Skip to main content
Log in

A histomorphometric study of short and normal implants in human cadavers

  • original article
  • Published:
international journal of stomatology & occlusion medicine

Abstract

Objectives

Initial implant stability is one of the fundamental criteria for obtaining osseointegration. The aim of this study was to establish a correlation between the primary stability of short and normal implants placed in different types of bone density.

Methods

A total of 60 Nobel Biocare implants (Göteborg, Sweden®) of different length and design were inserted in 7 maxillae and mandibles of recently deceased persons (20 Replace Select® Straight 10 ´ 4.3 mm, 20 Replace Select® Tapered RP 10 ´ 4.3 mm and 20 Nobelspeedy Shorty® RP 7 ´ 4 mm). Histomorphometry was carried out to analyze the different local bone volume and the bone-to-implant contact (BIC).

Results

The mean BIC for the three implant types varied strongly in the maxilla (Replace Select® Straight 0.78% ± 1.0; Replace Select® Tapered 1.3% ± 1.2; Nobelspeedy Shorty® RP 2.35% ± 1.7) but was very similar in the mandible. A comparable pattern was found for the amount of bone tissue present within distances of 0.2 mm and 1.0 mm around the implant. All measured parameters were numerically higher in the mandible than in the maxilla.

Conclusions

The fact that shorter implants showed numerically higher values of BIC and BV/TV in the upper jaw, suggests that they may improve implant therapy in cases of poor bone supply in this region. The lack of such differences makes the existence of a similar effect less likely in the lower jaw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Glauser R, Portmann M, Ruhstaller P, Lundgren AK, Hämmerle C, Gottlow J. Stability measurements of immediately loaded machined and oxidized implants in the posterior maxilla: a comparative clinical study using resonance frequency analysis. Appl Osseontegr Res. 2001;2:27–9.

    Google Scholar 

  2. Da Cunha HA, Francischone CE, Filho DE, Oliveira RC. A comparison between cutting torque and RF in the assement of primary stability and final torque capicity of standard and TiUnite single-tooth implants under immediate loading. Int J Oral Maxillofac Implant. 2004;19:578–85.

    Google Scholar 

  3. Meredith N, Shagaldi F, Alleyne D, Sennerby L, Cawley P. The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia. Clin Oral Implants Res. 1997;8(3):234–43.

    Google Scholar 

  4. Sennerby L, Meredith N. Resonance frequency analysis: measuring implant stability and osseointegration. Compend Contin Educ Dent. 1998;19:493–8.

    PubMed  CAS  Google Scholar 

  5. Meredith N, Friberg B, Sennerby L, Aparicio C. Relationship between contact time measurements and PTV values when using the Periotest to measure implant stability. Int J Prosthodont. 1998;11:269–75.

    PubMed  CAS  Google Scholar 

  6. Renouard F, Nisand D. Impact of implant length and diameter on survival rates. Clin Oral Implants Res. 2006;17(2):35–51.

    Article  PubMed  Google Scholar 

  7. Bahat O. Treatment planning and placement of implants in the posterior maxillae: report of 732 consecutive Nobelpharma implants. Int J Oral Maxillofac Implants. 1993;8:151–61.

    PubMed  CAS  Google Scholar 

  8. Renouard F, Nisand D. Short implants in the severely resorbed maxilla: a 2-year retrospective clinical study. Clin Implant Dent Relat Res. 2005;7(1):104–10.

    Article  Google Scholar 

  9. Stellingsma C, Meijer HJ, Raghoeber GM. Use of short endosseous implants and an overdenture in the extremely resorbed mandible: a five-year retrospective study. J Oral Maxillofac Surg. 2000;58:382–7.

    Article  PubMed  CAS  Google Scholar 

  10. Bruggenkate T, Asikainen P, Foitzik C, Krekeler G, Sutter F. Short (6-mm) nonsubmerged dental implants: results of a multicenter clinical trial of 1–7 years. Int J Oral Maxillofac Implants. 1998;13(6):791–8.

    PubMed  Google Scholar 

  11. Jaffin R, Berman C. The excessive loss of Brånemark fixtures in type IV bone: a 5-year analysis. J Periodontol. 1991;62(1):2–4.

    Article  PubMed  CAS  Google Scholar 

  12. Jemt T, Lekholm U. Implant treatment in edentulous maxillae: a 5-year follow-up report on patients with different degrees of jaw resorption. Int J Oral Maxillofac Implants. 1995;10:303–11.

    PubMed  CAS  Google Scholar 

  13. Esposito M, Hirsch, JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (I) Success criteria and epidemiology. Eur J Oral Sci. 1998;106:527–51.

    Article  PubMed  CAS  Google Scholar 

  14. Gedrange T, Hietschold V, Mai R, Wolf P, Nicklsh M, Harzer W. An evaluation of resonance frequency analyses for the determination of the primary stability of orthodontic palal implants. A study in human cadavers. Clin Oral Implants Res. 2005;16:425–31.

    Article  PubMed  CAS  Google Scholar 

  15. Friberg B, Sennerby L, Roos J, Lekholm U. Identification of bone quality in conjunction with insertion of titanium implants. A pilot study in jaw autopsy specimens. Clin Oral Implants Res. 1995;6:213–9.

    Article  PubMed  CAS  Google Scholar 

  16. Norton MR, Gamble C. Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res. 2001;12:79–84.

    Article  PubMed  CAS  Google Scholar 

  17. Lekholm U, Zarb GA. Patient selection and preparation. In: Branemark PI, Zarb GA, Albrektsson T, editors. Tissue-integrated prostheses: osseointegration in clinical dentistry. 1st edn. Chicago: Quintessence. 1985. p. 199–209.

    Google Scholar 

  18. Gahleitner A, Hofschneider U, Tepper G, Pretterklieber M, Schick S, Zauza K, et al. Lingual vascular canals of the mandible: evaluation with dental CT. Radiology. 2001;220:186–9.

    Article  PubMed  CAS  Google Scholar 

  19. Donath K. Die Trenn-Dünnschliff-Technik zur Herstellung histologischer Präparate von nicht schneidbaren Geweben und Materialien. Der Präparator. 1988;34:197–206.

    Google Scholar 

  20. SAS. SAS/STAT User’s Guide. Version 8. Cary: SAS Institute; 1999.

  21. Rabel A, Köhler SG, Schmidt-Westhausen AM. Clinical study on the primary stability of two dental implant systems with resonance frequency analysis. Clin Oral Investig. 2007;11(3):257–65.

    Article  PubMed  Google Scholar 

  22. Martinez H, Davarpanah M, Missika P, Celletti R, Lazzara R. Optimal implant stabilization in low density bone. Clin Oral Implants Res. 2001;12:423–32.

    Article  PubMed  CAS  Google Scholar 

  23. Orsini E, Salgarello S, Bubalo M, Lazic Z, Trire A, Martini D, et al. Histomorphometric evaluation of implant design as a key factor in peri-implant bone response: a preliminary study in a dog model. Minerva Stomotol. 2009;58(6):263–75.

    CAS  Google Scholar 

  24. Boronat-Lopez A, Penarrocha-Diago M, Martinez-Cortissoz, O. Resonance frequency analysis after the placement of 133 dental implants. Med Oral Patol Oral Cir Bucal. 2006;II:E272–6.

    Google Scholar 

  25. Nkenke E, Michael H, Konstanze W, Martin R, Friedrich W, Klaus E. Implant stability and histomorphometry: a correlation study in human cadavers using stepped cylinder implants. Clin Oral Implants Res. 2003;14:601–9.

    Article  PubMed  Google Scholar 

  26. Roze J, Babu St, Saffarzdeh A, Gayet-Delacroix M, Hoonaert A, Layrolle P. Correlating implant stability to bone structure. Clin Oral Implants Res. 2009;10:1140–5.

    Article  Google Scholar 

  27. Buser D, Mericske-Stern R, Bernard JP, Behneke A, Behneke N, Hirt HP, et al. Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants. Clin Oral Implants Res. 1997;8:161–72.

    Article  PubMed  CAS  Google Scholar 

  28. Fugazzotto PA, Beagle JR, Ganeles J, Jaffin R, Vlassis J, Kumar A. Success and failure rates of 9 mm or shorter implants in the replacement of missing maxillary molars when restored with individual crowns: preliminary results 0–84 months in function. A retrospective study. J Periodontol. 2004;75:327–32.

    Article  PubMed  Google Scholar 

Download references

Conflict of intererst

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Monov MD, DMD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monov, G., Vasak, C., Gahleitner, A. et al. A histomorphometric study of short and normal implants in human cadavers. J. Stomat. Occ. Med. 6, 151–156 (2013). https://doi.org/10.1007/s12548-012-0036-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12548-012-0036-9

Keywords

Navigation