Skip to main content

Advertisement

Log in

Paleoecological and paleoenvironmental interpretation of three successive macrofloras and palynofloras from the Kola Switch locality, lower Permian (Archer City Formation, Bowie Group) of Clay County, Texas, USA

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

Fossil floras have been recovered from a unique deposit of early Permian age in North-Central Texas. The site, Kola Switch, preserves three distinct floras in different lithofacies, in a succession from a single outcrop. The sedimentary environment appears to be a floodplain channel fill of primarily siltstones and claystones. The lowermost flora, preserved in a kaolinitic siltstone, indicates active water flow. It is dominated by plants typical of well-drained substrates, dominated by Sphenopteris germanica, and contains no wetland elements. The middle flora is from a finely laminated carbonaceous claystone and is dominated by marattialean tree ferns, with no elements from habitats typical of seasonal moisture availability. It contains no roots and appears to have formed as a floating peat mat. The upper flora is a mixed assemblage of wetland taxa and those typical of well-drained soil environments or a seasonal rainfall regime. Unlike the two lower floras, it has a relatively even distribution of dominance and is the most diverse of the three assemblages. Palynofloras also were recovered from each of these beds. The palynofloras, although varying between and even within the beds, indicate a common background species pool during the time interval sampled, suggesting that these distinct floras reflect local changes in microhabitat conditions under a constant climatic background. The palynoflora from each bed has characteristics in common with the macroflora of that bed, but also distinct differences. Together, the macroflora and microflora provide an unusually broad picture of this site through time. Kola Switch compares favorably with the recently described flora from the nearby Sanzenbacher Ranch site of approximately the same age and also with floras of Rotliegend age from Central Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Barthel, M. 1976. Die Rotliegendflora Sachsens. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie Dresden 24: 1–190.

    Google Scholar 

  • Barthel, M. 2009. Die Rotliegendflora des Thüringer Waldes, 2003–2008. Veröffentlichungen Naturhistorisches Museum Schleusingen: Special Publication, Combined Printing of Chapters from previous issues.

    Google Scholar 

  • Barthel, M. 2016. Die Rotliegendflora der Döhlen-Formation. Geologica Saxonica 61: 105–228.

    Google Scholar 

  • Barthel, M., B. Eichler, and W. Reichel. 2010. Die Rotliegendflora des Weißig-Beckens. Geologica Saxonica 56: 159–192.

    Google Scholar 

  • Bashforth, A.R., and W.J. Nelson. 2015. A Middle Pennsylvanian macrofloral assemblage from below the Rock Island (no. 1) coal member, Illinois: resolving the Bolsovian-Asturian boundary in the Illinois Basin. Review of Palaeobotany and Palynology 222: 67–83.

    Article  Google Scholar 

  • Bashforth, A.R., and E.L. Zodrow. 2007. Partial reconstruction and palaeoecology of Sphenophyllum costae (Middle Pennsylvanian, Nova Scotia, Canada). Bulletin of Geosciences 82: 365–382.

    Article  Google Scholar 

  • Bateman, R.M. 1991. Palaeoecology. In Plant Fossils in Geological Investigation. The Palaeozoic, ed. C.J. Cleal, 34–116. New York, N.Y: Ellis Harwood.

    Google Scholar 

  • Batenburg, L.H. 1981. Vegetative anatomy and ecology of Sphenophyllum zwickaviense, S. emarginatum, and other “compression species” of Sphenophyllum. Review of Palaeobotany and Palynology 32: 275–313.

    Article  Google Scholar 

  • Brown Jr., L.F., and J.L. Goodson. 1972. Abilene Sheet. Geological Atlas of Texas, scale 1:250,000, with explanatory pamphlet. Austin, Texas: The University of Texas and Bureau of Economic Geology.

    Google Scholar 

  • DiMichele, W.A., and R.B. Aronson. 1992. The Pennsylvanian-Permian vegetational transition: a terrestrial analogue to the onshore-offshore hypothesis. Evolution 46: 807–824.

    Article  Google Scholar 

  • DiMichele, W.A., N.J. Tabor, and D.S. Chaney. 2005. Outcrop-scale environmental heterogeneity and vegetational complexity in the Permo-Carboniferous Markley Formation of North Central Texas. New Mexico Museum of Natural History and Science Bulletin 30: 60–66.

    Google Scholar 

  • DiMichele, W.A., N.J. Tabor, D.S. Chaney, and W.J. Nelson. 2006. From wetlands to wet spots: environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras. Geological Society of America Special Papers 399: 223–248.

    Google Scholar 

  • DiMichele, W.A., H. Kerp, R. Sirmons, N. Fedorko, V. Skema, B.M. Blake Jr., and C.B. Cecil. 2013. Callipterid peltasperms of the Dunkard Group, central Appalachian Basin. International Journal of Coal Geology 119: 56–78.

    Article  Google Scholar 

  • DiMichele, W.A., J.W. Schneider, S.G. Lucas, C.F. Eble, H.J. Falcon-Lang, C.V. Looy, W.J. Nelson, S.D. Elrick, and D.S. Chaney. 2016. Megaflora and palynoflora associated with a Late Pennsylvanian coal bed (Bursum Formation, Carrizo Arroyo, New Mexico, U.S.A.) and paleoenvironmental significance. New Mexico Geological Society Field Conference Guidebook 67: 351–368.

    Google Scholar 

  • DiMichele, W.A., R.W. Hook, H. Kerp, C.L. Hotton, C.V. Looy, and D.S. Chaney. 2018. Lower Permian flora of the Sanzenbacher Ranch, Clay County, Texas. In Transformative Paleobotany, eds. M. Krings, C.J. Harper, N.R. Cuneo, and G.W. Rothwell, 95–126. London: Academic Press.

    Chapter  Google Scholar 

  • Ehret, D.L., and T.L. Phillips. 1977. Psaronius root systems-morphology and development. Palaeontographica (B: Paläophytologie) 161: 147–164.

    Google Scholar 

  • Ewel, K.C., and H.T. Odum (eds.). 1984. Cypress Swamps. Gainesville: University of Florida Press.

    Google Scholar 

  • Guy-Ohlson, D. 1992. Botryococcus as an aid in the interpretation of palaeoenvironment and depositional processes. Review of Palaeobotany and Palynology 71: 1–15.

    Article  Google Scholar 

  • Hentz, T.F. 1988. Lithostratigraphy and paleoenvironments of upper Paleozoic continental red beds, North-Central Texas: Bowie (new) and Wichita (revised) Groups. The University of Texas at Austin Bureau of Economic Geology Report of Investigations 170: 1–55.

    Google Scholar 

  • Hentz, T.F. 1989. Permo-Carboniferous lithostratigraphy of the vertebrate-bearing Bowie and Wichita Groups, North-Central Texas. In Permo-Carboniferous Vertebrate Paleontology, Lithostratigraphy, and Depositional Environments of North-Central Texas, ed. R.W. Hook, 1–21. Austin, Texas: Society of Vertebrate Paleontology. (=Field Trip Guidebook 2).

    Google Scholar 

  • Hentz, T.F., and L.F. Brown Jr. 1987. Wichita Falls–Lawton Sheet. Geological Atlas of Texas, scale 1:250,000, with explanatory pamphlet. Austin, Texas: The University of Texas and Bureau of Economic Geology.

    Google Scholar 

  • Kerp, J.H.F. 1982. Aspects of Permian palaeobotany and palynology. II. On the presence of the ovuliferous organ Autunia milleryensis (Renault) Krasser (Peltaspermaceae) in the Lower Permian of the Nahe area (FGR) and its relationship to Callipteris conferta (Sternberg) Brongniart. Acta Botanica Neerlandica 31: 417–427.

    Article  Google Scholar 

  • Kerp, J.H.F. 1984. Aspects of Permian palaeobotany and palynology. III. A new reconstruction of Lilpopia raciborskii (Lilpop) Conert et Schaarschmidt (Sphenopsida). Review of Palaeobotany and Palynology 40: 237–261.

    Article  Google Scholar 

  • Kerp, J.H.F. 1988. Aspects of Permian palaeobotany and palynology. X. The West- and Central european species of the genus Autuia Krasser emend. Kerp (Peltaspermaceae) and he form-genus Rhachiphyllum Kerp (callipterid foliage). Review of Palaeobotany and Palynology 54: 249–360.

    Article  Google Scholar 

  • Kerp, H. 1996. Post-Variscan late Palaeozoic Northern Hemisphere gymnosperms: the onset to the Mesozoic. Review of Palaeobotany and Palynology 90: 263–285.

    Article  Google Scholar 

  • Kerp, H., and J. Fichter. 1985. Die Makrofloren des saarpfälzischen Rotliegenden (? Ober-Karbon–Unter-Perm; SW-Deutschland). Mainzer Geowissenschaftliche Mitteilungen 14: 159–286.

    Google Scholar 

  • Kerp, H., and H. Haubold. 1988. Towards a reclassification of the West-European and Central-European species of the form-genus Callipteris Brongniart 1849. Zeitschrift für Geologische Wissenschaften 16: 865–876.

    Google Scholar 

  • Kerp, J.H.F., R.J. Poort, H.A.J.M. Swinkels, and R. Verwer. 1990. Aspects of Permian palaeobotany and palynology. IX. Conifer-dominated Rotliegend floras from the Saar-Nahe Basin (? Late Carboniferous-Early Permian; SW-Germany) with special reference to the reproductive biology of early conifers. Review of Palaeobotany and Palynology 62: 205–248.

    Article  Google Scholar 

  • Kerp, H., R. Noll, and D. Uhl. 2007. Übersicht über Pflanzengruppen und Vegetationsentwicklung im Permokarbon des Saar–Nahe-Beckens. In Kohlesümpfe, Seen und Halbwüsten, eds. T. Schindler and U.-H.J. Heidtke. Pollichia, Sonderveröffentlichung 10: 42–74.

    Google Scholar 

  • Lausberg, S., and H. Kerp. 2000. Conifer-dominated flora from the Lower Rotliegend near Alsenz, Saar–Nahe-Basin (Germany). Feddes Repertorium 111: 399–426.

    Article  Google Scholar 

  • Looy, C.V., and C.L. Hotton. 2014. Spatiotemporal relationships among Late Pennsylvanian plant assemblages: Palynological evidence from the Markley Formation, West Texas, U.S.A. Review of Palaeobotany and Palynology 211: 10–27.

    Article  Google Scholar 

  • Looy, C.V., R.A. Stevenson, T.B. van Hoof, and L. Mander. 2014. Evidence for coal forest refugia in the seasonally dry Pennsylvanian tropical lowlands of the Illinois Basin, USA. PeerJ 2: e630. https://doi.org/10.7717/peerj.630.

    Article  Google Scholar 

  • Lucas, S.G. 2006. Global Permian tetrapod biostratigraphy and biochronology. Geological Society of London, Special Publications 265: 65–93.

    Article  Google Scholar 

  • Mamay, S.H. 1967. Lower Permian plants from the Arroyo Formation in Baylor County, north-central Texas. US Geological Survey Professional Paper 575-C: C120–C126.

    Google Scholar 

  • Mamay, S.H. 1968. Russellites, new genus, a problematical plant from the Lower Permian of Texas. US Geological Survey Professional Paper 593-I: I1–I15.

    Google Scholar 

  • Mamay, S.H. 1989. Evolsonia, a new genus of Gigantopteridaceae from the Lower Permian Vale Formation, north-central Texas. American Journal of Botany 76: 1299–1311.

    Article  Google Scholar 

  • Mamay, S.H. 1990. Charliea manzanitana, n. gen., n. sp., and other enigmatic parallel-veined foliar forms from the Upper Pennsylvanian of New Mexico and Texas. American Journal of Botany 77: 858–866.

    Article  Google Scholar 

  • Mamay, S.H., and R.M. Bateman. 1991. Archaeocalamites lazarii, sp. nov.: the range of Archaeocalamitaceae extended from the lowermost Pennsylvanian to the mid-Lower Permian. American Journal of Botany 78: 489–496.

    Article  Google Scholar 

  • Mamay, S.H., D.S. Chaney, and W.A. DiMichele. 2009. Comia, a seed plant possibly of peltaspermous affinity: A brief review of the genus and description of two new species from the early Permian (Artinskian) of Texas, C. greggii sp. nov. and C. craddockii sp. nov. International Journal of Plant Sciences 170: 267–282.

    Article  Google Scholar 

  • Mander, L., W.M. Kürschner, and J.C. McElwain. 2010. An explanation for conflicting records of Triassic-Jurassic plant diversity. Proceedings of the National Academy of Sciences 107: 15351–15356.

    Article  Google Scholar 

  • McGowen, J.H., T.F. Hentz, DE Owen, M.K. Pieper, C.A. Shelby, and V.E. Barnes. 1991. Sherman Sheet. Geological Atlas of Texas, scale 1:250,000, with explanatory pamphlet. Austin, Texas: The University of Texas and Bureau of Economic Geology.

    Google Scholar 

  • Pfefferkorn, H.W., and J. Wang. 2007. Early Permian coal-forming floras preserved as compressions from the Wuda District (Inner Mongolia, China). International Journal of Coal Geology 69: 90–102.

    Article  Google Scholar 

  • Pfefferkorn, H.W., H. Mustafa, and H. Hass. 1975. Quantitative Charakterisierung oberkarboner Abdruckfloren. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 150: 253–269.

    Google Scholar 

  • Read, C.B. 1947. Pennsylvanian floral zones and floral provinces. Journal of Geology 55: 271–279.

    Article  Google Scholar 

  • Read, C.B., and S.H. Mamay. 1964. Upper Paleozoic floral zones and floral provinces of the United States. US Geological Survey Professional Paper 454-K: K1–K19, K31–K35.

    Google Scholar 

  • Šimůnek, Z., and K. Martínek. 2009. A study of Late Carboniferous and Early Permian plant assemblages from the Boskovice Basin, Czech Republic. Review of Palaeobotany and Palynology 155: 275–307.

    Article  Google Scholar 

  • Stull, G.W., C.C. Labandeira, W.A. DiMichele, and D.S. Chaney. 2013. The “seeds” on Padgettia readi are insect galls: reassignment of the plant to Odontopteris, the gall to Ovofoligallites n. gen., and the evolutionary implications thereof. Journal of Paleontology 87: 217–231.

    Article  Google Scholar 

  • Tabor, N.J., and I.P. Montañez. 2004. Morphology and distribution of fossil soils in the Permo-Pennsylvanian Wichita and Bowie Groups, north-central Texas, USA: implications for western equatorial Pangean palaeoclimate during icehouse–greenhouse transition. Sedimentology 51: 851–884.

    Article  Google Scholar 

  • Tabor, N.J., C.M. Romanchock, C.V. Looy, C.L. Hotton, W.A. DiMichele, and D.S. Chaney. 2013. Conservatism of Late Pennsylvanian vegetational patterns during short-term cyclic and long-term directional environmental change, western equatorial Pangea. Geological Society of London, Special Publications 376: 201–234.

    Article  Google Scholar 

  • Uhl, D., and A. Jasper. 2016. New data on the macroflora of the basal Rotliegend Group (Remigiusberg Formation; Gzhelian) in the Saar-Nahe Basin (SW-Germany). Fossil Imprint 72: 239–250.

    Article  Google Scholar 

  • Uhl, D., and S. Lausberg. 2008. Land plant diversity in selected latest Pennsylvanian?–Permian deposits from Saar-Nahe Basin (SW-Germany) and German Zechstein Basin. Studia Geologica Polonica 129: 81–106.

    Google Scholar 

  • Wang, J., H.W. Pfefferkorn, Y. Zhang, and Z. Feng. 2012. Permian vegetational Pompeii from Inner Mongolia and its implications for landscape paleoecology and paleobiogeography of Cathaysia. Proceedings of the National Academy of Sciences 109: 4927–4932.

    Article  Google Scholar 

  • White, D. 1912. The characters of the fossil plant Gigantopteris Schenk and its occurrence in North America. Proceedings of the United States National Museum 41: 493–516.

    Article  Google Scholar 

  • Zangerl, R., and E.S. Richardson Jr. 1963. The paleoecological history of two Pennsylvanian black shales. Fieldiana: Geology Memoirs 4: 1–352.

    Google Scholar 

Download references

Acknowledgements

This paper is dedicated to our colleague, mentor, and friend, Hans Kerp. We thank the late Sergius Mamay (US Geological Survey), the late Nicholas Hotton, III (Smithsonian Institution), Kenneth Craddock (Denton, Texas), and the late Louis Todd (Denton, Texas) for assistance with property access and collecting. Tucker Hentz (Texas Bureau of Economic Geology) and Rudolf Serbet (University of Kansas) assisted materially in identifying the location and composition of the collection made by Theordore Delevoryas. Hermann Pfefferkorn, an anonymous reviewer, and associate editor Benjamin Bomfleur are gratefully acknowledged for providing comments that materially improved the paper. The research of Carol Hotton was supported in part by the Intramural Research Program of the National Institutes of Health, National Library of Medicine. The fieldwork of Hook and DiMichele was supported by a Scholarly Studies grant from the Smithsonian Institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. DiMichele.

Additional information

Handling Editor: Benjamin Bomfleur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiMichele, W.A., Hotton, C.L., Looy, C.V. et al. Paleoecological and paleoenvironmental interpretation of three successive macrofloras and palynofloras from the Kola Switch locality, lower Permian (Archer City Formation, Bowie Group) of Clay County, Texas, USA. PalZ 93, 423–451 (2019). https://doi.org/10.1007/s12542-019-00485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-019-00485-8

Keywords

Navigation