PalZ

pp 1–50 | Cite as

First arboreal 'pelycosaurs' (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny

  • Frederik Spindler
  • Ralf Werneburg
  • Joerg W. Schneider
  • Ludwig Luthardt
  • Volker Annacker
  • Ronny Rößler
Research Paper

Abstract

A new fossil amniote from the Fossil Forest of Chemnitz (Sakmarian-Artinskian transition, Germany) is described as Ascendonanus nestleri gen. et sp. nov., based on five articulated skeletons with integumentary preservation. The slender animals exhibit a generalistic, lizard-like morphology. However, their synapsid temporal fenestration, ventrally ridged centra and enlarged iliac blades indicate a pelycosaur-grade affiliation. Using a renewed data set for certain early amniotes with a similar typology found Ascendonanus to be a basal varanopid synapsid. This is the first evidence of a varanopid from Saxony and the third from Central Europe, as well as the smallest varanopid at all. Its greatly elongated trunk, enlarged autopodia and strongly curved unguals, along with taphonomical observations, imply an arboreal lifestyle in a dense forest habitat until the whole ecosystem was buried under volcanic deposits. Ascendonanus greatly increases the knowledge on rare basal varanopids; it also reveals a so far unexpected ecotype of early synapsids. Its integumentary structures present the first detailed and soft tissue skin preservation of any Paleozoic synapsid. Further systematic results suggest a varanodontine position for Mycterosaurus, the monophyly of South African varanopids including Anningia and the distinction of a skeletal aggregation previously assigned to Heleosaurus, now renamed as Microvaranops parentis gen. et sp. nov.

Keywords

Arboreality Synapsid phylogeny Adaptation Cisuralian Soft tissue preservation Volcanic taphonomy 

Kurzfassung

Basierend auf fünf artikulierten Skeletten mit Hauterhaltung wird ein neuer, fossiler Amniot aus dem Versteinerten Wald von Chemnitz (Sakmarium–Artinskium-Grenzbereich, Deutschland) beschrieben als Ascendonanus nestleri gen. et sp. nov. Die schlanken Tiere sind von generalistischer, echsenhafter Gestalt. Demgegenüber zeigen die synapsiden Schläfenfenster, ventral gekantete Zentren und vergrößerte Iliumblätter eine Zugehörigkeit zur Pelycosaurier-Stufe an. Unter Anwendung eines erneuerten Datensatzes für ausgewählte frühe Amnioten ähnlicher Typologie wird Ascendonanus zu basalen Varanopiden gestellt. Damit liegt der erste Nachweis eines Varanopiden aus Sachsen und der dritte aus Mitteleuropa vor, zudem der kleinste Varanopide überhaupt. Sein besonders verlängerter Rumpf, vergrößerte Autopodien und stark gekrümmte Krallen sowie taphonomische Beobachtungen legen eine arboreale Lebensweise inmitten eines dichten Waldhabitats nahe, bis das gesamte Ökosystem von vulkanischen Ablagerungen verschüttet wurde. Ascendonanus erweitert die Kenntnis der seltenen basalen Varanopiden enorm, zumal er einen bei frühen Synapsiden bisher unerwarteten Ökotyp aufdeckt. Die Integumentstrukturen stellen die ersten detaillierten und durch Weichteile erhaltenen Hautfunde aller paläozoischen Synapsiden dar. Weitergehende systematische Ergebnisse deuten an: eine varanodontine Position für Mycterosaurus, die Monophylie südafrikanischer Varanopiden einschließlich Anningia, sowie die Unterscheidung einer vormals zu Heleosaurus gestellten Skelettaggregation, nun benannt als Microvaranops parentis gen. et sp. nov.

Schlüsselwörter

Arborealität Synapside Phylogenie Anpassung Cisuralium Weichteilerhaltung Vulkanische Taphonomie 

Notes

Acknowledgements

We gratefully acknowledge the support by the Chemnitz excavation team including Ralph Kretzschmar and Mathias Merbitz for professional fieldwork, saving of the finds and many fruitful discussions and Dr. Thorid Zierold for encouraging the project management. We express special thanks to Georg Sommer, Schleusingen, for excellent preparation of the skeletons. We are further indebted to Maibrit Scheibel, Annika Buitink and Thomas Israel. This research was supported by the Deutsche Forschungsgemeinschaft (DFG grants RO 1273-3/1 to R.R. and SCHN 408/20 to J.W.S.) and Volkswagen Foundation (Az: I/84638), as well as Raimund Albersdörfer and Michael Völker (Dinosaurier Freiluftmuseum Altmühltal). The manuscript benefited greatly from the constructive reviews provided by Sean P. Modesto and Neil Brocklehurst.

Supplementary material

12542_2018_405_MOESM1_ESM.docx (853 kb)
Supplementary material 1 (DOCX 852 kb)
12542_2018_405_MOESM2_ESM.xlsx (56 kb)
Supplementary material 2 (XLSX 56 kb)
12542_2018_405_MOESM3_ESM.docx (967 kb)
Supplementary material 3 (DOCX 967 kb)
12542_2018_405_MOESM4_ESM.xlsx (858 kb)
Supplementary material 4 (XLSX 858 kb)
12542_2018_405_MOESM5_ESM.nex (13 kb)
Supplementary material 5 (NEX 12 kb)
12542_2018_405_MOESM6_ESM.eps (574 kb)
Supplementary material 6 (EPS 574 kb)
12542_2018_405_MOESM7_ESM.eps (1.5 mb)
Supplementary material 7 (EPS 1493 kb)
12542_2018_405_MOESM8_ESM.eps (1.4 mb)
Supplementary material 8 (EPS 1443 kb)

References

  1. Anderson, J.S., and R.R. Reisz. 2004. Pyozia mesenensis, a NEW, Small Varanopid (Synapsida, Eupelycosauria) from Russia: “Pelycosaur” Diversity in the Middle Permian. Journal of Vertebrate Paleontology 24 (1): 173–179.CrossRefGoogle Scholar
  2. Appleton, P., J. Malpas, B.A. Thomas, and C.J. Cleal. 2011. The Brymbo Fossil Forest. Geology Today 27: 107–113.CrossRefGoogle Scholar
  3. Benson, R.B.J. 2012. Interrelationships of Basal Synapsids: Cranial and Postcranial Morphological Partitions Suggest Different Topologies. Journal of Systematic Palaeontology 10: 601–624.CrossRefGoogle Scholar
  4. Berman, D.S., and R.R. Reisz. 1982. Restudy of Mycterosaurus longiceps (Reptilia, Pelycosauria) from the Lower Permian of Texas. Annals of Carnegie Museum 51: 423–453.Google Scholar
  5. Berman, D.S., A.C. Henrici, S.S. Sumida, T. Martens, and V. Pelletier. 2014. First European Record of a Varanodontine (Synapsida: Varanopidae): Member of a Unique Early Permian Upland Paleoecosystem, Tambach Basin, Central Germany. In Early Evolutionary History of the Synapsida, eds. C.F. Kammerer, K.D. Angielczyk, and J. Fröbisch, 69–86. New York: Springer. (Vertebrate Paleobiology and Paleoanthropology Series).Google Scholar
  6. Bernardi, M., S. Kearns, F. Zorzi, A. Lorenzetti, and M. Fornasiero. 2014. Tridentinosaurus is back. Beginning a Complete Reexamination of the Oldest Reptile of the alps. Giornate di Paleontologia SPI 2014, Abstract volume: 86–87.Google Scholar
  7. Berry, C.M., and J.E.A. Marshall. 2015. Lycopsid Forests in the Early Late Devonian Paleoequatorial Zone of Svalbard. Geology 43 (12): 1043–1046.CrossRefGoogle Scholar
  8. Botha-Brink, J., and S.P. Modesto. 2007. A Mixed-Age classed “pelycosaur” Aggregation from South Africa: Earliest Evidence of Parental Care in Amniotes? Proceedings of the Royal Society B 274: 2829–2834.CrossRefGoogle Scholar
  9. Botha-Brink, J., and S.P. Modesto. 2009. Anatomy and Relationships of the Middle Permian Varanopid Heleosaurus scholtzi Based on a Social Aggregation from the Karoo Basin of South Africa. Journal of Vertebrate Paleontology 29 (2): 389–400.CrossRefGoogle Scholar
  10. Boy, J.A. 1972. Die Branchiosaurier (Amphibia) des saarpfälzischen Rotliegenden (Perm, SW-Deutschland. Abhandlungen des Hessischen Landesamtes für Bodenforschung 65: 1–137.Google Scholar
  11. Boy, J.A. 1980. Die Tetrapodenfauna (Amphibia, Reptilia) des saarpfälzischen Rotliegenden (Unter-Perm; SW-Deutschland). 2. Tersomius graumanni n. sp. Mainzer Geowissenschaftliche Mitteilungen 8: 17–30.Google Scholar
  12. Boy, J.A. 1985. Über Micropholis, den letzten Überlebenden der Dissorophoidea (Amphibia, Temnosponyli; Unter-Trias). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1985 (1): 29–45.Google Scholar
  13. Boy, J.A. 1995. Über die Micromelerpetontidae (Amphibia: Temnospondyli). 1. Morphologie und Palökologie des Micromelerpeton credneri (Unter-Perm; SW-Deutschland). Paläontologische Zeitschrift 69: 429–457.CrossRefGoogle Scholar
  14. Boy, J.A. 2002. Über Micromelerpetontidae (Amphibia: Temnosponyli). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 225 (3): 425–452.Google Scholar
  15. Boy, J.A., and H.-H. Sues. 2000. Branchiosaurs: Larvae, Metamorphosis and Heterochrony in Temnospondyls and Seymouriamorphs. In Amphibian Biology, 4, Palaeontology: The Evolutionary History of Amphibians, eds. H. Heatwole, and R.L. Carroll, 1150–1197. NSW, Australia: Surrey Beatty & Sons, Chipping Norton.Google Scholar
  16. Bradshaw, S.D. 2003. Vertebrate Ecophysiology: An Introduction to its Principles and Applications. New York: Cambridge University Press.CrossRefGoogle Scholar
  17. Brinkman, D., and D.A. Eberth. 1983. The Interrelationships of Pelycosaurs. Breviora 473: 1–35.Google Scholar
  18. Brocklehurst, N., and J. Fröbisch. 2017. A re-Examination of the Enigmatic Russian Tetrapod Phreatophasma aenigmaticum and its Evolutionary Impications. Fossil Record 20: 87–93.CrossRefGoogle Scholar
  19. Brocklehurst, N., C.F. Kammerer, and J. Fröbisch. 2013. The early Evolution of Synapsids, and the Influence of Sampling on Their Fossil Record. Paleobiology 39: 470–490.CrossRefGoogle Scholar
  20. Brocklehurst, N., R.R. Reisz, V. Fernandez, and J. Fröbisch. 2016. A Re-Description of ‘Mycterosaurussmithae, an Early Permian Eothyridid, and its Impact on the Phylogeny of Pelycosaurian-Grade Synapsids. PLoS ONE 11 (6): 1–27; e0156810.  https://doi.org/10.1371/journal.pone.0156810.
  21. Broili, F., and J. Schröder. 1937. Beobachtungen an Wirbeltieren der Karrooformation. XXV. Über Micropholis Huxley. XXVI. Über Lydekkerina Broom. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Abteilung 1937: 19–57.Google Scholar
  22. Broom, R. 1907. On some new fossil reptiles from the Karroo beds of Victoria West, South Africa. Transactions of the South African Philosophical Society 18 (1): 31–42.Google Scholar
  23. Bulanov, V.V., and A.G. Sennikov. 2015. Glaurung schneideri gen. et sp. nov., a New Weigeltisaurid (Reptilia) from the Kupfershiefer (Upper Permian) of Germany. Paleontological Journal 49 (12): 1353–1364.CrossRefGoogle Scholar
  24. Campione, N., and R.R. Reisz. 2010. Varanops brevirostris (Eupelycosauria: Varanopidae) from the Lower Permian of Texas, with discussion of Varanopid Morphology and Interrelationsships. Journal of Vertebrate Paleontology 30 (3): 724–746.CrossRefGoogle Scholar
  25. Carroll, R.L. 1976. Eosuchians and the Origin of Archosaurs. In Essays on Palaeontology in Honour of Louis Shano Russell, ed. C.S. Churcher, 58–79. Athlon: Royal Ontario Museum. (Life Sciences Miscellaneous Publications).Google Scholar
  26. Carroll, R.L., and D. Baird. 1972. Carboniferous Stem-Reptiles of the Family Romeriidae. Bulletin of the Museum of Comparative Zoology 143 (5): 321–363.Google Scholar
  27. Colbert, E.H. 1966. A Gliding Reptile from the Triassic of New Jersey. American Museum Novitates 2246: 1–23.Google Scholar
  28. Crandell, K.E., A. Herrel, M. Sasa, J.B. Losos, and K. Autumn. 2014. Stick or Grip? Co-evolution of Adhesive Toepads and Claws in Anolis Lizard. Zoology 117: 363–369.CrossRefGoogle Scholar
  29. Credner, H. 1881. Die Stegocephalen des Plauen’schen Grundes bei Dresden, 2. Theil. Zeitschrift der Deutschen Geologischen Gesellschaft 33: 574–603.Google Scholar
  30. Credner, H. 1886. Die Stegocephalen des Plauen’schen Grundes bei Dresden, 6. Theil. Zeitschrift der Deutschen Geologischen Gesellschaft 38: 576–633.Google Scholar
  31. Daly, E. 1994. The Amphibamidae (Amphibia: Temnospondyli), with a description of a new genus from the Upper Pennsylvanian of Kansas (pp. 1–59), vol. 85. The University of Kansas, Miscellaneous Publications.Google Scholar
  32. DeMar, R. 1970. A primitive pelycosaur from the Pennsylvanian of Illinois. Journal of Paleontology 44 (1): 154–163.Google Scholar
  33. Dilkes, D.W., and R.R. Reisz. 1996. First Record of a Basal Synapsid (‘Mammal-Like Reptile‘) in Gondwana). Proceedings of the Royal Society B 263: 1165–1170.CrossRefGoogle Scholar
  34. DiMichele, W.A., and H.J. Falcon-Lang. 2011. Pennsylvanian ‘Fossil Forests’ in Growth Position (T0 assemblages): Origin, Taphonomic bias and Palaeoecological Insights. Journal of the Geological Society 168: 585–605.  https://doi.org/10.1144/0016-76492010-103.CrossRefGoogle Scholar
  35. Dunlop, J.A., and R. Rößler. 2013. The youngest trigonotarbid Permotarbus schuberti n. gen., n. sp. from the Permian of Chemnitz in Germany. Fossil Record 16: 229–243.CrossRefGoogle Scholar
  36. Dunlop, J.A., D.A. Legg, P.A. Selden, V. Fet, J.W. Schneider, and R. Rößler. 2016. Permian scorpions from the Petrified Forest of Chemnitz. Germany. BMC Evolutionary Biology 16: 72.  https://doi.org/10.1186/s12862-016-0634-z.CrossRefGoogle Scholar
  37. Eberth, D.A., and D. Brinkman. 1983. Ruthiromia elcobriensis, a new pelycosaur from El Cobre Canyon, New Mexico. Breviora 474: 1–26.Google Scholar
  38. Evans, S.E. 1982. The gliding reptiles of the Upper Permian. Zoological Journal of the Linnean Society 76 (2): 97–123.CrossRefGoogle Scholar
  39. Evans, S.E. 1987. A review of the Upper Permian genera Coelurosauravus, Weigeltisaurus and Gracilisaurus (Reptilia: Diapsida). Zoological Journal of the Linnean Society 90: 275–303.CrossRefGoogle Scholar
  40. Falcon-Lang, H.J., F. Kurzawe, and S.G. Lucas. 2016. A Late Pennsylvanian Coniferopsid Forest in Growth Position, Near Socorro, New Mexico, U.S.A.: Tree Systematics and Palaeoclimatic Significance. Review of Palaeobotany and Palynology 225: 67–83.CrossRefGoogle Scholar
  41. Falconnet, J. 2013. The Sphenacodontid Synapsid Neosaurus cynodus, and Related Material, from the Permo-Carboniferous of France. Acta Palaeontologica Polonica 60 (1): 169–182.Google Scholar
  42. Feng, Z., R. Rößler, V. Annacker, and J.-Y. Yang. 2014. Micro-CT Investigation of a Seed Fern (probable medullosan) Fertile Pinna from the Early Permian Petrified Forest in Chemnitz, Germany. Gondwana Research 26: 1208–1215.  https://doi.org/10.1016/j.gr.2013.08.005.CrossRefGoogle Scholar
  43. Feng, Z., T. Zierold, and R. Rößler. 2012. When Horsetails Became Giants. Chinese Science Bulletin 57: 2285–2288.CrossRefGoogle Scholar
  44. Frenzel, D. 1759. Zuverlässige Nachricht von einem zu Steine gewordenen Baume, nebst dessen eigentlicher Abbildung. Dresdnisches Magazin 1: 39–47, Dresden: Michael Gröll.Google Scholar
  45. Fröbisch, J., and R.R. Reisz. 2009. The Late Permian herbivore Suminia and the Early Evolution of Arboreality in Terrestrial Vertebrae Ecosystems. Proceedings of the Royal Society B 276: 3611–3618.  https://doi.org/10.1098/rspb.2009.0911.CrossRefGoogle Scholar
  46. Fröbisch, J., and R.R. Reisz. 2011. The Postcranial Anatomy of Suminia getmanovi (Synapsida: Anomodontia), the Earliest known Arboreal Tetrapod. Zoological Journal of the Linnean Society 162: 661–698.CrossRefGoogle Scholar
  47. Fröbisch, J., R.R. Schoch, J. Müller, T. Schindler, and D. Schweiss. 2011. A New Basal Sphenacodontid Synapsid from the Late Carboniferous of the Saar-Nahe Basin. Germany. Acta Palaeontologica Polonica 56 (1): 113–120.CrossRefGoogle Scholar
  48. Heyler, D. 1969. Vertébrés de l’Autunien de France. In Cahiers de Paléontologie, ed. J.P. Lehman, 1–259. Paris: CNRS.Google Scholar
  49. Kemp, T.S. 1982. Mammal-like reptiles and the origin of mammals. London: Academic Press.Google Scholar
  50. Kretzschmar, R., V. Annacker, S. Eulenberger, B. Tunger, and R. Rößler. 2008. Erste Wissenschaftliche Grabung im Versteinerten Wald von Chemnitz – ein Zwischenbericht. Freiberger Forschungshefte C 528: 25–55.Google Scholar
  51. Langston, W. 1965. Oedaleops campi (Reptilia: Pelycosauria) New genus and species from the Lower Permian of New Mexico, and the family Eothyrididae. Bulletin of the Texas Memorial Museum 9: 1–46.Google Scholar
  52. Langston, W., and R.R. Reisz. 1981. Aerosaurus wellesi, new species, a varanopseid mammal-like reptile (Synapsida: Pelycosauria) from the Lower Permian of New Mexico. Journal of Vertebrate Paleontology 1 (1): 73–96.CrossRefGoogle Scholar
  53. Laurin, M. 1991. The osteology of a Lower Permian eosuchian from Texas and a review of diapsid phylogeny. Zoological Journal of the Linnean Society 101: 59–95.CrossRefGoogle Scholar
  54. Leonardi, P. 1959. Tridentinosaurus antiquus Gb. Dal Piaz, rettile protorosauro permiano del Trentino orientale. Memorie degli Instituti di Geologia e Mineralogia dell’Università di Padova XXI: 3–15.Google Scholar
  55. Looy, C.V., H. Kerp, I.A.P. Duijnstee, and W.A. DiMichele. 2014. The late Paleozoic ecological-evolutionary laboratory, a land-plant fossil record perspective. The Sedimentary Record 12 (4): 4–10.CrossRefGoogle Scholar
  56. Luthardt, L., R. Rößler, and J.W. Schneider. 2016. Palaeoclimatic and Site-Specific Conditions in the Early Permian Fossil Forest of Chemnitz—Sedimentological, Geochemical and Palaeobotanical Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 441: 627–652.CrossRefGoogle Scholar
  57. Luthardt, L., and R. Rößler. 2017. Fossil Forest Reveals Sunspot Activity in the Early Permian. Geology 45 (3): 279–282.  https://doi.org/10.1130/G38669.1.CrossRefGoogle Scholar
  58. Maddin, H.C., and R.R. Reisz. 2007. The Morphology of the Terminal Phalanges in Permo-Carboniferous Synapsids: An Evolutionary Perspective. Canadian Journal of Earth Sciences 44: 267–274.CrossRefGoogle Scholar
  59. Maddin, H.C., D.C. Evans, and R.R. Reisz. 2006. An Early Permian Varanodontine Varanopid (Synapsida: Eupelycosauria) from the Richards Spur locality, Oklahoma. Journal of Vertebrate Paleontology 26 (4): 957–966.CrossRefGoogle Scholar
  60. Maddin, H.C., C.A. Sidor, and R.R. Reisz. 2008. Cranial Anatomy of Ennatosaurus tecton (Synapsida: Caseidae) from the Middle Permian of Russia and the Evolutionary Relationships of Caseidae. Journal of Vertebrate Paleontology 28 (1): 160–180.CrossRefGoogle Scholar
  61. Modesto, S.P., and R.R. Reisz. 2002. An Enigmatic New Diapsid Reptile from the Upper Permian of Eastern Europe. Journal of Vertebrate Paleontology 22 (4): 851–855.CrossRefGoogle Scholar
  62. Modesto, S., C.A. Sidor, B.S. Rubidge, and J. Welman. 2001. A second varanopseid skull from the Upper Permian of Sout Africa: implications for Late Permian ‘pelycosaur‘evolution. Lethaia 24: 249–259.CrossRefGoogle Scholar
  63. Modesto, S.P., R.M.H. Smith, N.E. Campione, and R.R. Reisz. 2011. The last “pelycosaur“: a varanopid synapsid from the Pristerognathus Assemblage Zone, Middle Permian of South Africa. Naturwissenschaften 98: 1027–1034.CrossRefGoogle Scholar
  64. Mones, A. 1989. Nomen dubium vs. nomen vanum. Journal of Vertebrate Paleontology 9 (2): 232–234.CrossRefGoogle Scholar
  65. Müller, J., T.M. Scheyer, J.J. Head, P.M. Barrett, I. Werneburg, P.G.P. Ericson, D. Pol, and M.R. Sánchez-Villagra. 2010. Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes. Proceedings of the National academy of Sciences of the United States of America 107: 2118–2123.CrossRefGoogle Scholar
  66. Olson, E.C. 1965. New Permian Vertebrates from the Chickasha Formation in Oklahoma. Circular Oklahoma Geological Survey 70: 5–70.Google Scholar
  67. Olson, E.C. 1974. On the source of therapsids. Annals of the South African Museum 64: 27–46.Google Scholar
  68. Opluštil, S., J. Pšenička, J. Bek, J. Wang, Z. Feng, M. Libertín, Z. Šimůnek, J. Bureš, and J. Drábková. 2014. T0 peat-forming plant assemblage preserved in growth position by volcanic ash-fall: A case study from the Middle Pennsylvanian of the Czech Republic. Bulletin of Geosciences 89 (4): 773–818.  https://doi.org/10.3140/bull.geosci.1499.CrossRefGoogle Scholar
  69. Osborn, H.F. 1903. On the primary division of the Reptilia into two sub-classes, Synapsida and Diapsida. Science 17 (424): 275–276.Google Scholar
  70. Paton, R.L. 1974. Lower Permian pelycosaurs from the English Midlands. Palaeontology 17 (3): 541–552.Google Scholar
  71. Pelletier, V. 2014. Postcranial Description and Reconstruction of the Varanodontine Varanopid Aerosaurus wellesi (Synapsida: Eupelycosauria). In Early Evolutionary History of the Synapsida, eds. C.F. Kammerer, K.D. Angielczyk, and J. Fröbisch, 53-68. New York: Springer. (Vertebrate Paleobiology and Paleoanthropology Series).Google Scholar
  72. Prantl, F. 1943. Vzácný nález v poravském permokarbonu. Věda přírodní 22 (4): 93–97.Google Scholar
  73. Reisz, R.R. 1972. Pelycosaurian reptiles from the Middle Pennsylvanian of North America. Bulletin of the Museum of Comparative Zoology 144 (2): 27–62.Google Scholar
  74. Reisz, R.R. 1980. The Pelycosauria: A Review of Phylogenetic Relationships. Systematics Association Special 15: 553–591.Google Scholar
  75. Reisz, R.R. (1986): Pelycosauria. Handbuch der Paläoherpetologie, Part 17A. Stuttgart: Gustav Fischer Verlag.Google Scholar
  76. Reisz, R.R., and D.S. Berman. 2001. The Skull of Mesenosaurus romeri, a Small Varanopseid (Synapsida: Eupelycosauria) from the Upper Permian of the Mezen River Basin. Northern Russia. Annals of Carnegie Museum 70 (2): 113–132.Google Scholar
  77. Reisz, R.R., and D.W. Dilkes. 1992. The Taxonomic Position of Anningia megalops, a small amniote from the Permian of South Africa. Canadian Journal of Earth Sciences 29: 1605–1608.CrossRefGoogle Scholar
  78. Reisz, R.R., and D.W. Dilkes. 2003. Archaeovenator hamiltonensis, a new varanopid (Synapsida: Eupelycosauria) from the Upper Carboniferous of Kansas. Canadian Journal of Earth Sciences 40: 667–678.CrossRefGoogle Scholar
  79. Reisz, R.R., and J. Fröbisch. 2014. The Oldest Caseid Synapsid from the Late Pennsylvanian of Kansas, and the Evolution of Herbivory in Terrestrial Vertebrates. PLoS ONE 9 (4): 1–9; e94518.  https://doi.org/10.1371/journal.pone.0094518.
  80. Reisz, R.R., and M. Laurin. 2004. A reevaluation of the enigmatic Permian synapsid Watongia and of its stratigraphic significance. Canadian Journal of Earth Sciences 41: 377–386.CrossRefGoogle Scholar
  81. Reisz, R.R., and S.P. Modesto. 2007. Heleosaurus scholtzi from the Permian of South Africa: a varanopid synapsid, not a diapsid reptile. Journal of Vertebrate Paleontology 27 (3): 734–739.CrossRefGoogle Scholar
  82. Reisz, R.R., and L.A. Tsuji. 2006. An articulated skeleton of Varanops with bite marks: the oldest known evidence of scavenging among terrestrial vertebrate. Journal of Vertebrate Paleontology 26 (4): 1021–1023.CrossRefGoogle Scholar
  83. Reisz, R.R., H. Wilson, and D. Scott. 1997. Varanopseid Synapsid Skeletal Elements from Richards Spur, a Lower Permian Fissure Fill Near Fort Sill, Oklahoma. Oklahoma Geology Notes 57 (5): 160–170.Google Scholar
  84. Reisz, R.R., D.W. Dilkes, and D.S. Berman. 1998. Anatomy and Relationships of Elliotsmithia longiceps Broom, a Small Synapsid (Eupelycosauria: Varanopseidae) from the Late Permian of South Africa. Journal of Vertebrate Paleontology 18 (3): 602–611.CrossRefGoogle Scholar
  85. Reisz, R.R., S.J. Godfrey, and D. Scott. 2009. Eothyris and Oedaleops: Do These Early Permian Synapsids from Texas and New Mexico form a Clade? Journal of Vertebrate Paleontology 29 (1): 39–47.CrossRefGoogle Scholar
  86. Reisz, R.R., M. Laurin, and D. Marjanović. 2010. Apsisaurus witteri from the Lower Permian of Texas: yet another small varanopid synapsid, not a diapsid. Journal of Vertebrate Paleontology 30 (5): 1628–1631.CrossRefGoogle Scholar
  87. Reisz, R.R., H.C. Maddin, J. Fröbisch, and J. Falconnet. 2011a. A New Large Caseid (Synapsida, Caseasauria) from the Permian of Rodez (France), Including a reappraisal of “Casearutena Sigogneau-Russell and Russell, 1974. Geodiversitas 33: 227–246.CrossRefGoogle Scholar
  88. Reisz, R.R., S.P. Modesto, and D.M. Scott. 2011b. A New Early Permian Reptile and its Significance in Early Diapsid Evolution. Proceedings of the Royal Society B 278: 3731–3737.CrossRefGoogle Scholar
  89. Romano, M., and U. Nicosia. 2014. Alierasaurus ronchii, gen. et sp. nov., a Caseid from the Permian of Sardinia, Italy. Journal of Vertebrate Paleontology 34: 900–913.CrossRefGoogle Scholar
  90. Romano, M., and U. Nicosia. 2015. Cladistic Analysis of Caseidae (Caseasauria, Synapsida): Using Gap-Weighting Method to Include Taxa Based on Poorly known Specimens. Palaeontology 58: 1109–1130.CrossRefGoogle Scholar
  91. Romer, A.S. 1937. New genera and species of pelycosaurian reptiles. Proceedings of the New England Zoölogical Club 16: 89–96.Google Scholar
  92. Romer, A.S., and L.I. Price. 1940. Review of the Pelycosauria. Geological Society of America Special Papers 28: 1–538.CrossRefGoogle Scholar
  93. Ronchi, A., E. Sacchi, M. Romano, and U. Nicosia. 2011. A Huge Caseid Pelycosaur from North-Western Sardinia and its Bearing on European Permian Stratigraphy and Palaeobiogeography. Acta Palaeontologica Polonica 56: 723–738.CrossRefGoogle Scholar
  94. Rößler, R., V. Annacker, R. Kretzschmar, S. Eulenberger, and B. Tunge. 2008. Auf Schatzsuche in Chemnitz—Wissenschaftliche Grabungen ‘08. Veröffentlichungen des Museums für Naturkunde Chemnitz 31: 5–44.Google Scholar
  95. Rößler, R., R. Kretzschmar, V. Annacker, and S. Mehlhorn. 2009. Auf Schatzsuche in Chemnitz—Wissenschaftliche Grabungen ‘09. Veröffentlichungen des Museums für Naturkunde Chemnitz 32: 25–46.Google Scholar
  96. Rößler, R., R. Kretzschmar, V. Annacker, S. Mehlhorn, M. Merbitz, J.W. Schneider, and L. Luthardt. 2010. Auf Schatzsuche in Chemnitz—Wissenschaftliche Grabungen ‘10. Veröffentlichungen des Museums für Naturkunde Chemnitz 33: 27–50.Google Scholar
  97. Rößler, R., Z. Feng, and R. Noll. 2012a. The Largest Calamite and its Growth Architecture—Arthropitys bistriata from the Permian Petrified Forest of Chemnitz. Review of Palaeobotany and Palynology 185: 64–78.CrossRefGoogle Scholar
  98. Rößler, R., T. Zierold, Z. Feng, R. Kretzschmar, M. Merbitz, V. Annacker, and J.W. Schneider. 2012b. A Snapshot of an Early Permian Ecosystem Preserved by Explosive Volcanism: New Results from the Petrified Forest of Chemnitz, Germany. Palaois 27: 814–834.CrossRefGoogle Scholar
  99. Rößler, R., M. Merbitz, V. Annacker, L. Luthardt, R. Noll, R. Neregato, and R. Rohn. 2014. The Root Systems of Permian Arborescent Sphenopsids: Evidence from the Northern and Southern Hemispheres. Palaeontographica B 291 (4–6): 65–107.Google Scholar
  100. Sansom, R.S., S.E. Gabbott, and M.A. Purnell. 2010. Non-Random Decay of Chordate Characters Causes Bias in Fossil Interpretation. Nature 463: 797–800.CrossRefGoogle Scholar
  101. Schaumberg, G. 1986. Bemerkungen zu einem Neufund von Weigeltisaurus jaekeli (Weigelt) im nordhessischen Kupferschiefer. Paläontologische Zeitschrift 60 (3/4): 319–327.CrossRefGoogle Scholar
  102. Schneider, J.W., F. Körner, M. Roscher, and U. Kroner. 2006. Permian Climate Development in the Northern Peri-Tethys Area—the Lodève basin, French Massif Central, Compared in a European and Global Context. Palaeogeography, Palaeoclimatology, Palaeoecology 240: 161–183.CrossRefGoogle Scholar
  103. Schneider, J.W., R. Rößler, and F. Fischer. 2012. Rotliegend des Chemnitz-Beckens (syn. Erzgebirge-Becken). In Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken, ed. Deutsche Stratigraphische Kommission. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 61: 530–588.Google Scholar
  104. Scott, A.C. 2001. Roasted alive in the Carboniferous. Geoscientist 11 (3): 4–7.Google Scholar
  105. Shear, W.A., P.A. Selden, W.D.I. Rolfe, and P.M., Bonamo, and J.G. Grierson. 1987. New terrestrial arachnids from the Devonian of Gilboa, New York (Arachnida, Trigonotarbida). American Museum Novitates 2901: 1–74.Google Scholar
  106. Sidor, C.A. 1996. Early Synapsid Evolution, With Special Reference to the Caseasauria. Journal of Vertebrate Paleontology 16 (3): A65–66.Google Scholar
  107. Sidor, C.A. 2001. Simplification as a trend in synapsid cranial evolution. Evolution 55 (7): 1419–1442.CrossRefGoogle Scholar
  108. Sidor, C.A., J.A. Hopson, K.D. Angielczyk, S.J. Nesbitt, B.R. Peecook, R. Smith, J. Steyer, N.J. Tabor, and S. Tolan. 2016: A new species of traversodont cynodont with tritylodont-like features and possible arboreal adaptations from the upper Ntawere Formation, Northeastern Zambia. Society of Vertebrate Paleontology 76 th Annual Meeting Program & Abstracts: 224.Google Scholar
  109. Spielmann, J.A., and S.G. Lucas. 2010. Re-evaluation of Ruthiromia elcobriensis (Eupelycosauria: Ophiacodontidae?) from the Lower Permian (Seymourian?) of Cañon del Cobre, Northern New Mexico. In Carboniferous-Permian transition in Cañon del Cobre, eds. S.G. Lucas, J.W. Schneider, and J.A. Spielmann, New Mexico Museum of Natural History and Science Bulletin 49: 151–158.Google Scholar
  110. Spielmann, J.A., A.B. Heckert, and S.G. Spencer. 2005. The late Triassic archosauromorph Trilophosaurus as an arboreal climber. Revista Italiana di Palaeontologia e Stratigrafia 111 (3): 395–412.Google Scholar
  111. Spindler, F. 2014. Reviewing the Question of the Oldest Therapsid. Freiberger Forschungshefte C 548 (22): 1–7.Google Scholar
  112. Spindler, F. 2015. The basal Sphenacodontiasystematic revision and evolutionary implications. PhD thesis, TU Bergakademie Freiberg, 1–385. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-171748.
  113. Spindler, F., and R. Werneburg. 2016. Headless in the Permian – a well-preserved amniote postcranium from Thuringia. In Fossils: Key to evolution, stratigraphy and palaeoenvironments (87th Annual Conference of the Paläontologische Gesellschaft), eds. B. Niebuhr, M. Wilmsen, L. Kunzmann, and C. Stefen, C., p. 147. Dresden.Google Scholar
  114. Spindler, F., J. Falconnet, and J. Fröbisch. 2016. Callibrachion and Datheosaurus, Two Historical and Previously Mistaken Basal Caseasaurian Synapsids From Europe. Acta Palaeontologica Polonica 61 (3): 597–616.Google Scholar
  115. Stein, K., C. Palmer, P.G. Gill, and M.J. Benton. 2008. The Aerodynamics of the British Late Triassic Kuehneosauridae. Palaeontology 51 (4): 967–981.CrossRefGoogle Scholar
  116. Stein, W.E., C.M. Berry, L. Van Aller Hernick, and F. Mannolini. 2012. Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Nature 483: 78–81.  https://doi.org/10.1038/nature10819.CrossRefGoogle Scholar
  117. Sterzel, J.T. 1875. Die fossilen Pflanzen des Rothliegenden von Chemnitz in der Geschichte der Paläontologie. Berichte der Naturwissenschaftlichen Gesellschaft Chemnitz 5: 71–243.Google Scholar
  118. Sumida, S.S. 1989. Reinterpretation of Vertebral Structure in the Early Permian Pelycosaur Varanosaurus acutirostris (Amniota, Synapsida). Journal of Vertebrate Paleontology 9 (4): 451–458.CrossRefGoogle Scholar
  119. Sumida, S.S., V. Pelletier, and D.S. Berman. 2014. New Information on the Basal Pelycosaurian-grade Synapsid Oedaleops. In Early Evolutionary History of the Synapsida, eds. C.F. Kammerer, K.D. Angielczyk, and J. Fröbisch, 7–23. New York: Springer (Vertebrate Paleobiology and Paleoanthropology Series).Google Scholar
  120. Swofford, D.L. 2001. PAUP*: Phylogenetic Analysis Using Parsimony. Sunderland, MA: Sinauer Associates.Google Scholar
  121. Tulli, M.J., F. Cruz, A. Herrel, B. Vanhooydonck, and V. Abdala. 2009. The Interplay Between Claw Morphology and Microhabitat use in Neotropical Iguanian Lizards. Zoology 112 (5): 379–392.CrossRefGoogle Scholar
  122. Voigt, S., J. Fischer, T. Schindler, M. Wuttke, F. Spindler, and L. Rinehart. 2014. On a Potential Fossil Hotspot for Pennsylvanian-Permian Non-Aquatic Vertebrates in Central Europe. Freiberger Forschungshefte C 548 (22): 39–44.Google Scholar
  123. Wang, J., H.W. Pfefferkorn, Y. Zhang, and Z. Feng. 2012. Permian vegetational Pompeii from Inner Mongolia and its implications for landscape paleoecology and paleobiogeography of Cathaysia. Proceedings of the National Academy of Sciences of the United States of America 109: 4927–4932.CrossRefGoogle Scholar
  124. Watson, D.M.S. 1957. On Millerosaurus and the Early History of the Sauropsid Reptiles. Philosophical Transactions of the Royal Society B 240: 325–400.CrossRefGoogle Scholar
  125. Werneburg, R. 1991. Die Branchiosaurier aus dem Unterrotliegend des Döhlener Beckens bei Dresden. Veröffentlichungen Naturhistorisches Museum Schleusingen 6: 75–99.Google Scholar
  126. Werneburg, R. 1993. Ein Schädelrest von Eoscopus lockardi Daly (Amphibia: Dissorophoidea) aus dem Oberkarbon von Kansas. Veröffentlichungen Naturhistorisches Museum Schleusingen 7 (8): 147–149.Google Scholar
  127. Werneburg, R. 1999. Ein Pelycosaurier aus dem Rotliegenden des Thüringer Waldes. Veröffentlichungen Naturhistorisches Museum Schleusingen 14: 55–58.Google Scholar
  128. Zani, P.A. 2000. The Comparative Evolution of Lizard Claw and Toe Morphology and Clinging Performance. Journal of Evolutionary Biology 13: 316–325.CrossRefGoogle Scholar

Copyright information

© Paläontologische Gesellschaft 2018

Authors and Affiliations

  1. 1.Dinosaurier-Park AltmühltalDenkendorfGermany
  2. 2.Naturhistorisches Museum Schloss BertholdsburgSchleusingenGermany
  3. 3.Geological Institute, TU Bergakademie FreibergFreibergGermany
  4. 4.Kazan Federal UniversityKazanRussia
  5. 5.Museum für NaturkundeChemnitzGermany

Personalised recommendations