the LE and LN zones. In Western Europe, the same shorter interval of the miospore zonation corresponds to a period of lower sea-surface palaeotemperatures based on oxygen isotopes from conodont apatite (δ18Ophosph) as well as a conspicuous sea-level change. Conodont data suggest a much shorter time span (100,000 years) for the highest LE and the LN interval encompassing the Hangenberg and Drewer Sandstones. On the other hand, the Itacua Formation (Bolivia), sampled 33 m and 58 m above the base of the formation, more likely testifies to multiple glacial–interglacial events featuring a superposition of latest Famennian and Mississippian diamictites.


Miospores Diamictite Famennian Mississippian South America 


  1. Andrade SM, Daemon RF (1974) Litoestratigrafia e bioestratigrafia do flanco sudoeste da Bacia do Parnaíba (Devoniano e Carbonífero). Anais do 28° Congresso Brasileiro de Geologia. Porto Alegre 2:129–137Google Scholar
  2. Azcuy CL, di Pasquo M (2005) Early Carboniferous palynoflora from the Ambo Formation, Pongo de Mainique, Peru. Rev Palaeobot Palynol 134:153–184CrossRefGoogle Scholar
  3. Azcuy CL, di Pasquo M (2006) Additional systematic information on the Early Carboniferous palynoflora from the Ambo Formation, Pongo de Mainique, Peru. Rev Bras Paleontol 9(1):41–52CrossRefGoogle Scholar
  4. Bruckschen P, Veizer J (1997) Oxygen and carbon isotopic composition of Dinantian brachiopods, palaeoenviromental implications for the Lower Carboniferous of Western Europe. Palaeogeogr Palaeoclimatol Palaeoecol 132:243–264CrossRefGoogle Scholar
  5. Caccianiga M, Andreis C, Diolaiuti G, D’Agata C, Mihalcea C, Smiraglia C (2011) Alpine debris-covered glaciers as a habitat for plant life. Holocene 21(6):1011–1020CrossRefGoogle Scholar
  6. Caputo MV (1985) Late Devonian glaciation in South America. Palaeogeogr Palaeoclimatol Palaeoecol 51:291–317CrossRefGoogle Scholar
  7. Caputo MV, Crowell JC (1985) Migration of glacial centers across Gondwana during Paleozoic Era. Geol Soc Am Bull 96:1020–1036CrossRefGoogle Scholar
  8. Caputo MV, Melo JHG, Streel M, Isbell JL (2008) Late Devonian and Early Carboniferous glacial records of South America. In: Fielding CR, Frank TD, Isbell JL (eds) Resolving the late paleozoic ice age in time and space., Geol Soc Am Spec Pap 441:161–173Google Scholar
  9. Carozzi AV (1980) Tectonic control and petroleum geology of the Maranhão Basin, Brazil. J Petrol Geol 2(4):389–410CrossRefGoogle Scholar
  10. Carozzi AV, Falkenhein FUH, Carneiro RG, Esteves FR, Contreiras CJA (1975) Análise ambiental e evolução tectônica sinsedimentar da seção siluro-eocarbonífera da Bacia do Maranhão. Ciência-Técnica-Petróleo, Seção: Exploração de Petróleo, 7, 48 p. + Appendix. (2 vols.)Google Scholar
  11. Césari SN, Limarino CO, Gulbranson EL (2011) An Upper Paleozoic bio-chronostratigraphic scheme for the western margin of Gondwana. Earth Sci Rev 106:149–160CrossRefGoogle Scholar
  12. del Papa C, di Pasquo M (2007) Paleoenvironmental interpretation and palynology of outcrop and subsurface sections of the Tarija Formation (Upper Carboniferous), northwestern Argentina. J S Am Earth Sci 23:99–119CrossRefGoogle Scholar
  13. di Pasquo M (2007a) Asociaciones palinológicas presentes en las Formaciones Los Monos (Devónico) e Itacua (Carbonifero Inferior) en el perfil de Balacupa, sur de Bolivia. Parte 1. Formacion Los Monos. Rev Geol Chile 34(1):97–137CrossRefGoogle Scholar
  14. di Pasquo M (2007b) Asociaciones palinológicas presentes en las Formaciones Los Monos (Devónico) e Itacua (Carbonifero Inferior) en el perfil de Balacupa, sur de Bolivia. Parte 2. Formación Itacua y interpretación estratigráfica y cronología de las formaciones Los Monos y Itacua. Rev Geol Chile 34(2):163–198CrossRefGoogle Scholar
  15. di Pasquo M (2007c) State of the art of the Devonian palynological records in northern Argentina, Southern Bolivia and Northwestern Paraguay. Devonian Land-Sea interaction: Evolution of ecosystems and climate (DEVEC):70–73Google Scholar
  16. di Pasquo M, Azcuy CL (1997) Palinomorfos retrabajados en el Carbonifero Tardío de la Cuenca Tarija (Argentina): su aplicación a la datación de eventos diastróficos. Revista da Universidade Guarulhos, Geociências 2:28–42Google Scholar
  17. Dino R, Playford G (2002a) Stratigraphic and palaeoenvironmental significance of a Pennsylvanian (Upper Carboniferous) palynoflora from the Piauí Formation, Parnaíba Basin, northeastern Brazil. Paleontol Res 6(1):23–40Google Scholar
  18. Dino R, Playford G (2002b) Miospores common to South American and Australian Carboniferous sequences: stratigraphic and phytogeographic implications. In: Hills LV, Henderson CM, Bamber EW (eds) Carboniferous and Permian of the World. Can Soc Petrol Geol Mem 19:336–359Google Scholar
  19. Dolianiti E (1954) A flora do Carbonifero inferior de Teresina Piaui. Departamento Nacional de Produção Mineral, Divisão de Geologia e Mineralogia, Boletim 148:1–56Google Scholar
  20. Eiras JF, Becker CR, Souza EM, Gonzaga FG, Silva JGF, Daniel LMF, Matsuda NS, Feijó FJ (1994) Bacia do Solimões. Boletim de Geociências da Petrobras 8(1):17–45Google Scholar
  21. Fasolo Z, del Vergel M, Oller J, Azcuy C (2006) Nuevos datos palinológicos de la Formación Kaka (Eoserpukhoviano) en La Encañada de Beu, Subandino Norte de Bolivia. Rev Bras Paleontol 9:53–62CrossRefGoogle Scholar
  22. Grahn Y, Loboziak S, Melo JHG (2001) Integrated miospore-chitinozoan biozonation of the Parnaíba Basin and its correlation with Petrobras (Müller 1962) Silurian–Lower Carboniferous palynozones. In: Melo JHG, Terra GJS (eds) Correlação de Sequências Paleozoicas Sul-Americanas. Ciência-Técnica-Petróleo, Seção: Exploração de Petróleo 20:81–89Google Scholar
  23. Grahn Y, Melo JHG, Loboziak S (2006) Integrated middle and late Devonian miospore and chitinozoan zonation of the Parnaíba Basin, Brazil: an update. Rev Bras Paleontol 9(3):283–294CrossRefGoogle Scholar
  24. Higgs KT, Streel M (1994) Palynological age for the lower part of the Hangenberg Shales in Sauerland, Germany. Ann Soc Géol Belg 116(2):243–247Google Scholar
  25. Higgs KT, Clayton G, Keegan JB (1988) Stratigraphic and Systematic Palynology of the Tournaisian Rocks of Ireland. Geological Survey of Ireland, Special Paper 7, 93 pGoogle Scholar
  26. Higgs KT, Streel M, Korn D, Paproth E (1993) Palynological data from the Devono-Carboniferous boundary beds in the new Stockum Trench II and the Hasselbachtal Borehole. Northern Rhenish Massif, Germany. Ann Soc Géol Belg 115(2/1992):551–557Google Scholar
  27. Hyam DM, Marshall JEA, Sanderson DJ (1997) Carboniferous diamictite dykes in the Falkland Islands. J Afr Earth Sci 25:505–517CrossRefGoogle Scholar
  28. Iannuzzi R, Pfefferkorn HW (2002) A pre-glacial, warm-temperate floral belt in Gondwana (Late Viséan, Early Carboniferous). Palaios 17:571–590CrossRefGoogle Scholar
  29. Kaiser IS, Steuber T, Becker RT (2008) Environmental change during the Late Famennian and Early Tournaisian (Late Devonian-Early Carboniferous): implications from stable isotopes and conodont biofacies in southern Europe. Geol J 43:241–260CrossRefGoogle Scholar
  30. Kaiser IS, Becker RT, Spalletta C, Steuber T (2009) High-resolution conodont stratigraphy biofacies, and extinctions around the Hangenberg event in pelagic successions from Austria, Italy, and France. Paleontogr Am 63:99–143Google Scholar
  31. Kaiser IS, Becker RT, Steuber T, Aboussalam SZ (2011) Climate-controlled mass extinctions, facies, and sea-level changes around the Devonian-Carboniferous boundary in the eastern Anti-Atlas (SE Morocco). Palaeogeogr Palaeoclimatol Palaeoecol 310:340–364CrossRefGoogle Scholar
  32. Kegel F (1954) Lamelibrânquios da Formação Poti (Carbonífero Inferior) do Piauí. Departamento Nacional Produção Mineral, Divisão de Geologia e Mineralogia, Notas Preliminares e Estudos, Boletim 88Google Scholar
  33. Loboziak S, Streel M, Caputo MV, Melo JHG (1991) Evidence of West European-defined miospore zones in the uppermost Devonian and Lower Carboniferous of the Amazonas Basin (Brazil). Geobios 24(1):5–11CrossRefGoogle Scholar
  34. Loboziak S, Streel M, Caputo MV, Melo JHG (1992) Middle Devonian to Lower Carboniferous miospore stratigraphy in the central Parnaíba Basin (Brazil). Ann Soc Géol Belg 115:215–226Google Scholar
  35. Loboziak S, Streel M, Caputo MV, Melo JHG (1993) Middle Devonian to Lower Carboniferous miospores from selected boreholes in Amazonas and Parnaíba basins (Brazil): additional data, synthesis, and correlation. Documents des Laboratoires de Géologie de la Faculté des Sciences de Lyon 125:277–289Google Scholar
  36. Loboziak S, Melo JHG, Quadros LP, Daemon RF, Barrilari IMR, Streel M (1995) Biocronoestratigrafia de miósporos do Devoniano Médio-Carbonífero Inferior das bacias do Solimões e Parnaíba (estado da arte). An Acad Bras Cienc 67(3):394–395 (Abstract.)Google Scholar
  37. Loboziak S, Melo JHG, Streel M (1998) Reassessment of Viséan miospore biostratigraphy in the Amazon Basin, northern Brazil. Rev Palaeobot Palynol 104:143–155CrossRefGoogle Scholar
  38. Loboziak S, Melo JHG, Streel M (2000a) Latest Devonian and Early Carboniferous palynostratigraphy of northern Brazil and North Africa: a proposed integration of Western European and Gondwanan miospore biozonation. Bulletin du Centre de Recherches Elf Exploration Production 22(2):241–259Google Scholar
  39. Loboziak S, Caputo MV, Melo JHG (2000b) Middle Devonian-Tournaisian miospore biostratigraphy in the south-western outcrop belt of the Parnaíba Basin. Rev Micropaleontol 43(4):301–318CrossRefGoogle Scholar
  40. Melo JHG, Loboziak S (2000) Viséan miospore biostratigraphy of the Poti Formation, Parnaíba Basin, northern Brazil. Rev Palaeobot Palynol 112:147–165CrossRefGoogle Scholar
  41. Melo JHG, Loboziak S (2001) New miospore zonation of Devonian-Early Carboniferous strata in the Amazon Basin: a preliminary account. Ciência-Técnica-Petróleo, Seção: Exploração de Petróleo 20:99–107Google Scholar
  42. Melo JHG, Loboziak S (2003) Devonian–Early Carboniferous miospore biostratigraphy of the Amazon Basin, northern Brazil. Rev Palaeobot Palynol 124:131–202CrossRefGoogle Scholar
  43. Melo JHG, Loboziak S, Streel M (1999) Latest Devonian to early Late Carboniferous biostratigraphy of northern Brazil: an update. Bulletin du Centre de Recherches Elf Exploration Production 22:13–33Google Scholar
  44. Menning M, Alekseev AS, Chuvashov BI, Davydov VI, Devuyst F-X, Forke HC, Grunt TA, Hance L, Heckel PH, Izokh NG, Jin Y-G, Jones PJ, Kotlyar GV, Kozur HW, Nemyrovska TI, Schneider JW, Wang X-D, Weddige K, Weyer D, Work DM (2006) Global time scale and regional stratigraphic reference scales of Central and West Europe, East Europe, Tethys, South China, and North America as used in the Devonian–Carboniferous–Permian Correlation Chart 2003 (DCP 2003). Palaeogeogr Palaeoclimatol Palaeoecol 240:318–372CrossRefGoogle Scholar
  45. Milana JP, Lopez S (1998) Solar cycles recorded in Carboniferous glacimarine rhythmites (western Argentina): relationships between climate and sedimentary environment. Palaeogeogr Palaeoclimatol Palaeoecol 144:37–63CrossRefGoogle Scholar
  46. Müller H (1962) Report on palynological results of samples examined from wells in Maranhão. Petrobras Internal Report 229, 44 pp., pl. 1–9. Petrobras/Setor de Exploração/Região de Produção da Bahia, SalvadorGoogle Scholar
  47. Ogg JG, Ogg G, Gradstein FM (2008) The concise geologic time scale. Cambridge University Press, CambridgeGoogle Scholar
  48. Perez-Leyton M (1990) Palynomorphes du Dévonien moyen et superieur de la coupe de Bermejo-La Angostura (sud-est de la Bolivie). Master Dissertation, Université de Liège, BelgiumGoogle Scholar
  49. Perez-Leyton M (1991) Miospores du Dévonien moyen et supérieur de la coupe de Bermejo-La Angostura (sud-est de la Bolivie). Ann Soc Géol Belg 113(2, 1990):373–389Google Scholar
  50. Pérez-Loinaze V (2007) A Mississippian miospore biozone for southern Gondwana. Palynology 31:101–118CrossRefGoogle Scholar
  51. Playford G (1963) Lower Carboniferous microfloras of Spitsbergen-Part Two. Palaeontology 5(4):619–678Google Scholar
  52. Playford G (1971) Lower Carboniferous spores from the Bonaparte Gulf Basin, Western Australia and Northern Territory. Bulletin of the Bureau of Mineral Resources. Geol Geophys 115:1–105Google Scholar
  53. Playford G (1978) Lower Carboniferous spores from the Ducabrook Formation, Drummond Basin, Queensland. Palaeontographica B167:105–160Google Scholar
  54. Ponciano LCMO, Della Favera JC (2009) Flood-dominated fluvio-deltaic system: a new depositional model for the Devonian Cabeças Formation, Parnaíba Basin, Piauí, Brazil. An Acad Bras Cienc 81(4):769–780CrossRefGoogle Scholar
  55. Sandberg CA, Ziegler W (1996) Devonian conodont biochronology in geologic time calibration. Senck leth 76(1/2):259–265CrossRefGoogle Scholar
  56. Streel M (1999) Quantitative palynology of Famennian events in the Ardenne-Rhine Regions. Abh Geol Bundesanstalt, Wien 54:201–212Google Scholar
  57. Streel M, Bless MJM (1980) Occurrence and significance of reworked palynomorphs. Meded Rijks Geol Dienst 32(10):69–80Google Scholar
  58. Streel M, Higgs KT, Loboziak S, Riegel W, Steemans P (1987) Spore Stratigraphy and Correlation with fa\unas and floras in the type marine Devonian of the Ardenno-rhenish regions. Rev Palaeobot Palynol 50:211–229CrossRefGoogle Scholar
  59. Streel M, Caputo MV, Loboziak S, Melo JHG (2000) Late Frasnian–Famennian climates based on palynomorph quantitative analyses and the question of the Late Famennian glaciations. Earth Sci Rev 52:121–173CrossRefGoogle Scholar
  60. Streel M, Caputo MV, Loboziak S, Melo JHG, Thorez J (2001) Palynology and sedimentology of laminites and tillites from the Latest Famennian of the Parnaíba Basin, Brazil. Geol Belg 3:87–96Google Scholar
  61. Suárez-Soruco R, Lobo-Boneta J (1983) La Fase compresiva Eohercínica en el sector oriental de la Cuenca Cordillerana de Bolivia. Revista Técnica de Yacimientos Petrolíferos Fiscales Bolivianos IX 1–4:189–202Google Scholar
  62. Turnau E, Avchimovitch VI, Byvsheva TV, Clayton G, Higgs KT, Owens B (1994) Taxonomy and stratigraphical distribution of Verrucosisporites nitidus Playford, 1964 and related species. Rev Palaeobot Palynol 81:289–295CrossRefGoogle Scholar
  63. Wicander R, Clayton G, Marshall JEA, Troth I, Racey A (2011) Was the Latest Devonian glaciation a multiple event ? New palynological evidence from Bolivia. Palaeogeogr Palaeoclimatol Palaeoecol 305:75–83CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer 2012

Authors and Affiliations

  • M. Streel
    • 1
  • M. V. Caputo
    • 2
  • J. H. G. Melo
    • 3
  • M. Perez-Leyton
    • 4
  1. 1.Department of GeologyUniversity of LiègeLiège 1Belgium
  2. 2.Centro de Geociências, Faculdade de GeologiaUniversidade Federal do ParáBelém-PABrazil
  3. 3.Petrobras/Cenpes/Pdgeo/BpaRio de JaneiroBrazil
  4. 4.Calle Charcas Nº 651Santa Cruz de la SierraBolivia

Personalised recommendations