pp 1–42 | Cite as

A new mesenosaurine from the lower Permian of Germany and the postcrania of Mesenosaurus: implications for early amniote comparative osteology

  • Frederik SpindlerEmail author
  • Ralf Werneburg
  • Jörg W. Schneider
Research Paper


Based on an exceptionally well-preserved articulated postcranial skeleton, the early amniote Cabarzia trostheidei gen. et sp. nov. is described. As the lack of the skull hampers its taxonomic assignment, a large sample of basal amniotes is included as part of an exhaustive comparison. Considering the slender, long-limbed proportions of the skeleton, several potential determinations are suggested in order to test for bolosaur, millerettid, araeoscelid, basal neodiapsid, or synapsid affinities. Numerous character conditions are re-evaluated regarding their distributions among early amniote subclades. The closest match to Cabarzia is found to be the middle Permian Mesenosaurus from Russia. The documentation for both genera provides the most complete postcranial descriptions of non-varanodontine varanopids. One of the main differences from Mesenosaurus is the curved ungual phalanx, indicating a use related to predatory behavior. An investigation of limb proportions, such as slender trunks, elongated hindlimbs, and relatively short forelimbs, may suggest the occurrence of facultative bipedalism in Mesenosaurus and Cabarzia. The oldest known mesenosaurine, C. trostheidei from the Asselian/Sakmarian, also pushes back the oldest evidence of bipedal locomotion by more than 15 Ma.


Synapsida Reptilia Paleozoic Postcrania Bipedalism Character optimization 



We owe a great debt of gratitude to Frank Trostheide (Wolmirstedt and Magdeburg) for transporting, loaning, and facilitating the public cataloging of the newly described specimen, as well as for valuable discussions. The documenting carried out in Moscow was greatly facilitated by Ilja Kogan (Freiberg), Evgenia Sytchevskaya, Lev S. Schatenstein, and Valeriy Golubev (Moscow), who provided travel assistance, accommodation, supplies, and collection management. We are grateful for our constructive exchanges with Johannes Müller (Berlin), Michael Buchwitz (Magdeburg), Sebastian Voigt (Thallichtenberg), Thomas Martens (Gotha), and Diane Scott and Robert Reisz (Mississauga). Nico Schendel (Freiberg) kindly assisted with the literature search for the limb plates. Marcel Hübner (Freiberg) and Steffen Trümper (Chemnitz) provided images for the geological map and outcrop documentation, respectively. Stephan Brauner (Friedrichroda) helped by contributing his immense and detailed knowledge regarding local mining history, geology, and re-identifying the horizon of the new holotype. Furthermore, we greatly appreciate the English language help given by Eleonore Horlacher as well as the general funding provided by Michael Völker and Raimund Albersdörfer (Dinosaurier Museum Altmühltal, Denkendorf). The manuscript profited considerably from the kind reviews of Stuart Sumida, Neil Brocklehurst, and one anonymous expert. This research was supported by the Deutsche Forschungsgemeinschaft (DFG grants SCHN 408/12, 20, 21, and 22 to J.W.S.) as well as by the Russian Government as part of the program ‘Competitive Growth of Kazan Federal University Among World’s Leading Academic Centers.’ This work represents a contribution toward the tasks of the IGCP Working Group on Nonmarine-marine late Carboniferous, Permian and early Triassic correlations.

Supplementary material

12542_2018_439_MOESM1_ESM.xlsx (34 kb)
Supplementary material 1 (XLSX 34 kb)
12542_2018_439_MOESM2_ESM.pdf (2.4 mb)
Supplementary material 2 (PDF 2453 kb)


  1. Anderson, J.S., and R.R. Reisz. 2004. Pyozia mesenensis, a new, small varanopid (Synapsida, Eupelycosauria) from Russia: “Pelycosaur” diversity in the Middle Permian. Journal of Vertebrate Paleontology 24(1): 173–179.CrossRefGoogle Scholar
  2. Andreas, D. 1988. The structural dual character of the Rotliegendes in the Thuringian Forest and its surroundings. Zeitschrift für Geologische Wissenschaften 16: 979–992.Google Scholar
  3. Andreas, D. 2014. Der Thüringer Wald im Zeitraum der Stefan-Unterperm-Entwicklung-ein Abschnitt der Zentraleuropäischen N-S-Riftzone innerhalb des Mitteleuropäischen Großschollenscharniers. Freiberger Forschungshefte (C: Paläontologie, Stratigraphie, Fazies) 547: 1–181.Google Scholar
  4. Andreas, D., and H. Haubold. 1975. Die biostratigraphische Untergliederung des Autun (Unteres Perm) im mittleren Thüringer Wald. Schriftenreihe für geologische Wissenschaften 3: 5–86.Google Scholar
  5. Angielczyk, K.D., and L. Schmitz. 2014. Nocturnality in synapsids predates the origin of mammals by over 100 million years. Proceedings of the Royal Society (B: Biological Sciences) 281 (1–8): 20141642. Scholar
  6. Barthel, M. 2003. Die Rotliegendflora des Thüringer Waldes, Teil 1: Einführung und Keilblattpflanzen. Veröffentlichungen Naturhistorisches Museum Schleusingen 18: 3–16.Google Scholar
  7. Barthel, M., and S. Brauner. 2015. Die Rotliegendflora des Thüringer Waldes. Supplementum. Semana (Veröffentlichungen Naturhistorisches Museum Schleusingen) 30: 3–37.Google Scholar
  8. Barthel, M., and R. Rößler. 1995. “Eine gantz unbekanndte Frucht…” – 300 Jahre paläobotanisches Sammeln und Beobachten in Manebach. Veröffentlichungen Naturhistorisches Museum Schleusingen 10: 49–56.Google Scholar
  9. Benson, R.B.J. 2012. Interrelationships of basal synapsids: cranial and postcranial morphological partitions suggest different topologies. Journal of Systematic Palaeontology 10: 601–624.CrossRefGoogle Scholar
  10. Berman, D.S., and R.R. Reisz. 1982. Restudy of Mycterosaurus longiceps (Reptilia, Pelycosauria) from the Lower Permian of Texas. Annals of Carnegie Museum 51: 423–453.Google Scholar
  11. Berman, D.S., and S.S. Sumida. 1990. A new species of Limnoscelis (Amphibia, Diadectomorpha) from the Late Pennsylvanian Sangre de Cristo formation of central Colorado. Annals of Carnegie Museum 59(4): 303–341.Google Scholar
  12. Berman, D.S., S.S. Sumida, and T. Martens. 1998. Diadectes (Diadectomorpha, Diadectidae) from the Early Permian of central Germany, with description of a new species. Bulletin of the Carnegie Museum of Natural History 67: 53–93.Google Scholar
  13. Berman, D.S., A. Henrici, S.S. Sumida, and T. Martens. 2000a. Redescription of Seymouria sanjuanensis (Seymouriamorpha) from the Lower Permian of Germany based on complete, mature specimens with a discussion of paleoecology of the Bromacker locality assemblage. Journal of Vertebrate Paleontology 20: 253–268.CrossRefGoogle Scholar
  14. Berman, D.S., R.R. Reisz, D. Scott, A. Henrici, S.S. Sumida, and T. Martens. 2000b. Early Permian bipedal reptile. Science 290: 969–972.CrossRefGoogle Scholar
  15. Berman, D.S., A.C. Henrici, S.S. Sumida, and T. Martens. 2004. New materials of Dimetrodon teutonis (Synapsida: Sphenacodontidae) from the Lower Permian of Germany. Annals of the Carnegie Museum 73(2): 48–56.Google Scholar
  16. Berman, D.S., A.C. Henrici, S.S. Sumida, T. Martens, and V. Pelletier. 2014. First European record of a varanodontine (Synapsida: Varanopidae): Member of a unique Early Permian upland paleoecosystem, Tambach Basin, central Germany. In Early Evolutionary History of the Synapsida, eds. C.F. Kammerer, K.D. Angielczyk, and J. Fröbisch, 69–86. New York: Springer. (Vertebrate Paleobiology and Paleoanthropology Series).CrossRefGoogle Scholar
  17. Bernardi, M., S. Kearns, F. Zorzi, A. Lorenzetti, and M. Fornasiero. 2014. Tridentinosaurus is back. Beginning a complete reexamination of the oldest reptile of the Alps. Giornate di Paleontologia SPI 2014 Abstract volume: 86–87.Google Scholar
  18. Bickelmann, C., J. Müller, and R.R. Reisz. 2009. The enigmatic diapsid Acerosodontosaurus piveteaui (Reptilia: Neodiapsida) from the Upper Permian of Madagascar and the paraphyly of ‘‘younginiform’’ reptiles. Canadian Journal of Earth Sciences 46: 651–661.CrossRefGoogle Scholar
  19. Botha-Brink, J., and S.P. Modesto. 2009. Anatomy and relationships of the Middle Permian Varanopid Heleosaurus scholtzi based on a social aggregation from the Karoo Basin of South Africa. Journal of Vertebrate Paleontology 29(2): 389–400.CrossRefGoogle Scholar
  20. Boy, J.A., and T. Martens. 1991. Ein neues captorhinomorphes Reptil aus dem thüringischen Rotliegend (Unter-Perm; Ost-Deutschland). Paläontologische Zeitschrift 65: 363–389.CrossRefGoogle Scholar
  21. Brinkman, D.B., D.S. Berman, and D.A. Eberth. 1984. A new araeoscelid reptile, Zarcasaurus tanyderus, from the Culter Formation (Lower Permian) of north-central New Mexico. New Mexico Geology 6(2): 34–39.Google Scholar
  22. Brough, M.C., and J. Brough. 1967. Studies on early tetrapods III. The genus Gephyrostegus. Philosophical Transactions of the Royal Society (B: Biological Sciences) 252: 147–165.Google Scholar
  23. Campione, N., and R.R. Reisz. 2010. Varanops brevirostris (Eupelycosauria: Varanopidae) from the Lower Permian of Texas, with discussion of varanopid morphology and interrelationsships. Journal of Vertebrate Paleontology 30(3): 724–746.Google Scholar
  24. Carroll, R.L. 1964. The earliest reptiles. Journal of the Linnean Society (Zoology) 45(304): 61–83.Google Scholar
  25. Carroll, R.L. 1969. A Middle Pennsylvanian captorhinomorph, and the interrelationships of primitive reptiles. Journal of Paleontology 43(1): 151–170.Google Scholar
  26. Carroll, R.R. 1970. The ancestry of reptiles. Philosophical Transactions of the Royal Society (B: Biological Sciences) 257: 267–308.CrossRefGoogle Scholar
  27. Carroll, R.L. 1976a. Eosuchians and the origin of archosaurs. In Essays on Palaeontology in Honour of Louis Shano Russell, ed. C.S. Churcher, 58–79. Athlon: Royal Ontario Museum. (Life Sciences Miscellaneous Publications).Google Scholar
  28. Carroll, R.L. 1976b. Galesphyrus capensis, a younginid eosuchian from the Cistecephalus zone of South Africa. Annals of the South African Museum 72 (4): 59–68.Google Scholar
  29. Carroll, R.L. 1977. The origin of lizards. In Problems in Vertebrate Evolution, eds. S.M. Andrews, R.S. Miles, and A.D. Walker, 359–396. London: Academic Press.Google Scholar
  30. Carroll, R.L. 1981. Plesiosaur ancestors from the upper permian of Madagascar. Philosophical Transactions of the Royal Society (B: Biological Sciences) 293(1066): 315–383.CrossRefGoogle Scholar
  31. Carroll, R.L., and D. Baird. 1972. Carboniferous stem-reptiles of the family Romeriidae. Bulletin of the Museum of Comparative Zoology 143(5): 321–363.Google Scholar
  32. Carroll, R.L., and P. Gaskill. 1978. The order microsauria. American Philosophical Society Memoirs 126: 1–211.Google Scholar
  33. Carroll, R.L., and P. Thompson. 1982. A bipedal lizardlike reptile from the Karroo. Journal of Paleontology 56(1): 1–10.Google Scholar
  34. Case, E.C. 1907. Revision of the Pelycosauria of North America. Carnegie Institution of Washington Publications 55: 1–176.Google Scholar
  35. Clark, J., and R.L. Carroll. 1973. Romeriid reptiles from the lower Permian. Bulletin of the Museum of Comparative Zoology 144 (5): 353–407.Google Scholar
  36. Clemente, C.J. 2014. The evolution of bipedal running in lizards suggests a consequential origin may be exploited in later lineages. Evolution 68(8): 2171–2183.Google Scholar
  37. Clemente, C.J., P.C. Withers, G. Thompson, and D. Lloyd. 2008. Why go bipedal? Locomotion and morphology in Australian agamid lizards. Journal of Experimantal Biology 211: 2058–2065.CrossRefGoogle Scholar
  38. Credner, H. 1889. Die Stegocephalen und Saurier aus dem Rothliegenden des Plauen’schen Grundes bei Dresden. viii. Theil. Kadaliosaurus priscus Crd. Zeitschrift der Deutschen Geologischen Gesellschaft 41: 319–342.Google Scholar
  39. Credner, H. 1888. Die Stegocephalen und Saurier aus dem Rothliegenden des Plauen’schen Grundes bei Dresden, vii. Theil: Palaeohatteria longicaudata CRED. Zeitschrift der Deutschen Geologischen Gesellschaft 40: 490–558.Google Scholar
  40. Currie, P.J. 1981. Hovasaurus boulei, an aquatic eosuchian from the Upper Permian of Madagascar. Palaeontologia africana 24: 99–168.Google Scholar
  41. Currie, P.J. 1982. The osteology and relationships of Tangasaurus mennelli Haughton (Reptilia, Eosuchia). Annals of the South African Museum 86(8): 247–265.Google Scholar
  42. Currie, P.J., and R.L. Carroll. 1984. Ontogenetic changes in the eosuchian reptile Thadeosaurus. Journal of Vertebrate Paleontology 4(1): 68–84.CrossRefGoogle Scholar
  43. Davis, K. 2013. Lower Permian Vertebrates of Oklahoma. Volume 2Richards Spur. Memphis: D&D Fossils.Google Scholar
  44. deBraga, M., and R.R. Reisz. 1995. A new diapsid reptiles from the uppermost Carboniferous (Stephanian) of Kansas. Palaeontology 38(1): 199–212.Google Scholar
  45. DeMar, R. 1970. A primitive pelycosaur from the Pennsylvanian of Illinois. Journal of Paleontology 44(1): 154–163.Google Scholar
  46. DiMichele, W.A., C.B. Cecil, I.P. Montañez, and H.J. Falcon-Lang. 2010. Cyclic changes in Pennsylvanian paleoclimate and effects on floristic dynamics in tropical Pangaea. International Journal of Coal Geology 83: 329–344.CrossRefGoogle Scholar
  47. Eberth, D.A., and D. Brinkman. 1983. Ruthiromia elcobriensis, a new pelycosaur from El Cobre Canyon, New Mexico. Breviora 474: 1–26.Google Scholar
  48. Eberth, D.A., D.S. Berman, S.S. Sumida, and H. Hopf. 2000. Lower Permian terrestrial paleoenvironment of the Tambach Basin (Thuringia, central Germany): The upland holy grail. Palaios 15: 293–313.CrossRefGoogle Scholar
  49. Efremov, J.A. 1938. Some new Permian reptiles of the USSR. Proceedings of the USSR Academy of Sciences 19(9): 771–776.Google Scholar
  50. Evans, S.E. 1988. The early history and relationships of the Diapsida. In The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds, ed. M.J. Benton, Systematics Association Special Volume 35A: 221–260. Oxford: Clarendon Press.Google Scholar
  51. Falconnet, J. 2007. Redescription d’Aphelosaurus lutevensis Gervais, 1859 (Diapsida, Araeoscelidia) du Permien de Lodève. Master thesis. Paris: Université Pierre et Marie Curie, 1–43.Google Scholar
  52. Falconnet, J. 2012. First evidence of a bolosaurid parareptile in France (latest Carboniferous–earliest Permian of the Autun basin) and the spatiotemporal distribution of the Bolosauridae. Bulletin de la Société Géologique de France 183(6): 495–508.CrossRefGoogle Scholar
  53. Falconnet, J. 2013. The Sphenacodontid synapsid Neosaurus cynodus, and related material, from the Permo-Carboniferous of France. Acta Palaeontologica Polonica 60(1): 169–182.Google Scholar
  54. Felice, R.N., and K.D. Angielczyk. 2014. Was Ophiacodon (Synapsida, Eupelycosauria) a swimmer? A test using vertebral dimensions. In Early Evolutionary History of the Synapsida, eds. C.F. Kammerer, K.D. Angielczyk, and J. Fröbisch, 25–51. New York: Springer. (Vertebrate Paleobiology and Paleoanthropology Series).Google Scholar
  55. Fox, R.C., and M.C. Bowman. 1966. Osteology and relationsships of Captorhinus aguti (COPE) (Reptilia: Captorhinomorpha). The University of Kansas Paleontological Contributions 11: 1–79.Google Scholar
  56. Fröbisch, J., R.R. Schoch, J. Müller, T. Schindler, and D. Schweiss. 2011. A new basal sphenacodontid synapsid from the Late Carboniferous of the Saar–Nahe Basin, Germany. Acta Palaeontologica Polonica 56(1): 113–120.Google Scholar
  57. Gottmann-Quesada, A., and P.M. Sander. 2009. A redescription of the early archosauromorph Protorosaurus speneri MEYER, 1832, and its phylogenetic relationships. Palaeontographica (A: Paläozoologie und Stratigraphie) 287(4–6): 123–220.CrossRefGoogle Scholar
  58. Gow, C.E. 1972. The osteology and relationships of the Millerettidae (Reptilia: Cotylosauria). Journal of Zoology 167: 219–264.CrossRefGoogle Scholar
  59. Gow, C.E. 1975. The morphology and relationships of Youngian capensis Broom and Prolacerta broomi Parrington. Palaeontologia Africana 18: 89–131.Google Scholar
  60. Haines, R.W. 1939. A revision of the extensor muscels in the forearm in tetrapods. Journal of Anatomy 73(2): 211–233.Google Scholar
  61. Haines, R.W. 1950. The flexor muscles of the forearm and hand in lizards and mammals. Journal of Anatomy 84(1): 13–29.Google Scholar
  62. Harris, J.M., and R.L. Carroll. 1977. Kenyasaurus, a new eosuchian reptiles from the early Triassic of Kenya. Journal of Paleontology 51(1): 139–149.Google Scholar
  63. Haubold, H. 1970. Versuch der Revision der Amphibien-Fährten des Karbon und Perm. Freiberger Forschungshefte (C: Paläontologie, Stratigraphie, Fazies) 260: 83–117.Google Scholar
  64. Haubold, H. 1998. The Early Permian tetrapod ichnofauna of Tambach, the changing concepts in ichnotaxonomy. Hallesches Jahrbuch für Geowissenschaften (B: Geologie, Paläontologie, Mineralogie) 20: 1–16.Google Scholar
  65. Haubold, H. 2000. Tetrapodenfährten aus dem Perm—Kenntnisstand und progress 2000. Hallesches Jahrbuch für Geowissenschaften (B: Geologie, Paläontologie, Mineralogie) 22: 1–16.Google Scholar
  66. Heaton, M.J., and R.R. Reisz. 1980. A skeletal reconstruction of the Early Permian captorhinid reptile Eocaptorhinus laticeps (Williston). Journal of Paleontology 54(1): 136–143.Google Scholar
  67. Heaton, M.J., and R.R. Reisz. 1986. Phylogenetic relationships of captorhinomorph reptiles. Canadian Journal of Earth Sciences 23: 402–418.CrossRefGoogle Scholar
  68. Henrici, A.C., D.S. Berman, S.G. Lucas, A.B. Heckert, L.F. Rinehart, and K.E. Zeigler. 2005. The carpus and tarsus of the Early Permian synapsid Sphenacodon ferox (Eupelycosauria: Sphenacodontidae). In The Nonmarine Permian, eds. S.G. Lucas, and K.E. Zeigler, New Mexico Museum of Natural History and Science Bulletin 30: 106–110.Google Scholar
  69. Heyler, D. 1969. Vertébrés de l’Autunien de France. In Cahiers de Paléontologie, ed. J.P. Lehman, 1–259. Paris: CNRS.Google Scholar
  70. Hill, R.V. 2005. Integration of morphological data sets for phylogenetic analysis of Amniota: The importance of integumentary characters and increased taxonomic sampling. Systematic Biology 54 (4): 530–547.Google Scholar
  71. Holmes, R.B. 2003. The hind limb of Captorhinus aguti and the step cycle of basal amniotes. Canadian Journal of Earth Sciences 40: 515–526.CrossRefGoogle Scholar
  72. Hübner, M. 2014. Stratigraphie, Sedimentologie und Paläontologie der Ilmenau- und Goldlauter-Formation im Hartsteinwerk Tabarz, Thüringer Wald. MSc thesis. Freiberg: Technische Universität Bergakademie Freiberg, 1–171.Google Scholar
  73. Ivakhnenko, M.F. 2008. Subclass Ophiacomorpha. In Fossil Vertebrates of Russia and Adjacent Countries: Fossil Reptiles and Birds Part 1, eds. M.F. Ivakhnenko and E.N. Kurochkin, 95–100. Moscow: GEOS. (in Russian).Google Scholar
  74. Kemp, T.S. 2006. The origin and early radiation of the therapsid mammal-like reptiles: a palaeobiological hypothesis. Journal of Evolutionary Biology 19: 1231–1248.CrossRefGoogle Scholar
  75. Kim, K.S., J.D. Lim, M.G. Lockley, L. Xing, and Y. Choi. 2017. Korean trackway of a hopping, mammaliform trackmaker is global first from the Cretaceous. Cretaceous Research 74: 188–191. Scholar
  76. Kissel, R.A., and R.R. Reisz. 2004. Synapsid fauna of the Upper Pennsylvanian Rock Lake Shale near Garnett, Kansas and the diversity pattern of early amniotes. In Recent Advances in the Origin and Early Radiation of Vertebrates, eds. G. Arratia, M.V.H. Wilson, and R. Cloutier, 409–428. München: Verlag Dr. Friedrich Pfeil.Google Scholar
  77. Langston, W. 1965. Oedaleops campi (Reptilia: Pelycosauria), new genus and species from the Lower Permian of New Mexico, and the family Eothyrididae. Bulletin of the Texas Memorial Museum 9: 1–46.Google Scholar
  78. Langston, W., and R.R. Reisz. 1981. Aerosaurus wellesi, new species, a varanopseid mammal-like reptile (Synapsida: Pelycosauria) from the Lower Permian of New Mexico. Journal of Vertebrate Paleontology 1(1): 73–96.Google Scholar
  79. Laurin, M. 1991. The osteology of a Lower Permian eosuchian from Texas and a review of diapsid phylogeny. Zoological Journal of the Linnean Society 101: 59–95.CrossRefGoogle Scholar
  80. LeBlanc, A.R.H., and R.R. Reisz. 2014. New postcranial material of the early caseid Casea broilii Williston, 1910 (Synapsida: Caseidae) with a review of the evolution of the sacrum in Paleozoic non-mammalian synapsids. PLoS One 9(12): e115734. Scholar
  81. Lee, H.J., Y.N. Lee, A.R. Fiorillo, and J. Lü. 2018. Lizards ran bipedally 110 million years ago. Scientific Reports 8(1): 2617. Scholar
  82. Legler, B., and J.W. Schneider. 2008. Marine ingressions into the Middle/Late Permian saline lake of the Southern Permian Basin (Rotliegend, northern Germany) possibly linked to sea-level highstands in the Arctic rift system. Palaeogeography, Palaeoclimatolology, Palaeoecology 267: 102–114.CrossRefGoogle Scholar
  83. Leonardi, P. 1959. Tridentinosaurus antiquus Gb. Dal Piaz, rettile protorosauro permiano del Trentino orientale. Memorie degli Instituti di Geologia e Mineralogia dell’Università di Padova XXI: 3–15.Google Scholar
  84. Liu, J., and G.S. Bever. 2015. The last diadectomorph sheds light on Late Palaeozoic terapod biogeography. Biology Letters 11: 20150100. Scholar
  85. Lucas, S.G., J. Barrick, K. Krainer, and J.W. Schneider. 2013. The Carboniferous–Permian boundary at Carrizo Arroyo, Central New Mexico, USA. Stratigraphy 10: 153–170.Google Scholar
  86. Lützner, H., D. Andreas, J.W. Schneider, S. Voigt, and R. Werneburg. 2012. Stefan und Rotliegend im Thüringer Wald und seiner Umgebung. In Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken, ed. Deutsche Stratigraphische Kommission. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 61: 418–487.Google Scholar
  87. Maddin, H.C., and R.R. Reisz. 2007. The morphology of the terminal phalanges in Permo-Carboniferous synapsids: An evolutionary perspective. Canadian Journal of Earth Sciences 44: 267–274.CrossRefGoogle Scholar
  88. Maddin, H.C., D.C. Evans, and R.R. Reisz. 2006. An Early Permian varanodontine varanopid (Synapsida: Eupelycosauria) from the Richards Spur locality, Oklahoma. Journal of Vertebrate Paleontology 26(4): 957–966.Google Scholar
  89. Martens, T. 1991. Ein besonderes Fossil. Paläontologische Zeitschrift 65: 225–226.CrossRefGoogle Scholar
  90. Martens, T. 1992. Untitled. Abhandlungen und Berichte des Museums der Natur Gotha 17: 116.Google Scholar
  91. Martens, T. 2010. Ursaurier zwischen Thüringer Wald und Rocky Mountains. Gotha: Museum der Natur Gotha.Google Scholar
  92. Martens, T., J.W. Schneider, and H. Walter. 1981. Zur Paläontologie und Genese fossilführender Rotsedimente—Der Tambacher Sandstein, Oberrotliegendes, Thüringer Wald. Freiberger Forschungshefte (C: Paläontologie, Stratigraphie, Fazies) 363: 75–100.Google Scholar
  93. Modesto, S.P., and R.R. Reisz. 2002. An enigmatic new diapsid reptile from the Upper Permian of Eastern Europe. Journal of Vertebrate Paleontology 22(4): 851–855.CrossRefGoogle Scholar
  94. Modesto, S.P., D.M. Scott, and R.R. Reisz. 2009. A new parareptile with temporal fenestration from the Middle Permian of South Africa. Canadian Journal of Earth Sciences 46: 9–20.CrossRefGoogle Scholar
  95. Modesto, S.P., R.M.H. Smith, N.E. Campione, and R.R. Reisz. 2011. The last “pelycosaur“: A varanopid synapsid from the Pristerognathus Assemblage Zone, Middle Permian of South Africa. Naturwissenschaften 98: 1027–1034.CrossRefGoogle Scholar
  96. Modesto, S.P., D.M. Scott, M.J. MacDougall, H.-D. Sues, D.C. Evans, and R.R. Reisz. 2015. The oldest parareptile and the early diversification of reptiles. Proceedings of the Royal Society (B: Biological Sciences) 282 (1–9): 20141912. Scholar
  97. Montañez, I.P., N.J. Tabor, D. Niemeier, W.A. DiMichele, T.D. Frank, C.R. Fielding, J.L. Isbell, L.P. Birgenheier, and M.C. Rygel. 2007. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science 315: 87–91.CrossRefGoogle Scholar
  98. Moss, J.L. 1972. The morphology and phylogenetic relationshsips of the Lower Permian tetrapod Tseajaia campi VAUGHN (Amphibia: Seymouriamorpha). University of California Publications in Geological Sciences 98: 1–63.Google Scholar
  99. Müller, J., and R.R. Reisz. 2006. The phylogeny of early eureptiles: Comparing parsimony and Bayesian approaches in the investigation of a basal fossil clade. Systematic Biology 55(3): 503–511.CrossRefGoogle Scholar
  100. Müller, J., D.S. Berman, A.C. Henrici, T. Martens, and S.S. Sumida. 2006. The basal reptile Thuringothyris mahlendorffae (Amniota: Eureptilia) from the Lower Permian of Germany. Journal of Paleontology 80(4): 726–739.Google Scholar
  101. Olberding, J.P., L.D. McBrayer, and T.E. Higham. 2012. Performance and three-dimensional kinematics of bipedal lizards during obstacle negotiation. The Journal of Experimental Biology 215: 247–255.CrossRefGoogle Scholar
  102. Olson, E.C. 1965. New Permian vertebrates from the Chickasha Formation in Oklahoma. Circular Oklahoma Geological Survey 70: 5–70.Google Scholar
  103. Olson, E.C. 1970. New and little known genera and species of vertebrates from the Lower Permian of Oklahoma. Fieldiana: Geology 18(3): 359–434.Google Scholar
  104. Olson, E.C. 1974. On the source of therapsids. Annals of the South African Museum 64: 27–46.Google Scholar
  105. Osborn, H.F. 1903. On the primary division of the Reptilia into two sub-classes, Synapsida and Diapsida. Science 17(424): 275–276.Google Scholar
  106. Paton, R.L. 1974. Lower Permian pelycosaurs from the English Midlands. Palaeontology 17(3): 541–552.Google Scholar
  107. Peabody, F.E. 1952. Petrolacosaurus kansensis Lane, a Pennsylvanian reptile from Kansas. University of Kansas Paleontological Contributions Article 1: 1–41.Google Scholar
  108. Pelletier, V. 2014. Postcranial description and reconstruction of the varanodontine varanopid Aerosaurus wellesi (Synapsida: Eupelycosauria). In Early Evolutionary History of the Synapsida, eds. C.F. Kammerer, K.D. Angielczyk, and J. Fröbisch, 53–68. New York: Springer. (Vertebrate Paleobiology and Paleoanthropology Series).Google Scholar
  109. Reisz, R.R. 1972. Pelycosaurian reptiles from the Middle Pennsylvanian of North America. Bulletin of the Museum of Comparative Zoology 144(2): 27–62.Google Scholar
  110. Reisz, R.R. 1975. Pennsylvanian pelycosaurs from Linton, Ohio and Nýřany, Czechoslovakia. Journal of Paleontology 49(3): 522–527.Google Scholar
  111. Reisz, R.R. 1980. A protorothyridid captorhinomorph reptile from the Lower Permian of Oklahoma. Life Sciences Contributions of the Royal Ontario Museum 121: 1–16.Google Scholar
  112. Reisz, R.R. 1981. A diapsid reptile from the Pennsylvanian of Kansas. Special Publications of the Museum of Natural History, University of Kansas 7: 1–74.Google Scholar
  113. Reisz, R.R. 1986. Pelycosauria. Handbuch der Paläoherpetologie, Part 17A. Stuttgart: Gustav Fischer Verlag.Google Scholar
  114. Reisz, R.R., and D. Baird. 1983. Captorhinomorph “stem” reptiles from the Pennsylvanian coal-swamp deposit of Linton, Ohio. Annals of the Carnegie Museum 52: 393–411.Google Scholar
  115. Reisz, R.R., and D.S. Berman. 2001. The skull of Mesenosaurus romeri, a small varanopseid (Synapsida: Eupelycosauria) from the Upper Permian of the Mezen river basin. Northern Russia Annals of Carnegie Museum 70(2): 113–132.Google Scholar
  116. Reisz, R.R., and D.W. Dilkes. 2003. Archaeovenator hamiltonensis, a new varanopid (Synapsida: Eupelycosauria) from the Upper Carboniferous of Kansas. Canadian Journal of Earth Sciences 40: 667–678.CrossRefGoogle Scholar
  117. Reisz, R.R., and J. Fröbisch. 2014. The oldest caseid synapsid from the Late Pennsylvanian of Kansas, and the evolution of herbivory in terrestrial vertebrates. PLoS One 9(4): e94518. Scholar
  118. Reisz, R.R., and M. Laurin. 2004. A reevaluation of the enigmatic Permian synapsid Watongia and of its stratigraphic significance. Canadian Journal of Earth Sciences 41: 377–386.CrossRefGoogle Scholar
  119. Reisz, R.R., and S.P. Modesto. 1996. Archerpeton anthracos from the Joggins Formation of Nova Scotia: a microsaur, not a reptile. Canadian Journal of Earth Sciences 33: 703–709.CrossRefGoogle Scholar
  120. Reisz, R.R., and S.P. Modesto. 2007. Heleosaurus scholtzi from the Permian of South Africa: a varanopid synapsid, not a diapsid reptile. Journal of Vertebrate Paleontology 27(3): 734–739.CrossRefGoogle Scholar
  121. Reisz, R.R., and L.A. Tsuji. 2006. An articulated skeleton of Varanops with bite marks: the oldest known evidence of scavenging among terrestrial vertebrate. Journal of Vertebrate Paleontology 26(4): 1021–1023.CrossRefGoogle Scholar
  122. Reisz, R.R., D.S. Berman, and D. Scott. 1984. The anatomy and relationships of the Lower Permian reptile Araeoscelis. Journal of Vertebrate Paleontology 4(1): 57–67.CrossRefGoogle Scholar
  123. Reisz, R.R., H. Wilson, and D. Scott. 1997. Varanopseid synapsid skeletal elements from Richards Spur, a Lower Permian fissure fill near Fort Sill, Oklahoma. Oklahoma Geology Notes 57(5): 160–170.Google Scholar
  124. Reisz, R.R., D.W. Dilkes, and D.S. Berman. 1998. Anatomy and relationships of Elliotsmithia longiceps Broom, a small synapsid (Eupelycosauria: Varanopseidae) from the Late Permian of South Africa. Journal of Vertebrate Paleontology 18(3): 602–611.CrossRefGoogle Scholar
  125. Reisz, R.R., S.J. Godfrey, and D. Scott. 2009. Eothyris and Oedaleops: Do these Early Permian synapsids from Texas and New Mexico form a clade? Journal of Vertebrate Paleontology 29(1): 39–47.CrossRefGoogle Scholar
  126. Reisz, R.R., M. Laurin, and D. Marjanović. 2010. Apsisaurus witteri from the Lower Permian of Texas: yet another small varanopid synapsid, not a diapsid. Journal of Vertebrate Paleontology 30(5): 1628–1631.CrossRefGoogle Scholar
  127. Reisz, R.R., S.P. Modesto, and D.M. Scott. 2011. A new Early Permian reptile and its significance in early diapsid evolution. Proceedings of the Royal Society (B: Biological Sciences) 278: 3731–3737.Google Scholar
  128. Romer, A.S. 1937. New genera and species of pelycosaurian reptiles. Proceedings of the New England Zoological Club 16: 89–96.Google Scholar
  129. Romer, A.S. 1976. Osteology of Reptiles. Chicago and London: University of Chicago Press. (3rd impression; original 1956).Google Scholar
  130. Romer, A.S., and L.I. Price. 1940. Review of the Pelycosauria. Geological Society of America Special Papers 28: 1–538.CrossRefGoogle Scholar
  131. Roscher, M., and J.W. Schneider. 2006. Early Pennsylvanian to late Permian climatic development of central Europe in a regional and global context. Geological Society of London, Special Publications 265: 95–136.CrossRefGoogle Scholar
  132. Ruta, M., J.C. Cisneros, T. Liebrecht, L.A. Tsuji, and J. Müller. 2011. Amniotes through major biological crises: Faunal turnover among parareptiles and the end-Permian mass extinction. Palaeontology 54(5): 1117–1137.CrossRefGoogle Scholar
  133. Schlotheim, E.F. von. 1804. Beschreibungen merkwürdiger Kräuterabdrücke und Pflanzenversteinerungen. Gotha: Becker.Google Scholar
  134. Schneider, J.W. 1994. Environment, biotas and taphonomy of the lacustrine Niederhäslich Limestone, Döhlen Basin, Germany. Transactions of the Royal Society of Edinburgh, Earth Sciences 84: 453–464.CrossRefGoogle Scholar
  135. Schneider, J.W., and S.G. Lucas. 2015. Late Carboniferous-Permian-Early Triassic nonmarine-marine correlation: Call for global cooperation. Permophiles 61: 28.Google Scholar
  136. Schneider, J.W., and R. Romer. 2010. The Late Variscan molasses (Late Carboniferous to Late Permian) of the Saxo-Thuringian Zone. In Pre-Mesozoic Geology of Saxo-Thuringia—From the Cadomian Active Margin to the Variscan Orogen, eds. U. Linnemann, U. Kroner, and R.L. Romer, 323–346. Stuttgart: Schweizerbart, Science Publishers.Google Scholar
  137. Schneider, J.W., and F. Scholze. 2016. Late Pennsylvanian–Early Triassic conchostracan biostratigraphy: a preliminary approach. In The Permian Timescale, eds. S.G. Lucas, and S. Shen, Geological Society, London, Special Publications 450.
  138. Schneider, J.W., and R. Werneburg. 2012. Biostratigraphie des Rotliegend mit Insekten und Amphibien. In Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken, ed. Deutsche Stratigraphische Kommission. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 61: 110–142. Hannover.Google Scholar
  139. Schneider, J.W., S.G. Lucas, R. Werneburg, and R. Rößler. 2010. Euramerican Late Pennsylvanian/Early Permian arthropleurid/tetrapod associations—implications for the habitat and paleobiology of the largest terrestrial arthropod. In Carboniferous-Permian Transition in Canon del Cobre, Northern New Mexico, eds. S.G. Lucas, J.W. Schneider, and J.A. Spielmann, New Mexico Museum of Natural History and Science Bulletin 49: 49–70.Google Scholar
  140. Schneider, J.W., S.G. Lucas, and J.E. Barrick. 2013. The Early Permian age of the Dunkard Group, Appalachian basin, USA, based on spiloblattinid insect biostratigraphy. International Journal of Coal Geology 119: 88–92.CrossRefGoogle Scholar
  141. Schneider, J.W., R. Rößler, R. Werneburg, F. Scholze, and S. Voigt. 2014. Part II. The Carboniferous-Permian basins in Saxony, Thuringia, and Saxony-Anhalt of East Germany. In CPC-2014 Field Meeting on Carboniferous and Permian NonmarineMarine Correlation. July 21st27th, Freiberg, Germany. Excursion Guide, eds. J.W. Schneider, S. Oplustil, and F. Scholze, Wissenschaftliche Mitteilungen des Institutes für Geologie, Technische Universität Bergakademie Freiberg 46: 55–121.Google Scholar
  142. Schneider, J.W., S. Voigt, S.G. Lucas, and R. Rößler. 2016. Bio- and lithofacies of late Palaeozoic wet red beds and dry red beds. In Fossils: Key to Evolution, Stratigraphy and Palaeoenvironments (87th Annual Conference of the Paläontologische Gesellschaft), eds. B. Niebuhr, M. Wilmsen, L. Kunzmann, and C. Stefen, 1–139. Dresden: Saxoprint.Google Scholar
  143. Schneider, J.W., S.G. Lucas, and F. Scholze. 2017. Late Pennsylvanian Blattodea (Insecta) from near Socorro, New Mexico—classification, palecology and biostratigraphy. In Carboniferous-Permian Transition in Socorro County, New Mexico, eds. S.G. Lucas, W.A. DiMichele, and K. Krainer, New Mexico Museum of Natural History and Science Bulletin 77: 5–16.Google Scholar
  144. Schoch, R.R., and F. Witzmann. 2009. The temnospondyl Glanochthon from the Lower Permian Meisenheim Formation of Germany. Special Papers in Palaeontology 81: 121–136.Google Scholar
  145. Smith, R.M.H., and S.E. Evans. 1996. New material of Youngina: evidence of juvenile aggregation in Permian diapsid reptiles. Palaeontology 39(2): 289–303.Google Scholar
  146. Spielmann, J.A., and S.G. Lucas. 2010. Re-evaluation of Ruthiromia elcobriensis (Eupelycosauria: Ophiacodontidae?) from the Lower Permian (Seymourian?) of Cañon del Cobre, Northern New Mexico. In Carboniferous-Permian transition in Cañon del Cobre, eds. S.G. Lucas, J.W. Schneider, and J.A. Spielmann, New Mexico Museum of Natural History and Science Bulletin, 49: 151–158. Albuquerque: New Mexico Museum of Natural History and Science.Google Scholar
  147. Spindler, F. 2013. The Niederhäslich tetrapod assemblage (Early Permian, Döhlen basin) from Germany—new insights to ecology, reptiliomorph diversity, and the biology of (basal Sphenacodontia). Society of Vertebrate Paleontology 73rd Annual Meeting Program and Abstracts, p. 218.Google Scholar
  148. Spindler, F. 2015. The basal Sphenacodontiasystematic revision and evolutionary implications. PhD thesis. Freiberg: Technische Universität Bergakademie Freiberg, 1–385.
  149. Spindler, F. 2016. Morphological description and taxonomic status of Palaeohatteria and Pantelosaurus (Synapsida: Sphenacodontia). Freiberger Forschungshefte (C: Paläontologie, Stratigraphie, Fazies) 550(23): 1–57.Google Scholar
  150. Spindler, F., J. Falconnet, and J. Fröbisch. 2016. Callibrachion and Datheosaurus, two historical and previously mistaken basal caseasaurian synapsids From Europe. Acta Palaeontologica Polonica 61(3): 597–616.Google Scholar
  151. Spindler, F., R. Werneburg, J.W. Schneider, L. Luthardt, V. Annacker, and R. Rößler. 2018. First arboreal ‘pelycosaurs’ (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny. PalZ 92(2): 315–364.
  152. Stanford, R., M.G. Lockley, C. Tucker, S. Godfrey, and S.M. Stanford. 2018. A diverse mammal-dominated, footprint assemblage from wetland deposits in the Lower Cretaceous of Maryland. Scientific Reports 8(741): 1–12. Scholar
  153. Stein, K., C. Palmer, P.G. Gill, and M.J. Benton. 2008. The aerodynamics of the British Late Triassic Kuehneosauridae. Palaeontology 51(4): 967–981.Google Scholar
  154. Steyer, S. 2012. Earth Before the Dinosaurs. Bloomington: Indiana University Press.Google Scholar
  155. Sumida, S.S. 1989. Reinterpretation of vertebral structure in the Early Permian pelycosaur Varanosaurus acutirostris (Amniota, Synapsida). Journal of Vertebrate Paleontology 9(4): 451–458.Google Scholar
  156. Sumida, S.S. 1997. Locomotor features of taxa spanning the origin of amniotes. In Amniote Origins—Completing the Transition to Land, eds. S.S. Sumida and K.L.M. Martin, 353–398. San Diego: Academic Press.Google Scholar
  157. Sumida, S.S., D.S Berman, B. Jefcoat, A. Henrici, and T. Martens. 2013. New Information on the hindlimb structure of the Early Permian bolosaurid reptile Eudibamus cursoris, the earliest known facultative biped. Society of Vertebrate Paleontology 73rd Annual Meeting Program and Abstracts, 222–223.Google Scholar
  158. Sumida, S.S., V. Pelletier, and D.S. Berman. 2014. New Information on the basal pelycosaurian-grade synapsid Oedaleops. In Early Evolutionary History of the Synapsida, eds. C.F. Kammerer, K.D. Angielczyk, and J. Fröbisch, 7–23. New York: Springer. (Vertebrate Paleobiology and Paleoanthropology Series).Google Scholar
  159. Thommasen, H., and R.L. Carroll. 1981. Broomia, the oldest known millerettid reptile. Palaeontology 24(2): 379–390.Google Scholar
  160. Tsuji, L.A. 2010. Evolution, Morphology and Paleobiology of the Pareiasauria and their Relatives (Amniota: Parareptilia). PhD thesis. Berlin: Humboldt-Universität Berlin, 1–220.
  161. Tsuji, L.A., J. Müller, and R.R. Reisz. 2012. Anatomy of Emeroleter levis and the phylogeny of the Nycteroleter parareptiles. Journal of Vertebrate Paleontology 32(1): 45–67.Google Scholar
  162. Vaughn, P.P. 1955. The Permian reptile Araeoscelis restudied. Bulletin of the Museum of Comparative Zoology 113 (5): 305–467.Google Scholar
  163. Voigt, S. 2005. Die Tetrapodenichnofauna des kontinentalen Oberkarbon und Perm im Thüringer Wald—Ichnotaxonomie, Paläoökologie und Biostratigraphie. Göttingen: Cuvillier Verlag.Google Scholar
  164. Voigt, S. 2012. Tetrapodenfährten im Rotliegend. In Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken, ed. Deutsche Stratigraphische Kommission. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 61: 161–175.Google Scholar
  165. Voigt, S., and H. Haubold. 2000. Analyse zur Variabilität der Tetrapodenfährte Ichniotherium cottae aus dem Tambacher Sandstein (Rotliegend, Unterperm, Thüringen). Hallesches Jahrbuch für Geowissenschaften (B: Geologie, Paläontologie, Mineralogie) 22: 17–58.Google Scholar
  166. Voigt, S., D.S. Berman, and A.C. Henrici. 2007. First well-established track-trackmaker association of Paleozoic tetrapods based on Ichniotherium trackways and diadectid skeletons from the Lower Permian of Germany. Journal of Vertebrate Paleontology 27: 553–570.CrossRefGoogle Scholar
  167. Voigt, S., J. Fischer, T. Schindler, M. Wuttke, F. Spindler, and L. Rinehart. 2014. On a potential fossil hotspot for Pennsylvanian-Permian non-aquatic vertebrates in Central Europe. Freiberger Forschungshefte (C: Paläontologie, Stratigraphie, Fazies) 548(22): 39–44.Google Scholar
  168. Watson, D.M.S. 1954. On Bolosaurus and the origin and classification of reptiles. Bulletin of the Museum of Comparative Zoology 3 (9): 297–449.Google Scholar
  169. Watson, D.M.S. 1957. On Millerosaurus and the early history of the sauropsid reptiles. Philosophical Transactions of the Royal Society (B: Biological Sciences) 240: 325–400.Google Scholar
  170. Werneburg, R. 1988. Die Stegocephalen (Amphibia) der Goldlauterer Schichten (Unterrotliegendes, Unterperm) des Thüringer Waldes, Teil III: Apateon dracyiensis (BOY), Branchierpeton reinholdi n. sp. und andere. Veröffentlichungen des Naturkundemuseums Erfurt 7: 80–96.Google Scholar
  171. Werneburg, R. 1991. Die Branchiosaurier aus dem Unterrotliegend des Döhlener Beckens bei Dresden. Veröffentlichungen Naturhistorisches Museum Schleusingen 6: 75–99.Google Scholar
  172. Werneburg, R. 1999. Ein Pelycosaurier aus dem Rotliegenden des Thüringer Waldes. Veröffentlichungen Naturhistorisches Museum Schleusingen 14: 55–58.Google Scholar
  173. Werneburg, R. 2001. Apateon dracyiensis—eine frühe Pionierform der Branchiosaurier aus dem Europäischen Rotliegend, Teil 1: Morphologie. Veröffentlichungen Naturhistorisches Museum Schleusingen 16: 17–36.Google Scholar
  174. Werneburg, R. 2002. Apateon dracyiensis—eine frühe Pionierform der Branchiosaurier aus dem Europäischen Rotliegend, Teil 2: Paläoökologie. Veröffentlichungen Naturhistorisches Museum Schleusingen 17: 17–32.Google Scholar
  175. Werneburg, R., and S. Brauner. 2014. Der ‘fliegende Branchiosaurier’—eine Eintagsfliege? Freiberger Forschungshefte (C: Paläontologie, Stratigraphie, Fazies) 548(22): 61–69.Google Scholar
  176. Werneburg, R., and J.W. Schneider. 2001. Der „Saurierkalkstein“ von Niederhäslich im Döhlen-Becken bei Dresden. In Klassische Fundstellen der Paläontologie, vol. 4, ed. W.K. Weidert, 41–50. Korb: Goldschneck-Verlag.Google Scholar
  177. Werneburg, R., and J.W. Schneider. 2006. Amphibian biostratigraphy of the European Permo‐Carboniferous. In Non-Marine Permian Biostratigraphy and Biochronology, eds. S.G. Lucas, G. Cassinis, and J.W. Schneider, Geological Society of London, Special Publications, 265: 201–215.Google Scholar
  178. Williston, S.W. 1914. The osteology of some American Permian vertebrates. Journal of Geology 22(4): 364–419.CrossRefGoogle Scholar

Copyright information

© Paläontologische Gesellschaft 2019

Authors and Affiliations

  1. 1.Dinosaurier-Park AltmühltalDenkendorfGermany
  2. 2.Naturhistorisches Museum Schloss BertholdsburgSchleusingenGermany
  3. 3.TU Bergakademie Freiberg, Geological InstituteFreibergGermany
  4. 4.Kazan Federal UniversityKazanRussia

Personalised recommendations