Skip to main content
Log in

Did stalked echinoderms bioerode calcareous substrates? A possible boring crinoid attachment structure in a stromatoporoid from the early Silurian (Telychian) of Estonia

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

A crinoid attachment structure has been found with its radices extending into the skeleton of a stromatoporoid (Clathrodictyon variolare) from the Adavere Regional Stage of Estonia (early Silurian, Telychian). This boring made by a crinoid is provisionally assigned to the ichnogenus Podichnus. The crinoid likely used chemical means for boring into the calcareous substrate. It is not known how common this phenomenon is in crinoids. Cutting into the calcareous substrate increases the crinoid’s contact with its substrate and makes the crinoid attachment much firmer than simple encrustation. Such firm attachment would have had adaptive value for crinoids and this strategy would be particularly advantageous in high-energy, turbulent settings such as biostromes and bioherms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anekeeva, G.A., and S.V. Rozhnov. 2020. Unbranched holdfasts of stemmed echinoderms from the Ordovician of the Leningrad Region. Paleontological Journal 54: 715–727. https://doi.org/10.1134/S0031030120070023.

    Article  Google Scholar 

  • Ausich, W.I., and M.A. Wilson. 2016. Llandovery (early Silurian) crinoids from Hiiumaa Island, western Estonia. Journal of Paleontology 90 (6): 1138–1147. https://doi.org/10.1017/jpa.2016.120.

    Article  Google Scholar 

  • Ausich, W.I., M.A. Wilson, and O. Vinn. 2012. Crinoids from the Silurian of Western Estonia. Acta Palaeontologica Polonica 57 (3): 613–631. https://doi.org/10.4202/app.2010.0094.

    Article  Google Scholar 

  • Ausich, W.I., M.A. Wilson, and O. Vinn. 2015. Wenlock and Pridoli (Silurian) crinoids from Saaremaa, Western Estonia (Phylum Echinodermata). Journal of Paleontology 89 (1): 72–81. https://doi.org/10.1017/jpa.2014.6.

    Article  Google Scholar 

  • Ausich, W.I., M.A. Wilson, and O. Tinn. 2020a. Kalana Lagerstätte crinoids: Early Silurian (Llandovery) of central Estonia. Journal of Paleontology 94 (1): 131–144. https://doi.org/10.1017/jpa.2019.27.

    Article  Google Scholar 

  • Ausich, W.I., M.A. Wilson, and U. Toom. 2020b. Early Silurian recovery of Baltica crinoids following the end-Ordovician extinctions (Llandovery, Estonia). Journal of Paleontology 94 (3): 521–530. https://doi.org/10.1017/jpa.2019.89.

    Article  Google Scholar 

  • Belaústegui, Z., F. Muñiz, J. Nebelsick, R. Domènech, and J. Martinell. 2017. Echinoderm ichnology: Bioturbation, bioerosion and related processes. Journal of Paleontology 91 (4): 643–661. https://doi.org/10.1017/jpa.2016.146.

    Article  Google Scholar 

  • Beuck, L., M. Wisshak, A. Munnecke, and A. Freiwald. 2008. A giant boring in a Silurian stromatoporoid analysed by computer tomography. Acta Palaeontologica Polonica 53 (1): 149–160. https://doi.org/10.1007/978-3-540-77598-0_17.

    Article  Google Scholar 

  • Bromley, R.G. 1975. Comparative analysis of fossil and recent echinoid bioerosion. Palaeontology 18 (4): 725–739.

    Google Scholar 

  • Bromley, R.G., and F. Surlyk. 1973. Borings produced by brachiopod pedicles, fossil and recent. Lethaia 6 (4): 349–365. https://doi.org/10.1111/j.1502-3931.1973.tb01203.x.

    Article  Google Scholar 

  • Cole, S.R., W.I. Ausich, and M.A. Wilson. 2021. A Hirnantian holdover from the Late Ordovician mass extinction: Phylogeny and biogeography of a new anthracocrinid crinoid from Estonia. Papers in Palaeontology 7 (2): 1195–1204. https://doi.org/10.1002/spp2.1345.

    Article  Google Scholar 

  • Donovan, S.K. 2021. Cirrus versus radice: A brief study of confused crinoid terminology. Lethaia 54 (4): 441–442. https://doi.org/10.1111/let.12418.

    Article  Google Scholar 

  • Hall, J. 1852. Palaeontology of New York, Volume II. Containing descriptions of the organic remains of the Lower Division of the New York System (equivalent in part to the Lower Silurian rocks of Europe). C. van Benthuysen: Albany, 362 pp.

  • Hints, O. 2014. Stop B3: Päri outcrop. In 4th Annual Meeting of IGCP 591, Estonia, 10–19 June 2014, ed. H. Bauert, O. Hints, T. Meidla, and P. Männik, 180–182. Tartu: University of Tartu.

    Google Scholar 

  • Kaljo, D., and Einasto, R. 1990. Locality 8:1. Päri outcrop. In Field Meeting Estonia 1990. An Excursion Guidebook, eds. D. Kaljo and H. Nestor, 179–179. Tallinn: Estonian Academy of Sciences.

  • Mägdefrau, K. 1932. Über einige Bohrgänge aus dem unteren Muschelkalk von Jena. Paläontologische Zeitschrift 14 (3): 150–160. https://doi.org/10.1007/BF03041628.

    Article  Google Scholar 

  • Melchin, M.J., R.A. Cooper, and P.M. Sadler. 2004. The Silurian Period. In A Geologic Time Scale 2004, ed. F.M. Gradstein, J.G. Ogg, and A.G. Smith, m188–m211. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mikuláš, R. 1992. Early Cretaceous borings from Štramberk (Czechoslovakia). Časopis pro Mineralogii a Geologii 37 (4): 297–312.

    Google Scholar 

  • Nassonow, N. 1883. Zur Biologie und Anatomie der Clione. Zeitschrift Für Wissenschaftliche Zoologie 39: 295–308.

    Google Scholar 

  • Nestor, H. 1999. Community structure and succession of Baltoscandian Early Palaeozoic stromatoporoids. Proceedings of the Estonian Academy of Sciences. Geology 48 (3): 123–139. https://doi.org/10.3176/geol.1999.3.01.

    Article  Google Scholar 

  • Nestor, H., and Einasto, R. 1977. Facies-sedimentary model of the Silurian Paleobaltic pericontinental basin. In Facies and Fauna of the Baltic Silurian, eds. D. Kaljo, 89–121. Tallinn: Academy of Sciences of the Estonian S. S. R. Institute of Geology. (In Russian).

  • Nestor, H., and R. Einasto. 1997. Ordovician and Silurian carbonate sedimentation basin. In Geology and Mineral Resources of Estonia, ed. A. Raukas and A. Teedumäe, 192–204. Tallinn: Estonian Academy Publishers.

    Google Scholar 

  • Pallas, P.S. 1774. Spicilegia zoologica, quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur cura P.S. Pallas. [Book series, 14 volumes]. Fasciculus 10, pp. 1–41.

  • Rosen, F. 1867. Ueber die Natur der Stromatoporen und über die Erhaltung der Hornfaser der Spongien im Fossilen Zustande. 98 pp., H. Laakmann, Dorpat.

  • Rozhnov, S. 2017. The beginning of the Ordovician radiation in the Baltic Region: substrate revolution, explosive increase in diversity of stalked Echinoderms, and the cyanobacterial origin of hardgrounds. In Filling the gap between the Cambrian Explosion and the GOBE: IGCP 653 Annual Meeting, October 8–12, 2017, Yichang, China. Extended Summaries, eds. Y.D. Zhang, R.B. Zhan, J.X. Fan, and L.A. Muir, 135–141. Hangzhou: Zhejiang University Press.

  • Rozhnov, S. 2019. The onset of the Ordovician evolutionary radiation of benthic animals in the Baltic Region: Explosive diversity of attachment structures of stalked echinoderms, substrate revolution and the role of cyanobacterial communities. Palaeoworld 28 (1–2): 110–122. https://doi.org/10.1016/j.palwor.2018.05.001.

    Article  Google Scholar 

  • Šamánek, J., R. Mikuláš, and L. Hájková. 2021. A fossil carbonate rocky shore in the Kalcit Quarry: a new insight into echinoid shallow marine bioerosion (Miocene; Czech Republic). Ichnos 28 (4): 271–289. https://doi.org/10.1080/10420940.2021.1915781.

    Article  Google Scholar 

  • Santos, A., E. Mayoral, C.P. Dumont, C.M. da Silva, S.P. Ávila, B.G. Baarli, M. Cachão, M.E. Johnson, and R.S. Ramalho. 2015. Role of environmental change in rock-boring echinoid trace fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 432: 1–14. https://doi.org/10.1016/j.palaeo.2015.04.029.

    Article  Google Scholar 

  • Sowerby, J. C. de in Murchison, R.I. 1839. The Silurian System. John Murray: London, 768 pp.

  • Stukalina, G.A. 2000. Paleozoic crinoids, St. Petersburg: VSEGEI-Press, 283 pp. (In Russian).

  • Toom, U., O. Vinn, and O. Hints. 2019. Ordovician and Silurian ichnofossils from carbonate facies in Estonia: A collection-based review. Palaeoworld 28 (1–2): 123–144. https://doi.org/10.1016/j.palwor.2018.07.001.

    Article  Google Scholar 

  • Vinn, O., and U. Toom. 2016. Bioerosion of inorganic hard substrates in the Silurian of Estonia (Baltica). GFF 138 (2): 306–310. https://doi.org/10.1080/11035897.2015.1076513.

    Article  Google Scholar 

  • Vinn, O., and M.A. Wilson. 2010a. Microconchid-dominated hardground association from the late Pridoli (Silurian) of Saaremaa, Estonia. Palaeontologia Electronica 13 (2): 9A.

    Google Scholar 

  • Vinn, O., and M.A. Wilson. 2010b. Occurrence of giant borings of Osprioneides kampto in the lower Silurian (Sheinwoodian) stromatoporoids of Saaremaa, Estonia. Ichnos 17 (3): 166–171. https://doi.org/10.1080/10420940.2010.502478.

    Article  Google Scholar 

  • Wisshak, M., D. Knaust, and M. Bertling. 2019. Bioerosion ichnotaxa: Review and annotated list. Facies 65: 24. https://doi.org/10.1007/s10347-019-0561-8.

    Article  Google Scholar 

  • Wright, D.F., and U. Toom. 2017. New crinoids from the Baltic region (Estonia): Fossil tip-dating phylogenetics constraints the origin and Ordovician-Silurian diversification of the Flexibilia (Echinodermata). Palaeontology 60: 893–910. https://doi.org/10.1111/pala.12324 .

    Article  Google Scholar 

  • Yeltyscheva, R.S. 1975. Krinoidei pogranichnyh sloev ordovika i silura Podolii [Crinoids of the Ordovician and Silurian boundary beds of Podolia]. Voprosy Paleontologii VII: 124–144.

    Google Scholar 

  • Yeltyscheva, R.S. 1955. Morskie lilii (stebli morskih lilii) [Crinoids, stems of crinoids]. In Polevoi atlas ordovikskoi i siluriiskoi fauny Sibirskoi platformy [Field atlas of the Ordovician and Silurian fauna of the Siberian Platform], 40–47, pls. 22, 37, 54. Leningrad: Vsesoyuznyi Nauchno-issledovatelskii geologicheskii Institut, Gosgeoltekhizdat. (In Russian).

  • Yeltyscheva, R.S. 1960. Ordovikskie i siluriiskie krinoidea, Sibirskoi platformy [The Ordovician and Silurian crinoids of the Siberian platform]. In Biostratigrafija paleozoja Sibirskoj platformy [Palaeozoic stratigraphy of the Sibirian Platform] vol. 3, 1–39. Leningrad: Vsesoyuznyi Nauchno-issledovatelskii geologicheskii Institut, Gosgeoltekhizdat. (In Russian).

Download references

Acknowledgements

This research was funded by the Estonian Research Council, grant number PRG836, and the Paleontological Society Sepkoski Grant 2021. We are grateful to J. Jeon from the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, for valuable comments on stromatoporoids and J.H. Nebelsick, University of Tübingen, for discussion of echinoderm bioerosion; and G. Baranov, Department of Geology, Tallinn University of Technology for photographing the specimen. This paper is a contribution to the IGCP project 653 ‘The Onset of the Great Ordovician Biodiversification Event’. We are grateful to journal reviewers Dr. Steve Donovan (Swinton, Manchester, UK), Dr. Radek Mikuláš (Institute of Geology of the Czech Academy of Sciences) and Dr. James R. Thomka (State University of New York at Plattsburgh) for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olev Vinn.

Additional information

Handling Editor: Mike Reich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinn, O., Ausich, W.I., Wilson, M.A. et al. Did stalked echinoderms bioerode calcareous substrates? A possible boring crinoid attachment structure in a stromatoporoid from the early Silurian (Telychian) of Estonia. PalZ 97, 37–41 (2023). https://doi.org/10.1007/s12542-022-00637-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-022-00637-3

Keywords

Navigation