Skip to main content

Houcaris gen. nov. from the early Cambrian (Stage 3) Chengjiang Lagerstätte expanded the palaeogeographical distribution of tamisiocaridids (Panarthropoda: Radiodonta)

Abstract

Radiodonts were cosmopolitan and diverse stem-euarthropods that have been generally regarded as the apex Cambrian predators. Four major groups have been distinguished including tamisiocaridids, primarily based on the endite features of the frontal appendages. Anomalocaris saron Hou, Bergström and Ahlberg, 1995, one of the most well-known radiodonts in the Chengjiang Lagerstätte, is generally treated as a member of the Family Anomalocarididae. New anatomical evidence reported here, allied with the data of microcomputed tomography (CT) shows that the endites in A. saron are paired, much longer than the height of associated podomeres, and furnished with multiple slender distal auxiliary spines. These new observations allow us to reassign A. saron to a new genus, Houcaris gen. nov., and strongly support its tamisiocaridid affinities rather than anomalocaridid as previously suggested. Houcaris saron, thus, represents the first tamisiocaridid species known from South China, as well as the oldest tamisiocaridid in the fossil record (Cambrian Stage 3). Our occurrence data, coupled with other distribution of tamisiocaridids, demonstrate that this group is restricted to the early Cambrian (Series 2), and occur across South China, Laurentia and eastern Gondwana within tropics/subtropics belt, indicating a possible climatic control on their distribution. Moreover, these tamisiocaridid records documented in several Konservat Lagerstätten suggest an ecological preference to shallow water environment with well-oxygenated sea bottom conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

copyright Shaanxi Key Laboratory of Early Life and Environments; used with permission. Not to scale

Fig. 4
Fig. 5

References

  • Boxshall, G.A. 2004. The evolution of arthropod limbs. Biological Reviews 79: 253–300.

    Google Scholar 

  • Briggs, D.E.G. 1979. Anomalocaris, the largest known Cambrian arthropod. Palaeontology 22: 631–664.

    Google Scholar 

  • Briggs, D.E.G. 1994. Giant predators from the Cambrian of China. Science 264: 1283–1284.

    Google Scholar 

  • Briggs, D.E.G., B.S. Lieberman, J.R. Hendricks, S.L. Halgedahl, and R.D. Jarrard. 2008. Middle Cambrian arthropods from Utah. Journal of Paleontology 82: 238–254.

    Google Scholar 

  • Chang, C., W. Hu, X. Wang, H. Yu, A. Yang, J. Cao, and S. Yao. 2017. Carbon isotope stratigraphy of the lower to middle Cambrian on the eastern Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 479: 90–101.

    Google Scholar 

  • Chang, C., W. Hu, X. Wang, K.J. Huang, A. Yang, and X.L. Zhang. 2019. Nitrogen isotope evidence for an oligotrophic shallow ocean during the Cambrian Stage 4. Geochemica et Cosmochimica Acta 257: 49–67.

    Google Scholar 

  • Chen, J.Y., L. Ramsköld, and G.Q. Zhou. 1994. Evidence for monophyly and arthropod affinity of Cambrian giant predators. Science 264: 1304–1308.

    Google Scholar 

  • Chen, J.Y., G.Q. Zhou, M.Y. Zhu, and K.Y. Yeh. 1996. The Chengjiang biota: a unique window of the Cambrian explosion, 1–222. Taizhong: National Museum of Natural Science.

    Google Scholar 

  • Chen, J.Y., D. Waloszek, and A. Maas. 2004. A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial anteroventral appendages. Lethaia 37: 3–20.

    Google Scholar 

  • Chen, X.H., J. Ortega-Hernández, J.M. Wolfe, D.Y. Zhai, X.G. Hou, A.L. Chen, H.J. Mai, and Y. Liu. 2019. The appendicular morphology of Sinoburius lunaris and the evolution of the artiopodan clade Xandarellida (Euarthropoda, early Cambrian) from South China. BMC Evolutionary Biology 19: 165.

    Google Scholar 

  • Collins, D. 1996. The “evolution” of Anomalocaris and its classification in the arthropod class Dinocarida (nov.) and order Radiodonta (nov.) Journal of Paleontology 70: 280–293.

  • Cong, P.Y., A.C. Daley, G.D. Edgecombe, and X.G. Hou. 2017. The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata. BMC Evolutionary Biology 17: 208.

    Google Scholar 

  • Cong, P.Y., G.D. Edgecombe, A.C. Daley, J. Guo, S. Pates, and X.G. Hou. 2018. New radiodonts with gnathobase-like structures from the Cambrian Chengjiang biota and implications for the systematics of Radiodonta. Papers in Palaeontology 4: 605–621.

    Google Scholar 

  • Daley, A.C., and G.E. Budd. 2010. New anomalocaridid appendages from the Burgess Shale, Canada. Palaeontology 53: 721–738.

    Google Scholar 

  • Daley, A.C., and G.D. Edgecombe. 2014. Morphology of Anomalocaris canadensis from the Burgess Shale. Journal of Paleontology 88: 68–91.

    Google Scholar 

  • Daley, A.C., and D.A. Legg. 2015. A morphological and taxonomic appraisal of the oldest anomalocaridid from the Lower Cambrian of Poland. Geological Magazine 152: 949–955.

    Google Scholar 

  • Daley, A.C., and J.S. Peel. 2010. A possible anomalocaridid from the Cambrian Sirius Passet lagerstätte, North Greenland. Journal of Paleontology 84: 352–355.

    Google Scholar 

  • Daley, A.C., G.E. Budd, and J.-B. Caron. 2013a. Morphology and systematics of the anomalocaridid arthropod Hurdia from the Middle Cambrian of British Columbia and Utah. Journal of Systematic Palaeontology 11: 743–787.

    Google Scholar 

  • Daley, A.C., J.R. Paterson, G.D. Edgecombe, D.C. García-Bellido, and J.B. Jago. 2013b. New anatomical information on Anomalocaris from the Cambrian Emu Bay Shale of South Australia and a reassessment of its inferred predatory habits. Palaeontology 56: 971–990.

    Google Scholar 

  • Guo, J., S. Pates, P.Y. Cong, A.C. Daley, G.D. Edgecombe, T.M. Chen, and X.G. Hou. 2018. A new radiodont (stem Euarthropoda) frontal appendage with a mosaic of characters from the Cambrian (series 2 stage 3) Chengjiang biota. Papers in Palaeontology 5: 99–110.

    Google Scholar 

  • Harper, D.A.T., E.U. Hammarlund, T.P. Topper, A.T. Nielsen, J.A. Rasmussen, T.Y.S. Park, and M.P. Smith. 2019. The Sirius Passet Lagerstätte of North Greenland: a remote window on the Cambrian Explosion. Journal of the Geological Society 176(6): 1023–1037.

    Google Scholar 

  • Haug, J.T., D. Waloszek, A. Maas, Y. Liu, and C. Haug. 2012. Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology 55: 369–399.

    Google Scholar 

  • Hou, X.G., J. Bergström, and P. Ahlberg. 1995. Anomalocaris and other large animals in the lower Cambrian Chengjiang fauna of southwest China. GFF 117: 163–183.

    Google Scholar 

  • Hou, X.G., D.J. Siveter, D.J. Siveter, R.J. Aldridge, P.Y. Cong, S.E. Gabbott, X.Y. Ma, M.A. Purnell, and M. Williams. 2017. The Cambrian fossils of Chengjiang, China: the flowering of early animal life, 2nd ed., 1–316. Chichester: Wiley.

  • Hou, X.G., R.J. Aldridge, J. Bergström, D.J. Siveter, D.J. Siveter, and X.H. Feng. 2004. The Cambrian fossils of Chengjiang, China, 1–233. Oxford: Blackwell.

    Google Scholar 

  • Hough, M.L., G.A. Shields, L.Z. Evins, H. Strauss, R.A. Henderson, and S. Mackenzie. 2006. A major sulphur isotope event at c. 510 Ma: a possible anoxia–extinction–volcanism connection during the Early-Middle Cambrian transition? Terra Nova 18: 257–263.

    Google Scholar 

  • Hu, S.X. 2005. Taphonomy and palaeoecology of the Early Cambrian Chengjiang biota from eastern Yunnan, China. Berliner Paläo-biologische Abhandlungen 7: 182–185.

    Google Scholar 

  • Jourdan, F., K. Hodges, B. Sell, U. Schaltegger, M.T.D. Wingate, L.Z. Evins, U. Söderlun, P.W. Haines, D. Phillips, and T. Blenkinsop. 2014. High-precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early-Middle Cambrian (Stage 4–5) extinction. Geology 42: 543–546.

    Google Scholar 

  • Kurtz, A.C., L.R. Kump, M.A. Arthur, J.C. Zachos, and A. Paytan. 2003. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18: 1090.

    Google Scholar 

  • Lerosey-Aubril, R., T.A. Hegna, L.E. Babcock, E. Bonino, and C. Kier. 2014. Arthropod appendages from the Weeks Formation Konservat-Lagerstätte: new occurrences of anomalocaridids in the Cambrian of Utah, USA. Bulletin of Geosciences 89(2): 269–282.

    Google Scholar 

  • Lerosey-Aubril, R., and S. Pates. 2018. New suspension-feeding radiodont suggests evolution of microplanktivory in Cambrian macronekton. Nature Communications 9: 3774.

    Google Scholar 

  • Lerosey-Aubril, R., J. Kimmig, S. Pates, J. Skabelund, A. Weug, and J. Ortega-Hernández. 2020. New exceptionally-preserved panarthropods from the Drumian Wheeler Konservat-Lagerstätte of the House Range of Utah. Papers in Palaeontology. https://doi.org/10.1002/spp2.1307.

    Article  Google Scholar 

  • Li, C., C. Jin, N.J. Planavsky, T.J. Algeo, M. Cheng, X. Yang, Y. Zhao, and S. Xie. 2017. Coupled oceanic oxygenation and metazoan diversification during the early–middle Cambrian. Geology 45: 743–746.

    Google Scholar 

  • Lieberman, B.S. 2003. A new soft-bodied fauna: the Pioche Formation of Nevada. Journal of Paleontology 77: 674–690.

    Google Scholar 

  • Liu, J.N., R. Lerosey-Aubril, M. Steiner, J.A. Dunlop, D.G. Shu, and J.R. Paterson. 2018. Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan. National Science Review 5: 863–869.

    Google Scholar 

  • Liu, Y., J. Ortega-Hernández, D.Y. Zhai, and X.G. Hou. 2020. A reduced labrum in a Cambrian great-appendage euarthropod. Current Biology 30(15): 3057–3061.

    Google Scholar 

  • Maddocks, R.F. 2000. The antennule in podocopid Ostracoda: Chaetotaxy, ontogeny, and morphometrics. Micropaleontology 46: 1–72.

    Google Scholar 

  • Moysiuk, J., and J.B. Caron. 2019. A new hurdiid radiodont from the Burgess Shale evinces the exploitation of Cambrian infaunal food sources. Proceedings of the Royal Society (B) 286: 20191079. https://doi.org/10.1098/rspb.2019.1079.

    Article  Google Scholar 

  • Nedin, C. 1995. The Emu Bay Shale, a Lower Cambrian fossil Lagerstätten, Kangaroo Island. Memoirs of the Association of Austral-asian Palaeontologists 18: 133–141.

    Google Scholar 

  • Nielsen, C. 1995. Animal evolution—inter relationships of the living phyla, 1–467. Oxford: Oxford University Press.

    Google Scholar 

  • Ortega-Hernández, J. 2016. Making sense of ‘lower’ and ‘upper’ stem-group Euarthropoda, with comments on the strict use of the name Arthropoda von Siebold, 1848. Biological Reviews 91: 255–273.

    Google Scholar 

  • Paterson, J.R., D.C. Garcia-Bellido, M.S.Y. Lee, G.A. Brock, J.B. Jago, and G.D. Edgecombe. 2011. Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature 480: 237–240.

    Google Scholar 

  • Pates, S., and A.C. Daley. 2019. The Kinzers Formation (Pennsylvania, USA): the most diverse assemblage of Cambrian Stage 4 radiodonts. Geological Magazine 156: 1233–1246.

    Google Scholar 

  • Pates, S., A.C. Daley, and N.J. Butterfield. 2019a. First report of paired ventral endites in a hurdiid radiodont. Zoological Letters 5(1): 18.

    Google Scholar 

  • Pates, S., A.C. Daley, G.D. Edgecombe, P.Y. Cong, and B.S. Lieberman. 2019b. Systematics, preservation, and biogeography of radiodonts from the southern Great Basin, USA during the upper Dyeran (Cambrian Series 2, Stage 4). Papers in Palaeontology. https://doi.org/10.1002/spp2.1277.

    Article  Google Scholar 

  • Pates, S., J.P. Botting, L.M.E. McCobb, and L.A. Muir. 2020. A miniature Ordovician hurdiid from Wales demonstrates the adaptability of Radiodonta. Royal Society Open Science 7: 200459.

    Google Scholar 

  • Skinner, E.S. 2005. Taphonomy and depositional circumstances of exceptionally preserved fossils from the Kinzers Formation (Cambrian), southeastern Pennsylvania. Palaeogeography, Palaeoclimatology, Palaeoecology 220: 167–192.

    Google Scholar 

  • Torsvik, T., L.R.M. Cocks. 2013. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. In Early Palaeozoic Biogeography and Palaeogeography, eds. D.A.T. Harper, and T. Servais. Geological Society of London, Memoir 38: 5–24.

  • Van Roy, P., A.C. Daley, and D.E.G. Briggs. 2015. Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps. Nature 522: 77–80.

    Google Scholar 

  • Vinther, J., M. Stein, N.R. Longrich, and D.A.T. Harper. 2014. A suspension-feeding anomalocarid from the early Cambrian. Nature 507: 496–499.

    Google Scholar 

  • Webster, M., R.R. Gaines, and N.C. Hughes. 2008. Microstratigraphy, trilobite biostratinomy, and depositional environment of the ‘Lower Cambrian’ ruin wash Lagerstätte, Pioche Formation, Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology 264: 100–122.

    Google Scholar 

  • Whittington, H.B., and D.E.G. Briggs. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London (B) 309: 569–609.

    Google Scholar 

  • Zhai, D.Y., J. Ortega-Hernández, J.M. Wolfe, X.G. Hou, C. Cao, and Y. Liu. 2019a. Three dimensionally preserved appendages in an early Cambrian stem-group pancrustacean. Current Biology 29: 171–177.

    Google Scholar 

  • Zhai, D.Y., G.D. Edgecombe, A.D. Bond, H.J. Mai, X.G. Hou, and Y. Liu. 2019b. Fine-scale appendage structure of the Cambrian trilobitomorph Naraoia spinosa and its ontogenetic and ecological implications. Proceedings of the Royal Society (B) 286: 20192371.

    Google Scholar 

  • Zhai, D.Y., M. Williams, D.J. Siveter, T.H.P. Harvey, R.S. Sansom, S.E. Gabbott, D.J. Siveter, X.Y. Ma, R.Q. Zhou, Y. Liu, and X.G. Hou. 2019c. Variation in appendages in early Cambrian bradoriids reveals a wide range of body plans in stem-euarthropods. Communications Biology 2: 329.

    Google Scholar 

  • Zhang, X.G., and X.G. Hou. 2007. Gravitational constraints on the burial of the Chengjiang fossils. Palaios 22: 448–453.

    Google Scholar 

  • Zhang, X.L., W. Liu, and Y.L. Zhao. 2008. Cambrian Burgess Shale-type Lagerstätten in South China: Distribution and significance. Gondwana Research 14: 255–262.

    Google Scholar 

  • Zhang, X.L., P. Ahlberg, L.E. Babcock, D.K. Choi, G. Geyer, R. Gozalo, J.S. Hollingsworth, G.X. Li, E.B. Naimark, T. Pegel, and M. Steiner. 2017. Challenges in defining the base of Cambrian Series 2 and Stage 3. Earth Science Review 172: 124–139.

    Google Scholar 

  • Zhu, M.Y., L.E. Babcock, and S.C. Peng. 2006. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld 15: 217–222.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Meirong Cheng, Cong Liu, Shu Chai and Juanping Zhai at the Shaanxi Key Laboratory of Early Life and Environments for joining in the fieldwork and the technical assistance. We deeply appreciate the editor-in-chief Mike Reich (SNSB-BSPG Munich) and one anonymous reviewer for their thoughtful and constructive comments which greatly improved this manuscript. We also would like to thank Hao Yun for discussion. Special thanks go to Daowen Lv and Xi Liu (Northwest University Museum) for their contribution to the reconstruction artwork, and Jie Sun and Yifei Sun for scanning the fossils. This research was supported by the Natural Science Foundation of China (41930319, 41772011, 41720104002, 41890844, 41621003), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB26000000), and 111 Project (D17013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongjing Fu.

Additional information

Handling editor: Mike Reich.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Fu, D., Ma, J. et al. Houcaris gen. nov. from the early Cambrian (Stage 3) Chengjiang Lagerstätte expanded the palaeogeographical distribution of tamisiocaridids (Panarthropoda: Radiodonta). PalZ 95, 209–221 (2021). https://doi.org/10.1007/s12542-020-00545-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-020-00545-4

Keywords