Palaeobiodiversity and Palaeoenvironments

, Volume 92, Issue 4, pp 585–629 | Cite as

Peculiarities of the Messel fish fauna and their palaeoecological implications: a case study

Original Article

Abstract

General aspects and some peculiarities of the Lake Messel fish fauna are presented and discussed with special focus on the palaeoenvironmental framework. The overall composition of that fauna is analysed including details such as age and growth. Palaeopathological information is derived from scale regeneration, and selected aspects of mortality and taphonomy are also investigated. Special emphasis is placed on analyses of the horizontal and vertical distribution patterns of the fishes in comparison with those of plant and arthropod records on the one hand and the orientation patterns of fish carcasses on the other hand. In this context, long- and short-term, and also local, differences and modifications are discussed. All results indicate a very particular environmental scenario. Lake Messel cannot have been steadily isolated from external water bodies during the period of time that is represented by the investigated fossils. There must instead have been various opportunities for a renovation of the lake’s fish fauna. Probably, the peculiarities of that fauna were predominantly triggered by a selective influx, which also changed during more extended periods of time. The selection could have taken place during active immigration events and by modified interactions with different types of external catchment areas. There need not necessarily have been locally fixed inlets and outlets. It is probable that there were more flexible control mechanisms, like an exchange of water with other bodies of water during occasional high water periods, and in places with a partial (or complete) erosion of the tephra wall shelter. The latter may also have varied as a function of the intensity of the respective high water events.

Keywords

Palaeoecology Lake Messel Middle Eocene Fish fauna 

Supplementary material

12549_2012_106_Fig22_ESM.jpg (650 kb)
Fig. ESM 1

Explanation of bar chart fills in microstratigraphic distribution analyses. a Pattern fills for fish records (Figs. ESM 215a, 1621, 2232a, 3340c); b pattern fills for plant and insect/arthropod records (Figs. ESM 215b, 2233b); c pattern fills for fish remains in reference column survey (Figs. ESM 3441b); d pattern fills in schematic profile documentation (Appendix, Figs A 3441a) (JPEG 650 kb)

12549_2012_106_MOESM1_ESM.tif (24.9 mb)
High resolution image (TIFF 25512 kb)
12549_2012_106_Fig23_ESM.jpg (303 kb)
Fig. ESM 2

Microstratigraphic fossil distribution patterns in excavation area HLMD-1 (grid squares HI 13/14), from +143 to +125 above marker bed M. a Fishes b plants and arthropods and their remains. For bar chart pattern fills, see Fig. ESM 1 (JPEG 302 kb)

12549_2012_106_MOESM2_ESM.tif (24.9 mb)
High resolution image (TIFF 25513 kb)
12549_2012_106_Fig24_ESM.jpg (390 kb)
Fig. ESM 3

Profile section from +125 to +98.8 cm above marker bed M; otherwise the same as in Fig. ESM 2. (JPEG 390 kb)

12549_2012_106_MOESM3_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig25_ESM.jpg (651 kb)
Fig. ESM 4

Profile section from +98.8 to +74.7 cm above marker bed M; otherwise the same as in Fig. ESM 2. (JPEG 651 kb)

12549_2012_106_MOESM4_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig26_ESM.jpg (729 kb)
Fig. ESM 5

Profile section from +74.7 to +49.7 cm above marker bed M; otherwise the same as in Fig. ESM 2. (JPEG 729 kb)

12549_2012_106_MOESM5_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig27_ESM.jpg (506 kb)
Fig. ESM 6

Profile section from +49.7 to +25 cm above marker bed M; otherwise the same as in Fig. ESM 2. (JPEG 506 kb)

12549_2012_106_MOESM6_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig28_ESM.jpg (369 kb)
Fig. ESM 7

Profile section from +25 above to −0.3 cm below marker bed M; otherwise the same as in Fig. ESM 2. (JPEG 369 kb)

12549_2012_106_MOESM7_ESM.tif (24.9 mb)
High resolution image (TIFF 25513 kb)
12549_2012_106_Fig29_ESM.jpg (603 kb)
Fig. ESM 8

Profile section from −0.3 to −51.5 cm below marker bed M; otherwise the same as in Fig. ESM 2 (JPEG 603 kb)

12549_2012_106_MOESM8_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig30_ESM.jpg (521 kb)
Fig. ESM 9

Profile section from −51.5 to −101 cm below marker bed M; otherwise the same as in Fig. ESM 2. (JPEG 520 kb)

12549_2012_106_MOESM9_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig31_ESM.jpg (702 kb)
Fig. ESM 10

Profile section from −101 to −151 cm below marker bed M; otherwise the same as in Fig. ESM 2. (JPEG 701 kb)

12549_2012_106_MOESM10_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig32_ESM.jpg (462 kb)
Fig. ESM 11

Profile section from −151 to −200 cm below marker bed M; otherwise the same as in Fig. ESM 2. (JPEG 461 kb)

12549_2012_106_MOESM11_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig33_ESM.jpg (695 kb)
Fig. ESM 12

Profile section from −200 to −253 cm below marker bed M; otherwise the same as in Fig. ESM 2. (JPEG 694 kb)

12549_2012_106_MOESM12_ESM.tif (24.9 mb)
High resolution image (TIFF 25513 kb)
12549_2012_106_Fig34_ESM.jpg (480 kb)
Fig. ESM 13

Profile section from −253 to −301.5 cm below marker bed M; otherwise the same as in Fig. ESM 2. (JPEG 480 kb)

12549_2012_106_MOESM13_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig35_ESM.jpg (514 kb)
Fig. ESM 14

Profile section from −301.5 to −351 cm below marker bed M; otherwise the same as in Fig. ESM 2. (JPEG 513 kb)

12549_2012_106_MOESM14_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig36_ESM.jpg (498 kb)
Fig. ESM 15

Profile section from −351 to −400 cm below marker bed M; otherwise the same as in Fig. ESM 2. (JPEG 498 kb)

12549_2012_106_MOESM15_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig37_ESM.jpg (714 kb)
Fig. ESM 16

Combined microstratigraphic fish distribution patterns of excavation areas HLMD-2, 2a and HLMD-2b HLMD-1 (grid squares CD 9/10, EF 8/9), from +116 to +50.5 above (a) and from +50 above to −0.3 cm below marker bed α (b). For bar chart pattern fills, see Fig. ESM 1. (JPEG 713 kb)

12549_2012_106_MOESM16_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig38_ESM.jpg (843 kb)
Fig. ESM 17

Profile sections from −0.3 to −50.5 (a) and from −50.5 to −100 cm below marker bed α (b); otherwise the same as in Fig. ESM 16. (JPEG 843 kb)

12549_2012_106_MOESM17_ESM.tif (24.9 mb)
High resolution image (TIFF 25515 kb)
12549_2012_106_Fig39_ESM.jpg (365 kb)
Fig. ESM 18

Profile sections from −100 to −158 cm below marker bed α; otherwise the same as in Fig. ESM 16. (JPEG 365 kb)

12549_2012_106_MOESM18_ESM.tif (24.9 mb)
High resolution image (TIFF 25512 kb)
12549_2012_106_Fig40_ESM.jpg (677 kb)
Figs. ESM 19

Microstratigraphic fish distribution patterns of excavation areas HLMD - 4a, b (grid squares HI 7), from +211 to +150 cm above (a) and from +150 to +100 above marker bed β (b). For bar chart pattern fills, see Fig. ESM 1. (JPEG 676 kb)

12549_2012_106_MOESM19_ESM.tif (24.9 mb)
High resolution image (TIFF 25513 kb)
12549_2012_106_Fig41_ESM.jpg (575 kb)
Fig. ESM 20

Profile sections from +50 to 0 cm above (a) and from 0 to −51 cm below marker bed β (b). otherwise the same as in Fig. ESM 19. (JPEG 574 kb)

12549_2012_106_MOESM20_ESM.tif (24.9 mb)
High resolution image (TIFF 25513 kb)
12549_2012_106_Fig42_ESM.jpg (501 kb)
Fig. ESM 21

Profile sections from −51 to −100 cm below (a) and from −100 to −133 cm below marker bed β (b). otherwise the same as in Fig. ESM 19. (JPEG 500 kb)

12549_2012_106_MOESM21_ESM.tif (24.9 mb)
High resolution image (TIFF 25513 kb)
12549_2012_106_Fig43_ESM.jpg (501 kb)
Figs. ESM 22

Microstratigraphic fossil distribution patterns of excavation areas HLMD-3 (grid squares HI 7), from +118 cm to +83.5 cm above marker bed γ. a Fishes; b plants and arthropods and their respective remains. For bar chart pattern fills, see Fig. ESM 1. (JPEG 500 kb)

12549_2012_106_MOESM22_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig44_ESM.jpg (656 kb)
Fig. ESM 23

Profile section from +83.5 to +49.7 cm above marker bed γ; otherwise the same as in Fig. ESM 22. (JPEG 655 kb)

12549_2012_106_MOESM23_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig45_ESM.jpg (603 kb)
Fig. ESM 24

Profile section from +49.7 to +24.7 cm above marker bed γ; otherwise the same as in Fig. ESM 22. (JPEG 603 kb)

12549_2012_106_MOESM24_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig46_ESM.jpg (495 kb)
Fig. ESM 25

Profile section from +24.7 to +0 cm above marker bed γ; otherwise the same as in Fig. ESM 22. (JPEG 495 kb)

12549_2012_106_MOESM25_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig47_ESM.jpg (481 kb)
Fig. ESM 26

Profile section from 0 to −25.7 cm below marker bed γ; otherwise the same as in Fig. ESM 22. (JPEG 481 kb)

12549_2012_106_MOESM26_ESM.tif (24.9 mb)
High resolution image (TIFF 25513 kb)
12549_2012_106_Fig48_ESM.jpg (665 kb)
Fig. ESM 27

Profile section from −25.7 to −49.5 cm below marker bed γ; otherwise the same as in Fig. ESM 22. (JPEG 665 kb)

12549_2012_106_MOESM27_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig49_ESM.jpg (839 kb)
Fig. ESM 28

Profile section from −49.5 to −100.5 cm below marker bed γ; otherwise the same as in Fig. ESM 22. (JPEG 839 kb)

12549_2012_106_MOESM28_ESM.tif (24.9 mb)
High resolution image (TIFF 25515 kb)
12549_2012_106_Fig50_ESM.jpg (858 kb)
Fig. ESM 29

Profile section from −100.5 to −150.5 cm below marker bed γ; otherwise the same as in Fig. ESM 22. (JPEG 858 kb)

12549_2012_106_MOESM29_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig51_ESM.jpg (783 kb)
Fig. ESM 30

Profile section from −150.5 to −200.5 cm below marker bed γ; otherwise the same as Fig. ESM 22. (JPEG 783 kb)

12549_2012_106_MOESM30_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig52_ESM.jpg (787 kb)
Fig. ESM 31

Profile section from −200.5 to −250 cm below marker bed γ; otherwise the same as in Fig. ESM 22. (JPEG 787 kb)

12549_2012_106_MOESM31_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig53_ESM.jpg (744 kb)
Fig. ESM 32

Profile section from −250 to −301.5 cm below marker bed γ; otherwise the same as in Fig. ESM 22. (JPEG 743 kb)

12549_2012_106_MOESM32_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig54_ESM.jpg (630 kb)
Fig. ESM 33

Profile section from −301.5 to −338 cm below marker bed γ; otherwise the same as in Fig. ESM 22. (JPEG 630 kb)

12549_2012_106_MOESM33_ESM.tif (24.9 mb)
High resolution image (TIFF 25513 kb)
12549_2012_106_Fig55_ESM.jpg (591 kb)
Figs ESM 34

Comparison of oil shale profiling with micro fish remain distribution pattern and complete fishes of the special HLMD-1 excavation project in 2000 and 2001. Grid squares HI 13/14, profile sections are from −0.5 to −51 cm below marker bed M. Only records from the interior of the hydraulic aggregate are taken into consideration. a Profiling; b fish remains in reference column; c complete fishes. For bar chart and profile pattern fills, see ESM 1. (JPEG 590 kb)

12549_2012_106_MOESM34_ESM.tif (24.9 mb)
High resolution image (TIFF 25516 kb)
12549_2012_106_Fig56_ESM.jpg (654 kb)
Fig. ESM 35

Profile section from −51.5 to −101 cm below marker bed M; otherwise the same as in Fig. ESM 34. (JPEG 654 kb)

12549_2012_106_MOESM35_ESM.tif (24.9 mb)
High resolution image (TIFF 25515 kb)
12549_2012_106_Fig57_ESM.jpg (764 kb)
Fig. ESM 36

Profile section from −101 to −151 cm below marker bed M; otherwise the same as in Fig. ESM 34. (JPEG 764 kb)

12549_2012_106_MOESM36_ESM.tif (24.9 mb)
High resolution image (TIFF 25516 kb)
12549_2012_106_Fig58_ESM.jpg (563 kb)
Fig. ESM 37

Profile section from −151 to −200 cm below marker bed M; otherwise the same as in Fig. ESM 34. (JPEG 562 kb)

12549_2012_106_MOESM37_ESM.tif (24.9 mb)
High resolution image (TIFF 25516 kb)
12549_2012_106_Fig59_ESM.jpg (581 kb)
Fig. ESM 38

Profile section from −200 to −253 cm below marker bed M; otherwise the same as in Fig. ESM 34. (JPEG 580 kb)

12549_2012_106_MOESM38_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig60_ESM.jpg (743 kb)
Fig. ESM 39

Profile section from −253 to −301.5 cm below marker bed M; otherwise the same as in Fig. ESM 34. (JPEG 743 kb)

12549_2012_106_MOESM39_ESM.tif (24.9 mb)
High resolution image (TIFF 25516 kb)
12549_2012_106_Fig61_ESM.jpg (754 kb)
Fig. ESM 40

Profile section from −301.5 to −351 cm below marker bed M; otherwise the same as in Fig. ESM 34. (JPEG 754 kb)

12549_2012_106_MOESM40_ESM.tif (24.9 mb)
High resolution image (TIFF 25515 kb)
12549_2012_106_Fig62_ESM.jpg (665 kb)
Fig. ESM 41

Profile section from −351 to −401 cm below marker bed M; otherwise the same as in Fig. ESM 34. (JPEG 665 kb)

12549_2012_106_MOESM41_ESM.tif (24.9 mb)
High resolution image (TIFF 25515 kb)
12549_2012_106_Fig63_ESM.jpg (699 kb)
Figs ESM 42

Comparison of microstratigraphic fish distribution patterns of identical profile sections in the adjacent excavation areas HLMD-2b (grid squares EF 8/9; right side diagrams (a) and HLMD 2, 2a (grid squares CD 9/10; left side diagrams (b). Profile section from +116 to 49.5 cm above marker bed α. For bar chart pattern fills see Fig. ESM 1. (JPEG 698 kb)

12549_2012_106_MOESM42_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig64_ESM.jpg (600 kb)
Fig. ESM 43

Profile section from +49.5 above to −0.3 cm below marker bed α; otherwise the same as in Fig. ESM 42. (JPEG 600 kb)

12549_2012_106_MOESM43_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig65_ESM.jpg (768 kb)
Fig. ESM 44

Profile section from −0.3 to −50.5 cm below marker bed α; otherwise the same as in Fig. ESM 42. (JPEG 768 kb)

12549_2012_106_MOESM44_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig66_ESM.jpg (628 kb)
Fig. ESM 45

Profile section from −50.5 to −100 cm below marker bed α; otherwise the same as in Fig. ESM 42. (JPEG 628 kb)

12549_2012_106_MOESM45_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig67_ESM.jpg (939 kb)
Fig. ESM 46

Fish alignment patterns in excavation area HLMD-1 (grid squares HI 13/14, marker bed M). Total number of measured records is 500, indications of alignment directions are in (g). a All measured records; b records from +142 to +72 cm above marker bed M; c records from +71 to +22 cm above marker bed M; d records from −5.5 to −199 cm below marker bed M; e records from −216 to −400 cm below marker bed M. (JPEG 939 kb)

12549_2012_106_MOESM46_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig68_ESM.jpg (830 kb)
Fig ESM 47

Combined fish alignment patterns of excavation areas HLMD-2, −2a and −2b (grid squares CD 9/10, EF 9/10, marker bed α). Total number of measured records is 276, indications of alignment directions are in (g). a All measured records; b records from +97 to +53 cm above marker bed α; c records from +48 to +0.5 cm above marker bed α; d records from −0.5 to −77 cm below marker bed α; e records from −80 to −157 cm below marker bed α. (JPEG 830 kb)

12549_2012_106_MOESM47_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig69_ESM.jpg (782 kb)
Fig ESM 48

Fish alignment patterns in excavation areas HLMD-4a, b (grid squares HI 7, marker bed β). Total number of measured records is 111, indications of alignment directions are in (g). a All measured records; b records from +210 to +131 cm above marker bed β; c records from +46.5 to +10 cm above marker bed β; d records from −5.0 to −65 cm below marker bed β; e records from −66 to −132 cm below marker bed β. (JPEG 781 kb)

12549_2012_106_MOESM48_ESM.tif (24.9 mb)
High resolution image (TIFF 25513 kb)
12549_2012_106_Fig70_ESM.jpg (1 mb)
Fig ESM 49

Fish alignment patterns in excavation area HLMD-3 (grid squares HI 7, marker bed γ). Total number of measured records is 616, indications of alignment directions are in (g). a All measured records; b records from +117 to +60 cm above marker bed γ; c records from +59 to +1 cm above marker bed γ; d records from −0.5 to −168 cm below marker bed γ; e records from −169 to −337 cm below marker bed γ. (JPEG 1031 kb)

12549_2012_106_MOESM49_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig71_ESM.jpg (814 kb)
Fig ESM 50a

Comparison of fish alignment patterns in corresponding profile sections of excavation areas HLMD-2, 2a and -2b (grid squares CD 9/19, EF 8/ respectively, marker bed α) part 1. Total number of measured records is 260, indications of alignment directions are in (g). a HLMD-2b all measured records; b same, HLMD-2, -2a; c HLMD-2b, records from +91 to +47 cm above marker bed α; d HLMD-2, 2a, records from +90 to +48 cm below marker bed α; e HLMD-2b, records from +0.5 cm above marker bed α; f HLMD-2, 2a, records from +43 to 1 cm above marker bed α. [Continued in Fig. ESM 50b] (JPEG 813 kb)

12549_2012_106_MOESM50_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig72_ESM.jpg (654 kb)
Fig ESM 50b

(continuation of 50a) g HLMD-2b, records from −1 to −51 cm below marker bed α; h HLMD-2, 2a, records from −0.5 to −53 below marker bed α; i HLMD-2b, records from −55 to −110 cm below marker bed α; j HLMD-2, 2a, records from-57 to −110 cm below marker bed α. (JPEG 654 kb)

12549_2012_106_MOESM51_ESM.tif (24.9 mb)
High resolution image (TIFF 25513 kb)
12549_2012_106_Fig73_ESM.jpg (1.5 mb)
Fig. ESM 51

Scale regeneration depending on the body region. Cyclurus kehreri (dark and grey shaded bars) versus extant bowfins (bright and slightly shaded bars with diagonal hatching). The shaded areas in the fish silhouettes correspond to the body regions examined. NCy total number of examined scales in Cyclurus kehreri; NAc total number of examined scales in Amia calva. (JPEG 1533 kb)

12549_2012_106_MOESM52_ESM.tif (24.9 mb)
High resolution image (TIFF 25518 kb)
12549_2012_106_Fig74_ESM.jpg (1.3 mb)
Fig. ESM 52

Scale regeneration depending on the body region. Thaumaturus intermedius (dark and grey shaded bars) versus extant Mud minnows (white and slightly shaded bars with diagonal hatching). The shaded areas in the fish silhouettes correspond to the body regions examined. NTh total number of examined scales in T. intermedius, NUm total number of examined scales in two species of Umbra. (JPEG 1290 kb)

12549_2012_106_MOESM53_ESM.tif (24.9 mb)
High resolution image (TIFF 25517 kb)
12549_2012_106_Fig75_ESM.jpg (1.1 mb)
Fig. ESM 53

a, b Scale regeneration depending on the body region. Amphiperca multiformis (dark and grey shaded bars) versus extant Australian bass and Rock bass (both bright and slightly shaded bars with diagonal hatching). The shaded areas in the fish silhouettes correspond to the body regions examined. NAp = total number of examined scales in A. multiformis, NMa total number of examined scales in two species of Macquaria,NAm total number of examined scales in Ambloplites rupestris. (JPEG 1079 kb)

12549_2012_106_MOESM54_ESM.tif (24.9 mb)
High resolution image (TIFF 25517 kb)
12549_2012_106_Fig76_ESM.jpg (1.1 mb)
Fig. ESM 53b

(continuation of 53a) (JPEG 1107 kb)

12549_2012_106_MOESM55_ESM.tif (24.9 mb)
High resolution image (TIFF 25520 kb)
12549_2012_106_Fig77_ESM.jpg (963 kb)
Fig. ESM 54

a, b Scale regeneration depending on the body region. Amphiperca multiformis (dark and grey shaded bars) versus extant Sea bass and representatives of the genus Micropterus (both bright and slightly shaded bars with diagonal hatching). The shaded areas in the fish silhouettes correspond to the body regions examined. NAp total number of examined scales in A. multiformis,NSe total number of examined scales in three species of Serranus, NMi total number of examined scales in two species of Micropterus. (JPEG 963 kb)

12549_2012_106_MOESM56_ESM.tif (24.9 mb)
High resolution image (TIFF 25522 kb)
12549_2012_106_Fig78_ESM.jpg (1 mb)
Fig. ESM 54b

(continuation of 54a) (JPEG 1065 kb)

12549_2012_106_MOESM57_ESM.tif (24.9 mb)
High resolution image (TIFF 25524 kb)
12549_2012_106_Fig79_ESM.jpg (1.1 mb)
Fig. ESM 55

a, b Scale regeneration depending on the body region. Palaeoperca proxima (dark and grey shaded bars) versus extant representatives of the Moronidae (bright and slightly shaded bars with diagonal hatching). The shaded areas in the fish silhouettes correspond to the examined body regions. NPa total number of examined scales in P. proxima,NMo total number of examined scales in two species of Morone, NDi total number of examined scales in Dicentrarchus labrax (JPEG 1163 kb)

12549_2012_106_MOESM58_ESM.tif (28.4 mb)
High resolution image (TIFF 28.4 mb)
12549_2012_106_Fig80_ESM.jpg (1.1 mb)
Fig. ESM 55b

(continuation of 55a) (JPEG 1088 kb)

12549_2012_106_MOESM59_ESM.tif (24.9 mb)
High resolution image (TIFF 25520 kb)
12549_2012_106_Fig81_ESM.jpg (1.1 mb)
Fig. ESM 56

a, b Scale regeneration depending on the body region. Rhenanoperca minuta (dark and grey shaded bars) versus extant Pumpkinseed (bright and slightly shaded bars with diagonal hatching). The shaded areas in the fish silhouettes correspond to the examined body regions. NPa total number of examined scales in P. proxima,NLe total number of examined scales in Lepomis gibbosus (JPEG 1135 kb)

12549_2012_106_MOESM60_ESM.tif (24.9 mb)
High resolution image (TIFF 25516 kb)
12549_2012_106_Fig82_ESM.jpg (1 mb)
Fig. ESM 56b

(continuation of 56a) (JPEG 1041 kb)

12549_2012_106_MOESM61_ESM.tif (24.9 mb)
High resolution image (TIFF 25517 kb)
12549_2012_106_Fig83_ESM.jpg (579 kb)
Fig. ESM 57

Scale regeneration depending on the standard length in extant and Messel bowfins. All available specimens of each species were assigned to size classes to their respective SLs, and the relative numbers of regenerated scales are calculated for each of those. NCy, NAc number of examined specimens of Cyclurus kehreri (dark bars) and Amia calva (bright bars) for the different size classes. (JPEG 783 kb)

12549_2012_106_MOESM62_ESM.tif (24.9 mb)
High resolution image (TIFF 25513 kb)
12549_2012_106_Fig84_ESM.jpg (783 kb)
Fig. ESM 58

Scale regeneration depending on the standard length in extant and Messel percoids; otherwise the same as in Fig. 14. NAp, NDi, NLe, NPa, NSe, NRh numbers of examined specimens of Amphiperca multiformis (dark bars), Dicentrarchus labrax (diagonally hatched bars), Lepomis gibbosus (shaded and diagonally hatched bars), Palaeoperca proxima (bright bars), Serranus sp. (horizontally hatched bars), and Rhenanoperca minuta (shaded bars) in the different size classes. (JPEG 1217 kb)

12549_2012_106_MOESM63_ESM.tif (24.9 mb)
High resolution image (TIFF 25513 kb)
12549_2012_106_Fig85_ESM.jpg (1.2 mb)
Fig. ESM 59

Scale regeneration depending on the profile sections. Only specimens of well-defined stratigraphic affiliation were taken into consideration. NAp total number of examined scales in Amphiperca multiformis (vertically hatched bars), NCy total number of examined scales in Cyclurus kehreri (dark bars), NPa total number of examined scales in Palaeoperca proxima (diagonally hatched bars), NRh total number of examined scales in Rhenanoperca minuta (densely cross-hatched bars). (JPEG 578 kb)

12549_2012_106_MOESM64_ESM.tif (24.9 mb)
High resolution image (TIFF 25514 kb)
12549_2012_106_Fig86_ESM.jpg (1.1 mb)
Fig. ESM 60

Scale regeneration depending on predation. “Regular” regenerated specimens of extant pumpkinseed (dark and grey shaded bars) versus an individual that recovered from a catfish attack from behind (bright and horizontally hatched bars) for about 6 months. The shaded areas in the fish silhouettes correspond to the examined body regions. NLeN number of examined investigated scales in normal specimens (six individuals); NLe221 number of examined scales in specimens HLMD-SMFR 221. (JPEG 1099 kb)

12549_2012_106_MOESM65_ESM.tif (24.9 mb)
High resolution image (TIFF 25516 kb)

References

  1. Agassiz L (1833–1844). Recherches sur les poissons fossiles, IV. Petitpierre, NeuchâtelGoogle Scholar
  2. Andreae A (1893) Vorläufige Mitteilung über die Ganoiden (Lepisosteus und Amia) des Mainzer Beckens. Verh Naturhist-med Ver Heidelberg, NF 5:7–15Google Scholar
  3. Baker PD, Humpage AR (1994) Toxicity associated with commonly occurring cyanobacteria in surface waters of the Murray-Darling basin, Australia. Aust J Mar Freshw Res 45:774–787CrossRefGoogle Scholar
  4. Belzer S (2002) Fossilgehalt und Feinstratigraphie einer Referenzsäule im Ölschiefer der Grube Messel (Eozän). Diploma thesis, TU DarmstadtGoogle Scholar
  5. Büchel G, Schaal S, Harms F-J, Pirrung M (2010) Rekonstruktion des Messel-Maarvulkans. Schr-R Dtsch Ges Geowiss 68:119Google Scholar
  6. Buness H, Felder M, Gabriel G, Harms F-J (2005) Explosive tropical paradise. Geology and geophysics in time lapse. Vernissage 21(05):6–11Google Scholar
  7. Carlander KD (1997) Handbook of freshwater fishery biology, vol III. Iowa State University Press, AmesGoogle Scholar
  8. Chick JH, Coyne S, Trexler JC (1999) Effectiveness of airboat electrofishing for sampling fishes in shallow, vegetated habitats. N Am J Fish Manag 19:957–967CrossRefGoogle Scholar
  9. Chick JH, Ruetz CR III, Trexler C (2004) Spatial scale and abundance patterns of large fish communities in freshwater marshes of the Florida Evergaldes. Wetlands 24:652–664CrossRefGoogle Scholar
  10. Davis JG (2003) Reproductive biology, life history and population structure of a bowfin Amia calva population in southeastern Louisiana. Thesis, B.S. Mississippi State University, MississippiGoogle Scholar
  11. Done SH, Bain M (1993) Hepatic necrosis in sheep associated with ingestion of blue-green algae. Vet Rec 133:600Google Scholar
  12. Felder M, Harms FJ (2004) Lithologie und genetische Interpretation der vulkano-sedimentären Ablagerungen aus der Grube Messel anhand der Forschungsbohrung Messel 2001 und weiterer Bohrungen. Cour Forsch-Inst Senckenberg 252:151–203Google Scholar
  13. Felder M, Harms FJ, Liebig V (2001) mit Beiträgen von Hottenrott M, Rolf C und Wonik T. Lithologische Beschreibungen der Forschungsbohrungen Groß-Zimmern, Prinz von Hessen und Offenthal sowie zweier Lagerstättenbohrungen bei Eppersthausen (Sprendlinger Horst, Eozän, Messel-Formation, Süd-Hessen). Geol Jb Hessen 128:29–82Google Scholar
  14. Fitzgerald SD, Poppenga RH (1993) Toxicosis due to microcystin in three Holstein heifers. J Vet Diagn Investig 5:651–653CrossRefGoogle Scholar
  15. Franzen JL (1978) Senckenberg-Grabungen in der Grube Messel bei Darmstadt. 1. Probleme, Methoden, Ergebnisse 1976–1977. Cour Forsch-Inst Senckenberg 27:1–135Google Scholar
  16. Franzen JL (1979) Senckenberg-Grabungen in der Grube Messel bei Darmstadt. 2. Ergebnisse 1978. Cour Forsch-Inst Senckenberg 36:1–144Google Scholar
  17. Franzen JL (1987) Mammalian reference levels MP 11–13. Münchener Geowiss Abh (A) 10:24–25Google Scholar
  18. Franzen JL (2005) Warum Geiseltalium? Cour Forsch-Inst Senckenberg 255:77–79Google Scholar
  19. Franzen JL (2006) Eurohippus parvulus parvulus (Mammalia Equidae) aus der Grube Prinz von Hessen bei Darmstadt (Süd-Hessen, Deutschland). Senck leth 86(2):115–119Google Scholar
  20. Franzen JL (2007) Eozäne Equoidea (Mammalia, Perissodacyla) aus der Grube Messel bei Darmstadt (Deutschland). Funde der Jahre 1969–2000. Schweiz Pal Abh 127:3–243Google Scholar
  21. Franzen JL, Haubold H (1986) The middle Eocene of European mammalian stratigraphy. Definition of the Geiseltalian. Mod Geol 10:159–170Google Scholar
  22. Franzen JL, Köster A (1994) Die eozänen Tiere von Messel —ertrunken, erstickt oder vergiftet? Natur und Museum 124(3):91–97Google Scholar
  23. Franzen JL, Weber J, Wuttke M (1982) Senckenberg-Grabungen in der Grube Messel bei Darmstadt. 3. Ergebnisse 1979–1981. Cour Forsch-Inst Senckenberg 54:1–118Google Scholar
  24. Fryer G, Iles TD (1972) The cichlid fishes of the Great Lakes of Africa. Oliver & Boyd, EdinburghGoogle Scholar
  25. Galey FD, Beasley VR, Carmichael WW, Kleppe G, Hooser SB, Haschek WM (1987) Blue-green algae (Microcstis aeruginosa) hepatotoxicosis in dairy cows. Am J Vet Res 48(1415):1420Google Scholar
  26. Gaßner T, Micklich N, Kohring R, Gruber G (2001) Turtles (Testudines, Geoemydidae, “Ocadia” sp.) with three-dimensionally preserved remains of internal organs from the Middle Eocene of Grube Messel (Hessen, Germany). Kaupia—Darmstädter Beitr Naturgesch 11:111–123Google Scholar
  27. Gaudant J (2000) Nouvelles observations sur quelques Percoidei (Poissons téléostéens) des eaux douces et saumâtres du Cénozoϊque européen. N Jb Geol Paläont, Abh 217(2):199–244Google Scholar
  28. Goth K (1990) Der Messeler Ölschiefer —ein Algenlaminit. Cour Forsch‐Inst Senckenberg 131:1–143Google Scholar
  29. Habersetzer J, Hesse A (1993) Intraspecific development of various foot- and wing-proportions of Messelornis cristata (Aves: Gruiformes: Messelornithidae). Kaupia—Darmstädter Beitr Naturgesch 3:41–53Google Scholar
  30. Habersetzer J, Schaal SFK (1994) Institutsübergreifende Dokumentation von Fossilienfunden aus der Grube Messel. Cour Forsch-Inst Senckenberg 170:189–195Google Scholar
  31. Harms F-J, Aderhold G, Hoffmann I, Nix T, Rosenberg F (1999) Erläuterungen zur Grube Messel bei Darmstadt, Südhessen. Schr-R Dt Geol Ges 8(Kl. Senckenb.-R. 32):181–225Google Scholar
  32. Irion G (1977) Der eozäne See von Messel. Natur und Museum 107(7):213–218Google Scholar
  33. Keller T, Frey E, Heil R, Rietschel S, Schaal S, Schmitz M (1991) Ein Regelwerk für paläontologische Grabungen in der Grube Messel. Paläontol Z 65:221–224Google Scholar
  34. Kerr LA, McCoy CP, Eaves D (1987) Blue-green algae toxicosis in five dairy cows. J Am Vet Med Assoc 191:829–830Google Scholar
  35. Killgore KJ, Kirk JP, Foltz JW (1998) Response of littoral fishes in the upper Lake Marion, South Carolina following Hydrilla control by tripoid Grass carp. J Aquat Plant Manag 36:82–87Google Scholar
  36. Kinkelin F (1884) Ueber Fossilien aus Braunkohlen der Umgebung von Frankfurt a. M. Vortrag in der wissenschaftlichen Sitzung vom 15. März 1884. In: Schmidt H, Heynemann F, Kinkelin F and Reichenbach H (eds) Ber Senckenberg Naturforsch Ges Frankfurt am Main. Juni 1883 bis Juni 1884:165–183Google Scholar
  37. Klappert G, Micklich N (2007) The gars (Actinopterygii, Lepisosteidae) from the Grube Prinz von Hessen Fossil Site. Kaupia—Darmstädter Beitr Naturgesch 15:67–74Google Scholar
  38. Koenigswald Wv (1998) Stute vom Urpferd. In: von Koenigswald W, Storch G (eds) Messel: Ein Pompeji der Paläontologie. Thorbecke, Sigmaringen, pp 86–87Google Scholar
  39. Koenigswald Wv, Braun A, Pfeiffer T (2004) Cyanobacteria and seasonal death: a new taphonomic model for the Eocene Messel Lake. Paläontol Z 78(2):345–352Google Scholar
  40. Koenigswald Wv, Braun A, Pfeiffer T (2005) Cyanobacteria and seasonal death: a new taphonomic model for the Eocene Messel Lake. Paläontol Z 79(2):303 (correction)Google Scholar
  41. Lambou VW (1959) Fish populations of backwater lakes in Loisiana. Trans Am Fish Soc Wash 88(1):7–15CrossRefGoogle Scholar
  42. Lambou VW (1962) The alligator gar. Wildl Educ Bull 30:2–8Google Scholar
  43. Lenz OK, Wilde V, Riegel W (2007) Recolonization of a Middle Eocene volcanic site: quantitative palynology of the initial phase of the maar lake of Messel (Germany). Rev Palaeobot Palynol 145:217–242CrossRefGoogle Scholar
  44. Liem KF (1979) Wie Buntbarsche zu Räubern wurden. Bild Wiss 1979(5):89–101Google Scholar
  45. Liem KF, Stewart DJ (1976) Evolution of scale-eating cichlid fishes of Lake Tanganyika: a generic revision with a description of a new species. Bull Mus Comp Zool 147(7):319–350Google Scholar
  46. Lutz H (1990) Systematische und palökologische Untersuchungen an Insekten aus dem Mittel-Eozän der Grube Messel bei Darmstadt. Cour Forsch-Inst Senckenberg 124:1–165Google Scholar
  47. Lutz H (1991a) Qualitative und quantitative Verteilung von Kleinfossilien im Bereich des Nordwesthangs der Fundstätte Messel (Mittel-Eozän). Cour Forsch-Inst Senckenberg 139:83–97Google Scholar
  48. Lutz H (1991b) Autochthone aquatische Arthropoda aus dem Mittel-Eozän der Fundstätte Messel (Insecta: Heteroptera; Coleoptera; cf. Diptera-Nematocera; Crustacea: Cladocera). Cour Forsch-Inst Senckenberg 139:119–125Google Scholar
  49. Lutz H (1994) Zur Sedimentologie des Eckfelder Maares (Mittel-Eozän; Deutschland) und zur Taphonomie seiner aquatischen Fauna: Befunde der Grabungen 1993 und 1994. Mainz Naturwiss Arch Beih 16:87–101Google Scholar
  50. Lutz H, Kaulfuss U (2006) A dynamic model for the meromictic lake Eckfeld Maar. Z Dt Ges Geowiss 157(3):433–450Google Scholar
  51. Maier A (2000) Die Foeten des eozänen Propalaeotherium parvulum (Perissodactyla) aus Messel. PhD Thesis, Justus-Liebig-University, GiessenGoogle Scholar
  52. Mansueti AJ, Hardy JD Jr (1967) Development of fishes of the Chesapeake Bay region. An atlas of the egg, larval, and juvenile stages. City Press, MarylandGoogle Scholar
  53. Mayr G (2000) Die Vögel der Grube Messel —ein Einblick in die Vogelwelt Mitteleuropas vor 49 Millionen Jahren. Natur und Museum 130(11):365–378Google Scholar
  54. Mayr G (2005) Fine feathered fossils of the Eocene. The birdlife of Messel. Vernissage 21:38–43Google Scholar
  55. Mertz DF, Renne PR (2005) A numerical age for the Messel fossil deposit (Unesco World Natural Heritage Site) from 40Ar/39Ar dating. Cour Forsch-Inst Senckenberg 255:67–75Google Scholar
  56. Mertz DF, Harms F-J, Gabriel G, Felder M (2004) Arbeitstreffen in der Forschungsstation Grube Messel mit neuen Ergebnissen zur Messel-Forschung. Natur und Museum 134:289–290Google Scholar
  57. Micklich N (1983) Ein Aal aus der “Grube Messel”: Gedanken und Probleme bei Aussagen zu Fossilfunden. Natur und Museum 113(7):211–221Google Scholar
  58. Micklich N (1985) Biologisch paläontologische Untersuchungen zur Fischfauna der Messeler Ölschiefer (Mittel-Eozän, Lutetium). Andrias 4:3–171Google Scholar
  59. Micklich N (1992) Ancient knights-in-armour and modern cannibals. In: Schaal S, Ziegler W (eds) Messel —an insight into the history of the life and of the earth. Clarendon, Oxford, pp 69–92Google Scholar
  60. Micklich N (1996) Percoids (Teleostei, Perciformes) from the oilshale of the Messel formation (Middle Eocene, Lower Geiseltalian): an ancient diversification? In: Lobón-Cerviá J, Elvira B, Granado-Lorencio C (eds) Fishes and their environment. Publ Espec Instituto Esp Oceanogr 21, Madrid, pp 113–127Google Scholar
  61. Micklich N (2002a) The fish fauna of Messel Pit: a nursery school? Cour Forsch-Inst Senckenberg 237:97–127Google Scholar
  62. Micklich N (2002b) Messel-Grabungen 2001. Inform Hess Landesmus Darmstadt 2002(1):30–33Google Scholar
  63. Micklich N (2005) Spies into the past: informations from fossil fish. In: Poyato-Ariza FJ (ed) Fourth international meeting on Mesozoic Fishes. Serv Publ Univ Autónoma, UAM Ediciones, Madrid, pp 183–189Google Scholar
  64. Micklich N (2007) Modern bony fishes. In: Gruber G, Micklich N (eds) Messel —treasures of the Eocene. Book to the exhibition “Messel on Tour”. Hessisches Landesmuseum, Darmstadt, pp 59–61Google Scholar
  65. Micklich N, Drobek M (2007) Mining, excavations, and preparation. In: Gruber G, Micklich N (eds) Messel —treasures of the Eocene. Book to the exhibition “Messel on Tour”. Hessisches Landesmuseum, Darmstadt, pp 15–21Google Scholar
  66. Micklich N, Hildebrandt L (2010) Emergency excavation in the Grube Unterfeld (Frauenweiler) clay pit (Oligocene, Rupelian; Baden-Württemberg, S Germany): new records and palaeoenvironmental information. Kaupia—Darmstädter Beitr Naturgesch 17:3–21Google Scholar
  67. Micklich N, Klappert G (2001) Masillosteus kelleri, a new gar (Actinopterygii, Lepisosteidae) from the Middle Eocene of Grube Messel (Hessen, Germany). Kaupia—Darmstädter Beitr Naturgesch 11:73–81Google Scholar
  68. Micklich N, Klappert G (2004) Character variation in some Messel fishes. In: Arratia G, Tintori A (eds) Mesozoic fishes 3 —systematics, palaeoenvironments and biodiversity. Friedrich Pfeil, München, pp 137–163Google Scholar
  69. Micklich N, Finkbeiner E, Klappert G (1995) “Holostei” der Messel-Formation. Inform Hess Landesmus Darmstadt 1995(2):34–38Google Scholar
  70. Morlo M (2004) Diet of Messelornis (Aves, Gruiformes), an Eocene bird from Germany. Cour Forsch-Inst Senckenberg 252:29–33Google Scholar
  71. Neave F (1940) On the histology and regeneration of the Teleost scale. Quart J Microsc Sci 81:225–252Google Scholar
  72. Neubert E (1999) The mollusca of the Eocene lake of Messel. Cour Forsch-Inst Senckenberg 216:167–181Google Scholar
  73. Newbrey MG, Wilson MVH (2005) Recognition of annular growth on centra of Teleostei with application to Hiodontidae of the Cretaceous Dinosaur Park Formation. In: Braman DR, Therrien F, Koppelhus EB, Taylor W (eds) Dinosaur park symposium. Royal Tyrell Museum, Drumheller, pp 61–68Google Scholar
  74. Pflieger WF (1975) The fishes of Missouri. Missouri Department of Conservation, Jefferson CityGoogle Scholar
  75. Quilhac A, Sire J-Y (1999) Spreading, proliferation, and differentiation of the epidermis after wounding a cichlid fish, Hemichromis bimaculatus. Anat Rec 254:435–451CrossRefGoogle Scholar
  76. Randall RG, Minns CK, Cairns VW, Moore JE (1996) The relationship between an index of fish production and submerged macrophytes and other habitat features at three littoral areas in the Great Lakes. Can J Fish Aquat Sci 53(suppl1):35–44CrossRefGoogle Scholar
  77. Reighard, JE (1900) The breeding habits of the dog-fish, Amia calva. First Rep Mich Acad Sci (1894–1899):133–137Google Scholar
  78. Reighard, JE (1904) The natural history of Amia calva Linnaeus. Mark Annivers Vol (art 4):57–109Google Scholar
  79. Reisdorf AG, Bux R, Wyler D, Benecke M, Klug C, Maisch MW,Fornaro P, Wetzel A (2012) Float, explode or sink: post mortem fate of lung breathing marine vertebrates. In: Wuttke M, Reisdorf A (eds) Taphonomic processes interrestrial and marine environments. Palaeobio Palaeoenv 92(1):67–81Google Scholar
  80. Richter G, Baszio S (2001a) Traces of a limnic food web in the Eocene Lake Messel —a preliminary report based on fish coprolite analyses. Palaeogeogr Palaeoclimatol Palaeoecol 166(2001):345–368CrossRefGoogle Scholar
  81. Richter G, Baszio S (2001b) First proof of planctivory/insectivory in a fossil fish: Thaumaturus intermedius from the Eocene Lake Messel (FRG). Palaeogeogr Palaeoclimatol Palaeoecol 173(2001):75–85CrossRefGoogle Scholar
  82. Richter G, Baszio S (2002) Beiträge zur Ökologie des Tertiären Messelsees. Natur und Museum 123(4):137–149Google Scholar
  83. Richter G, Baszio S (2006) First evidence of size-related change of diest (“switching”) in a fossil fish. Palaeogeogr Palaeoclimatol Palaeoecol 237:270–279CrossRefGoogle Scholar
  84. Richter G, Storch G (1980) Beiträge zur Ernährungsbiologie eozäner Fledermäuse aus der Grube Messel. Natur und Museum 110(12):353–367Google Scholar
  85. Richter G, Wedmann S (2005) Ecology of the Eocene Lake Messel revealed by analysis of small fish coprolites and sediments from a drilling core. Palaeogeogr Palaeoclimatol Palaeoecol 223(2005):147–161CrossRefGoogle Scholar
  86. Riehl R (1991) Können einheimische Fische anhand ihrer Eier durch Wasservögel verbreitet werden? Z Fisch-Kde 1991(1):79–83Google Scholar
  87. Rietschel S (1988) Taphonomic biasing in the Messel fauna and flora. Cour Forsch‐Inst Senckenberg 107:169–182Google Scholar
  88. Rossmann T, Blume M (1999) Die Krokodil-Fauna der Fossillagerstätte Grube Messel: Ein aktueller Überblick. Natur und Museum 129(9):261–270Google Scholar
  89. Schaal S, Möller M (1991) Methodik der Senckenberg-Grabungen 1988–1990 und Ergebnisse zur Taphozönose der Messel-Formation (Fundstätte Messel). Cour Forsch-Inst Senckenberg 139:127–145Google Scholar
  90. Schäfer W (1962) Aktuo-Paläontologie nach Studien in der Nordsee. Verlag Waldemar Kramer, Frankfurt a.MGoogle Scholar
  91. Schultze H-P (1966) Morphologische und histologische Untersuchungen an Schuppen mesozoischer Actinopterygier. N Jb Geol Paläont, Abh 126(3):232–314Google Scholar
  92. Schulz R, Harms F-J, Felder M (2002) Die Forschungsbohrung Messel 2001: Ein Beitrag zur Entschlüsselung der Genese einer Ölschieferlagerstätte. Z Angew Geol 4(2000):9–17Google Scholar
  93. Sigler WF (1949) Life history of the white bass Lepibema chrysops (Rafinesque), of Spirit Lake, Iowa. Res Bull US Fish Wildl Serv Res Bull 366:202–244Google Scholar
  94. Smith K, Wuttke M (2012) From tree to shining see: taphonomy of the arboreal lizard Geiseltaliellus maarius from Messel, Germany. In: Wuttke M, Reisdorf A (eds) Taphonomic processes in terrestrial and marine environments. Palaeobio Palaeoenv 92(1):45–65 doi:10.1007/s12549‐011‐0064‐2
  95. Tütken T (2011) Exceptional geochemical preservation of vertebrate remains from the Eocene Messel Pit, Germany —palaeoenvironmental and palaeoecological implications of the stable isotope signatures. In: Lehmann T, Schaal SFK (eds) The world at time of Messel: Puzzles in palaeobiology, palaeoenvironment, and the history of the early primates (22nd Int Senckenberg Conf, conference volume). Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, pp 164–165Google Scholar
  96. Wedmann S (2005) Petrified flyweights. Insect diversity at a tropical level. Vernissage 21(05):20–25Google Scholar
  97. Wedmann S, Hörnschemeyer T, Schmied H (2011) Fossil water-penny beetles (Coleoptera: Psephenidae: Eubrianacidae) from the Eocene of Europe, with remarks on their phylogenetic position and biogeography. Palaeontology 54(5):965–980CrossRefGoogle Scholar
  98. Weigelt W (1927) Rezente Wirbeltierleichen und ihre paläobiologische Bedeutung. Verlag Max Weg, LeipzigGoogle Scholar
  99. Weitzel K (1933) Amphiperca multiformis n.g. n.sp. und Thaumaturus intermedius n.sp., Knochenfische aus dem Mitteleozän von Messel. Notizbl Ver Erdkde u Hess Geol L-Anst V (14):89–97Google Scholar
  100. Wilde V (1989) Untersuchung zur Systematik der Blattreste aus dem Mitteleozän der Grube Messel bei Darmstadt (Hessen, Bundesrepublik Deutschland). Cour Forsch-Inst Senckenberg 115:1–213Google Scholar
  101. Witte F, van Oijen MJP (1990) Taxonomy, ecology and fishery of Lake Victoria haplochromine trophic groups. Zool Verh 262:1–47Google Scholar
  102. Wolf HW (1988) Schätze im Schiefer. Faszinierende Fossilien aus der Grube Messel. Westermann, BraunschweigGoogle Scholar
  103. Wuest A, Lorke A (2003) Small scale hydrodynamics in lakes. Annu Rev Fluid Mech 35:373–412CrossRefGoogle Scholar
  104. Wuttke M (1983a) “Weichteil-Erhaltung” durch lithifizierte Mikroorganismen bei mittel-eozänen Vertebraten aus den Ölschiefern der “Grube Messel” bei Darmstadt. Senck leth 64(5/6):509–527Google Scholar
  105. Wuttke M (1983b) Aktuopaläontologische Studien über den Zerfall von Wirbeltieren. Teil I: Anura. Senck leth 64(5/6):529–560Google Scholar
  106. Wuttke M (1992a) Death and burial of the vertebrates. In: Schaal S, Ziegler W (eds) Messel —an insight into the history of the life and of the earth. Clarendon, Oxford, pp 257–262Google Scholar
  107. Wuttke M (1992b) Conservation-dissolution-transformation. On the behaviour of biogenic materials during fossilization. In: Schaal S, Ziegler W (eds) Messel —an insight into the history of life and of the earth. Clarendon, Oxford, pp 263–275Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer 2012

Authors and Affiliations

  1. 1.Natural History DepartmentHessisches Landesmuseum DarmstadtDarmstadtGermany

Personalised recommendations