The masticatory organ and stress management

Summary

In humans, the strong grinding and clenching function of the masticatory muscles known as bruxism has been thought to play an important role in mitigating stress-induced psychosomatic disorders by down-regulating the limbic system, the autonomic nervous system, and the hypothalamic-pituitary-adrenal axis. Experimental research results showed that bruxism-like activity has beneficial effects on stress-induced reactions such as increasing expression of Fos protein, neuronal nitric oxide synthase, phosphorylated extracellular signal-regulated kinase 1/2, corticotropin-releasing factor, and free radicals in the paraventricular nucleus of hypothalamus, alterations in the blood neutrophil/lymphocyte ratio and adrenocorticotropic hormone level, and stomach ulcer formation in animal studies, as well as increasing amygdala neuronal activity and salivary chromogranin A level in human studies. All of these findings strongly suggest that bruxism-like activity of the masticatory organ has the ability to decrease stress-induced allostatic overload. The health of the masticatory organ depends critically on occlusion, which must be of sufficient quality to successfully carry out its important role in managing stress. Occlusion and the brain must function in harmony. For these reasons, we must integrate the study of occlusion into the broader scope of medical science; in so doing, we will meaningfully advance the state of the art of dental care and general health care.

This is a preview of subscription content, log in to check access.

References

  1. Slavicek R, Sato S. Bruxism – a function of the masticatory organ to cope with stress. Wien Med Wochenschr 2004;154:584–9

    PubMed  Article  Google Scholar 

  2. Sato S, Slavicek R. Bruxism as a stress management function of the masticatory organ. Bull Kanagawa Dent Coll 2001;29:101–10

    Google Scholar 

  3. Sato S, Yuyama N, Tamaki K, et al. The masticatory organ, brain function, stress-release, and a proposal to add a new category to the taxonomy of the healing arts: occlusion medicine. Bull Kanagawa Dent Coll 2002;30:117–26

    Google Scholar 

  4. Every RG. The teeth as weapons. Their influence on behaviour. Lancet 1965; March:685–8

    Article  Google Scholar 

  5. Every RG. The significance of extreme mandibular movements. Lancet 1960;July:37–9

    Article  Google Scholar 

  6. Tanaka T, Yoshida M, Yokoo H, Tomita M, Tanaka M. Expression of aggression attenuates both stress-induced gastric ulcer formation and increases in noradrenaline release in the rat amygdale assessed by intracerebral microdialysis. Pharm Biochem Behavior 1998;59:27–31

    Article  CAS  Google Scholar 

  7. Tsuda A, Tanaka M, Ida YY, Shirao I, Gondoh Y, Oguchi M, Yoshida M. Expression of aggression attenuates stress-induced increases in rat brain noradrenaline turnover. Brain Res 1988;22;474:174–80

    PubMed  Article  CAS  Google Scholar 

  8. Gomez FM, Giralt MT, Sainz B, Arrue A, Prieto M, Garcia VP. A possible attenuation of stress-induced increases in striatal dopamine metabolism by the expression of non-functional masticatory activity in the rat. Eur J Oral Sci 1999;107:461–7

    PubMed  Article  CAS  Google Scholar 

  9. Labezoo F, Naeije M. Bruxism is mainly regulated centrally, not peripherally. J Oral Rehabil 2001;28:1085–91

    Article  Google Scholar 

  10. Labezoo F, Lavigne GJ, Tanguay R, Montplaisir JY. The effect of catecholamine precursor L-dopa on sleep bruxism: a controlled clinical trial. Mov Disord 1997;12:73–8

    Article  Google Scholar 

  11. Areso MP, Giralt MT, Sainz B, Prieto M, Garcia VP, Gomez FM. Occlusal disharmonies modulate central catecholaminergic activity in the rat. J Dent Res 1999;78:1204–13

    PubMed  Article  CAS  Google Scholar 

  12. Sjoholm T, Lehtinen I, Helenius H. Masseter muscle activity in diagnosed sleep bruxists compared with non-symptomatic controls. J Sleep Res 1995;4:48–55

    PubMed  Article  Google Scholar 

  13. Pierce CJ, Chrisman K, Bennett ME, et al. Stress, anticipatory stress, and psychologic measures related to sleep bruxism. J Orofac Pain 1995;9:51–6

    PubMed  CAS  Google Scholar 

  14. Kleinberg I. Bruxism: aetiology, clinical signs, and symptoms. Aust Prosthodont J 1994;8:9–17

    PubMed  CAS  Google Scholar 

  15. Rugh JD. Feasibility of a laboratory model of nocturnal bruxism. J Dent Res 1991;70:554

    Google Scholar 

  16. Lavigne GJ, Rompre PH, Montplaisir JY. Sleep bruxism: validity of clinical research diagnostic criteria in a controlled polysomnographic study. J Dent Res 1996;75:546–52

    PubMed  Article  CAS  Google Scholar 

  17. Grippo JO. Abfractions a new classification of hard tissue lesions of teeth. J Esthet Dent 1991;3:14–9

    PubMed  Article  CAS  Google Scholar 

  18. Grippo JO, Simring M. Dental "erosion" revisited. J Am Dent Assoc 1995;126:619–28

    PubMed  CAS  Google Scholar 

  19. Lee WC, Eakle SW. Possible role of tensile stress in the etiology of cervical erosive lesions of teeth. J Prosthet Dent 1984;52:374–80

    PubMed  Article  CAS  Google Scholar 

  20. Braem M, Lambrechts P, Vanherle G. Stress-induced cervical lesion. J Prosthet Dent 1992;67:718–22

    PubMed  Article  CAS  Google Scholar 

  21. Coleman T, Grippo J, Kinderknecht K. Cervical dentin hypersensitivity. Part II. Associations with abfractive lesions. Quintessence Int 2000;31:466–73

    PubMed  CAS  Google Scholar 

  22. McCoy G. Dental compression syndrome: a new look at an old disease. Oral Implantol 1999;25:35–49

    Article  CAS  Google Scholar 

  23. Spranger H. Investigation into the genesis of angular lesions at the cervical region. Quintessence Int 1995;26:149–54

    PubMed  CAS  Google Scholar 

  24. Drum W. A new concept of periodontal diseases. J Periodontol 1975;46:504–10

    PubMed  CAS  Google Scholar 

  25. Rugh JD, Marian J. Nocturnal bruxism and temporomandibular disorders. Advan Neurol 1988;49:329–41

    PubMed  CAS  Google Scholar 

  26. Williamson EH, Lundquist DO. Anterior guidance: its effect of electromyographic activity of the temporal and masseter muscles. J Prosthet Dent 1983;49:816–22

    PubMed  Article  CAS  Google Scholar 

  27. Shupe RJ, Mohamed SE, Christensen LV, Finger IM, Weinberg R. Effects of occlusal guidance on jaw muscle activity. J Prosthet Dent 1984;51:811–8

    PubMed  Article  CAS  Google Scholar 

  28. Grubwieser G, Flatz A, Grunert I, Kofler M, Ulmer H, Gausch K, Kulmer S. Quantitative analysis of masseter and temporalis EMGs: a comparison of anterior guided versus balanced occlusal concepts in patients wearing complete dentures. J Oral Rehab 1999;26:731–6

    Article  CAS  Google Scholar 

  29. Tamaki K, Hori N, Fujiwara M, Yoshino T, Toyoda M, Sato S. A pilot study on masticatory muscles activities during grinding movements in occlusion with different guiding areas on working side. Bull Kanagawa Dent Coll 2001;29:26–7

    Google Scholar 

  30. Arnold M. Bruxism and the occlusion. Dent Clin N Am 1981;25:395–407

    PubMed  CAS  Google Scholar 

  31. Marion LR, Bayne SC, Shugars DA, Bader JD, Guckes AD, Scurria MS, Heymann HO. Effects of occlusion type and wear on cervical lesion frequency. J Dent Res 1997;76:309

    Google Scholar 

  32. Leja W, Hilbe M, Stainer M, Kulmer S. Nicht-kariöse zervikale Läsionen in Relation zum Okklusionstypus und zur Neigung der individuellen Führengselemente. Dtsch Zahnärztl Z 1999;54:412–4

    Google Scholar 

  33. Mehta NR, Forgione AG, Maloney G, Greene R. Different effects of nocturnal parafunction on the masticatory system: the weak link theory. J Craniomandib Pract 2000;18:280–5

    CAS  Google Scholar 

  34. Russell A. A system of classification and scoring for prevalence surveys of periodontal disease. J Dent Res 1954;35:350–9

    Google Scholar 

  35. Helkimo M. Studies of ion function and dysfunction of the masticatory system II: Index for anamnestic and clinical dysfunction and occlusal state. Swed Dent J 1974;67:101–21

    CAS  Google Scholar 

  36. Park BK, Tokiwa O, Takezawa Y, Takahashi Y, Sasaguri K, Sato S. Relationship of tooth grinding pattern during sleep bruxism and temporomandibular joint status. J Craniomandib Pract 2008;26:8–15

    Google Scholar 

  37. Tokiwa O, Park BK, Takezawa Y, Takahashi Y, Sasaguri K, Sato S. Relationship of tooth grinding pattern during sleep bruxism and dental status. J Craniomandib Pract 2008;26:1–7

    Google Scholar 

  38. Rosales VP, Ikeda K, Hizaki K, Naruo T, Nozoe S, Ito G. Emotional stress and brux-like activity of the masseter muscle in rats. Eur J Orthodont 2002;24:107–17

    Article  Google Scholar 

  39. Guile MN, McCutcheon NB. Prepared responses and gastric lesions in rats. Physiol Psychol 1980;8:480–2

    Google Scholar 

  40. Vincent GP, Pare WPD, Prenatt JE. Aggression, body temperature, and stress ulcer. Physiol Behav 1984;32:265–8

    PubMed  Article  CAS  Google Scholar 

  41. Weiss JM, Poliorccky LA, Salman S, Gruenthal M. Attenuation of gastric lesions by psychological aspects of aggression in rats. J Comp Physiol Psychol 1976;90:252–9

    PubMed  Article  CAS  Google Scholar 

  42. Takashina H, Itoh Y, Iwamiya M, Sasaguri K. Sato S. Stress-induced bruxism modulates stress-induced systemic tissue damages in rats. Kanagawa Shigaku 2005;40:1–11 (Japanese with English abstract)

    Google Scholar 

  43. Ishii H, Tsukinoki K, Sasaguri K. Role of the masticatory organ in maintaining allostasis. Kanagawa Shigaku 2006;41:125–34 (in Japanese with English abstract)

    Google Scholar 

  44. Sato C, Sato S, Takashina H, Ishii H, Onozuka M, Sasaguri K. Stress-elicited bruxism activity attenuates gastric ulcer formation in stressed rats. Clin Oral Invest 2008; (in press)

  45. Moroda T, Iiai T, Tsukahara A, Fukuda M, Suzuki S, Tada T, Hatakeyama K, Abo T. Association of granulocytes with ulcer formation in the stomach of rodents exposed to restraint stress. Biomed Res 1997;18:423–37

    CAS  Google Scholar 

  46. Kawamura T, Miyaji C, Toyabe S, Fukuda M, Watanabe H, Abo T. Suppressive effect of antiulcer agents on granulocytes – a role for granulocytes in gastric ulcer formation. Digest Dis Sci 2000;45:1786–91

    PubMed  Article  CAS  Google Scholar 

  47. Suzuki S, Toyabe S, Moroda T, Tada T, Tsukahara A, Iiai T, Minagawa M, Maruyama S, Hatakeyama K, Endoh K, Abo T. Circadian rhythm of leucocytes and lymphocyte subsets and its possible correlation with the function of the autonomic nervous system. Clin Exp Immunol 1997;110:500–8

    PubMed  Article  CAS  Google Scholar 

  48. Okada S, Hori N, Kimoto K, Onozuka M, Sato S, Sasaguri K. Effects of biting on elevation of blood pressure and other physiological responses to stress in rats: biting may reduce allostatic load. Brain Res 2007;1185:189–94

    PubMed  Article  CAS  Google Scholar 

  49. Tanaka M, Kohno Y, Nakagawa R, Ida Y, Takeda S, Nagasaki N, Noda Y. Regional characteristics of stress-induced increases in brain noradrenaline release in rats. Pharmacol. Diochem Behav 1983;19:543–7

    Article  CAS  Google Scholar 

  50. Tanaka M, Tsuda A, Yokoo H, Yoshida M, Ida Y, Nishimura H. Involvement of the brain noradrenaline system in emotional changes caused by stress in rats. Neurobiology of Stress Ulcers, New York. Ann NY Acad Sci 1990;597:159–74

    PubMed  Article  CAS  Google Scholar 

  51. Tanaka T, Yokoo H, Mizoguchi K, Yoshida M, Tsuda A, Tanaka M. Noradrenaline release in the rat amygdala is increased by stress: Studies with intracerebral microdialysis. Brain Res 1991;544:174–6

    PubMed  Article  CAS  Google Scholar 

  52. Tsuda A, Tanaka M. Differential changes in noradrenaline turnover in specific regions of rat brain produced by controllable and uncontrollable shocks. Behav Neurosci 99:802–17

  53. Weinberg J, Erskine M, Lavine S. Shock-induced fighting attenuates the effects of prior shock experience in rats. Physiol Behav 1985;25:9–16

    Article  Google Scholar 

  54. Chowdhury GM, Fujioka T, Nakamura S. Induction and adaptation of Fos expression in the rat brain by two types of acute restraint stress. Brain Res Bull 2000;52:171–82

    PubMed  Article  CAS  Google Scholar 

  55. Kaneko M, Hori N, Yuyama N, Sasaguri K, Slavicek R, Sato S. Biting suppresses Fos expression in various regions of the rat brain – further evidence that the masticatory organ functions to manage stress. Stomatologie 2004;101:151–6

    Google Scholar 

  56. Hori N, Yuyama N, Tamura K. Biting suppresses stress-induced expression of corticotrophin-releasing factor (CRF) in the rat hypothalamus. J Dent Res 2004;83:124–8

    PubMed  Article  CAS  Google Scholar 

  57. Hori N, Lee MC, Sasaguri K, Ishii H, Kamei M, Kimoto K, Toyoda M, Sato S. Suppression of stress-induced nNOS expression in the rat hypothalamus by biting. J Dent Res 2005;84:624–8

    PubMed  Article  CAS  Google Scholar 

  58. Sasaguri K, Kikuchi M, Hori N, Yuyama N, Onozuka M, Sato S. Suppression of stress immobilization-induced phosphorylation of ERK 1/2 by biting in the rat hypothalamic paraventricular nucleus. Neurosci Lett 2005;383:160–4

    PubMed  Article  CAS  Google Scholar 

  59. Miyake S, Sasaguri K, Hori N, Shoji H, Yoshino F, Toyoda M, Sato S, Lee Chang-il M. Biting reduces acute stress-induced oxidative stress in the rat hypothalamus. Redox Report 2005;10:19–24

    PubMed  Article  CAS  Google Scholar 

  60. Miyake S, Takahashi S, Yoshino F, Todoki K, Sasaguri K, Sato S, Lee MC. Nitric oxide levels in rat hypothalamus are increased by restraint stress and decreased by biting. Redox Report 2008;13:31–9

    PubMed  Article  CAS  Google Scholar 

  61. Tsukinoki K, Saruta J, Muto N, Sasaguri K, Sato S, Tan-Ishii N, Watanabe Y. Submandibular glands contribute to increases in plasma BDNF levels. J Dent Res 2007;86:260–4

    PubMed  Article  CAS  Google Scholar 

  62. Tsukinoki K, Saruta J, Sasaguri K, Miyoshi Y, Jinbu Y, Kusama M, Sato S, Watanabe Y. Immobilization stress induces BDNF in rat submandibular glands. J Dent Res 2006;85:844–8

    PubMed  Article  CAS  Google Scholar 

  63. Saruta J, Lee T, Sato S, Tsukinoki K. Plasma BDNF from salivary glands increases with biting behavior. J Dent Res 2008; (submitted)

  64. Lee T, Saruta J, Sasaguri K, Tsukinoki K. Allowing animals to bite reverses the effects of immobilization stress on hippocampal neurotrophin expression. Brain Res 2008;1195:43–9

    PubMed  Article  CAS  Google Scholar 

  65. Yamamoto T, Hirayama A. Effects of soft-diet feeding on synaptic density in the hippocampus and parietal cortex of senescence accelerated mice. Brain Res 2001;902:255–63

    PubMed  Article  CAS  Google Scholar 

  66. Onozuka M, Watanabe K, Mirbod SM, et al. Reduced mastication stimulates impairment of spatial memory and degeneration of hippocampal neurons in aged SAMP8 mice. Brain Res 1999;826:148–53

    PubMed  Article  CAS  Google Scholar 

  67. Wilkinson L, Scholey A, Wesnes K. Chewing gum selectively improves aspects of memory in healthy volunteers. Appetite 2002;38:235–6

    PubMed  Article  Google Scholar 

  68. Sasaguri K, Sato S, Hirano Y, et al. Involvement of chewing in memory processes in humans: an approach using fMRI. In: Nakagawa M, Hirata K, Koga Y, et al. (eds) Frontiers in human brain topography. International Congress Series 1270. Amsterdam; Elsevier: 2004. Pp 111–6

    Google Scholar 

  69. Sato S, Sasaguri K, Ootsuka T, Saruta J, Miyake S, Okamura M, Sato C, Hori N, Kimoto K, Tsukinoki K, Watanabe K, Onozuka M. Bruxism and stress relief. In: Onozuka M, Yen CT (eds) Novel trends in brain science. Brain imaging, learning and memory, stress and fear, and pain. Tokyo; Springer: 2008. pp 183–200

    Google Scholar 

  70. Kanno T, Asada N, Yanase H, et al. Salivary secretion of highly concentrated chromogranin A in response to noradrenaline and acetylcholine in isolated and perfused rat submandibular glands. Exp Physiol 1999;84:1073–83

    PubMed  Article  CAS  Google Scholar 

  71. Kanno T, Asada N, Yanase H, et al. Salivary secretion of chromogranin A control by autonomic nervous system. Adv Exp Med Biol 2000;482:143–51

    PubMed  Article  CAS  Google Scholar 

  72. Saruta J, Tsukinoki K, Sasaguri K, Ishii H, Yasuda M, Osamura YR, Watanabe Y, Sato S. Expression and localization of chromogranin A gene and protein in human submandibular gland. Cells Tissues Organs 2005;180:237–44

    PubMed  Article  CAS  Google Scholar 

  73. Okamura M, Yoshida A, Saruta J, Tsukinoki K, Sasaguri K, Sato S. Effect of bruxism-like activity on the salivary chromogranin A as a stress marker. Stomatologie 2008;105:1–7

    Article  Google Scholar 

  74. McEwen BS. Protective and damaging effects of stress mediators. New Engl J Med 1998;338:171–9

    PubMed  Article  CAS  Google Scholar 

  75. McEwen B. Sex, stress, and the hippocampus: allostasis, allostatic load, and the aging process. Neurobiol Aging 2002;23:921–39

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Sato.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sato, S., Slavicek, R. The masticatory organ and stress management. J. Stomat. Occ. Med. 1, 51–57 (2008). https://doi.org/10.1007/s12548-008-0010-8

Download citation

Keywords

  • Bruxism
  • Stress
  • Masticatory organ
  • Brain
  • Allostasis