Advertisement

PalZ

, Volume 92, Issue 1, pp 121–129 | Cite as

Gryposuchus (Crocodylia, Gavialoidea) from the early Miocene of Venezuela

  • Andrés Solórzano
  • Mónica Núñez-Flores
  • Ascanio D. Rincón
Research Paper

Abstract

Here, a fragment of a mandible recently discovered in the Cerro Zamuro site (Castillo Formation, Lara State, northwestern Venezuela) is assigned to the giant gavialoid Gryposuchus. This specimen, recovered from putative brackish environments of the early Miocene (~18 Ma) age, is unequivocally the earliest record of the genus in South America. Gryposuchus, together with the other gryposuchine previously recognized from the Castillo Formation, Siquisiquesuchus venezuelensis, increases the early Miocene taxonomic diversity of the group in the northern Neotropics. This new information from the Castillo Formation supports the conclusion that early gryposuchine evolutionary stages were in coastal, shallow marine or brackish environments, while the presence of some genera, such as Gryposuchus, in middle to late Miocene freshwater environments, is secondary habitat colonization late in the evolution of the clade. Freshwater colonization is probably the result of the gradual adaptation of early marine-adapted gryposuchines to the extensive estuarine-like environments of northern South America lowlands associated with marine transgressions that systematically occurred during the middle Eocene to early Oligocene. This new record is evidence of the wide chronological distribution of Gryposuchus in northern South America, highlighting the importance of this area as the center of origin and radiation of this successful Miocene gavialoid.

Keywords

Gryposuchus South America Neogene crocodilian diversity Early Miocene Castillo Formation 

Kurzfassung

Wir beschreiben ein Fragment des Unterkiefers des riesigen Gavials Gryposuchus, welches kürzlich in Cerro Zamuro, Venezuela (Castillo-Formation, Lara State), entdeckt wurde. Dieses Exemplar, aus mutmaßlich frühmiozänen (~18 Ma) Brackwasser-Ablagerungen, stellt den ersten eindeutigen Nachweis dieser Gattung in Südamerika dar. Dieser Fund, zusammen mit anderen Vertretern der Gryposuchinae (Siquisiquesuchus venezuelensis) die aus der Castillo-Formation bekannt geworden sind, erhöht die frühmiozäne Diversität der Gruppe in der nördlichen neotropischen Region. Diese neuen Informationen aus der Castillo-Formation unterstützen den Schluss, dass sich frühe Evolutionsschritte der Gryposuchinae in Küsten-, bzw. seichten Meeresbereichen oder unter brackigen Umweltbedingungen vollzogen haben. Das Vorkommen einiger Gattungen (wie Gryposuchus) in mittel- und spätmiozänen Süßwasser-Ablagerungen hingegen, muss als sekundäre Besiedlung relativ spät in der Evolution der Gruppe angesehen werden. Die Süßwasser-Besiedlung ist wahrscheinlich das Ergebnis der allmählichen Anpassung von frühen marinen Vertretern der Gryposuchinae an das weitreichende Flussmündungs-System des nördlichen südamerikanischen Flachlandes, welches während des mittleren Eozäns bis zum frühen Oligozän regelmäßig vom Meer überflutet wurde. Dieser neue Nachweis beweist die weite zeitliche Verbreitung von Gryposuchus im nördlichen Südamerika und hebt desweiteren die Bedeutung dieser Region als Ursprung der Radiation dieser erfolgreichen miozänen Gaviale hervor.

Schlüsselwörter

Gryposuchus Südamerika Neogen-zeitliche Krokodildiversität Frühes Miozän Castillo-Formation 

Notes

Acknowledgements

This paper represents partial results of the Master thesis of the first author (AS), at the Venezuelan Institute for Scientific Research (IVIC, Venezuela). We wish to thank the Instituto del Patrimonio Cultural (IPC), Venezuela, for fossil collection permissions. The authors gratefully acknowledge Franco Urbani, Damian Ruiz–Ramoni, Leonardo Sánchez, Carlos Caceres, Maria Mendoza, Marcia Lopez, and Eduy Urbina for their invaluable collaboration during the field trips at Castillo Formation. We are also grateful to Christopher Brochu, Rodolfo Salas-Gismondi and Mike Reich for comments and suggestions that greatly enhanced the paper. This project was supported by a Grant from TOTAL Venezuela, and the Instituto Venezolano de Investigaciones Científicas (IVIC) under Projects 822 and 1096 to ADR.

References

  1. Antoine, P.-O., M.A. Abello, S. Adnet, A.J.A. Sierra, P. Baby, G. Billet, M. Boivin, Y. Calderón, A. Candela, J. Chabain, F. Corfu, D.A. Croft, M. Ganerød, C. Jaramillo, S. Klaus, L. Marivaux, R.E. Navarrete, M.J. Orliac, and F. Parra. 2016. A 60-million year Cenozoic history of western Amazonian ecosystems in Contamana, eastern Peru. Gondwana Research 31: 30–59.CrossRefGoogle Scholar
  2. Benton, M.J., and J.M. Clark. 1988. Archosaur phylogeny and the relationships of the Crocodilia. In The phylogeny and classification of tetrapods, ed. M.J. Benton, 295–338. Oxford: Clarendon Press. (Systematics Association, special vol. 35A)Google Scholar
  3. Bloom, D.D. 2013. Transitions between marine and freshwaters in fishes: evolutionary pattern and process. Unpublished PhD thesis, University of Toronto, 1–225. Toronto.Google Scholar
  4. Bocquentin-Villanueva, J., and E. Buffetaut. 1981. Hesperogavialis cruxenti n. gen. n. sp., nouveau gavialidae (Crocodylia, Eusuchia) du Miocéne supérieur (Huayquerian) d’Urumaco (Venezuela). Geobios 14: 415–419.CrossRefGoogle Scholar
  5. Boeger, W.A., F.M. Marteleto, and L. Zagonel. 2015. Tracking the history of an invasion: the freshwater croakers (Teleostei: Sciaenidae) in South America. Zoologica Scripta 44 (3): 250–262.CrossRefGoogle Scholar
  6. Bona, P., D. Riff, and Z. Gasparini. 2012. Late Miocene crocodylians from northeast Argentina: new approaches about the austral components of the Neogene South American crocodylian fauna. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 103: 551–570.CrossRefGoogle Scholar
  7. Bona, P., D. Riff, and Z. Gasparini. 2013. Los Alligatoridae del Mioceno tardío de argentina: el registro más austral de cocodrilos Neógenos en América del Sur. In El Neógeno de la Mesopotamia Argentina, ed. D. Brandoni, and J.I. Noriega, 84–96. Buenos Aires: A.P.A. (Asociación Paleontológica Argentina, Publicación Especial 14).Google Scholar
  8. Brochu, C.A. 2003. Phylogenetic approaches toward crocodilian history. Annual Review of Earth and Planetary Sciences 31: 357–397.CrossRefGoogle Scholar
  9. Brochu, C.A. 2004. A new Late Cretaceous gavialoid crocodylian from eastern North America and the phylogenetic relationships of thoracosaurs. Journal of Vertebrate Paleontology 24 (3): 610–633.CrossRefGoogle Scholar
  10. Brochu, C.A. 2006. Osteology and phylogenetic significance of Eosuchus minor (Marsh, 1870) new combination, a longirostrine Crocodylian from the Late Paleocene of North America. Journal of Paleontology 80 (1): 162–186.CrossRefGoogle Scholar
  11. Brochu, C.A., and A.D. Rincón. 2004. A gavialoid crocodilian from the Lower Miocene of Venezuela. Special Paper on Palaeontology 71: 61–78.Google Scholar
  12. Buffetaut, E. 1982. Systematique, origine et évolution des Gavialidae Sud-Americains. Geobios, Memoire Special 6: 127–140.CrossRefGoogle Scholar
  13. Cooke, G.M., N.L. Chao, and L.B. Beheregaray. 2012. Marine incursions, cryptic species and ecological diversification in Amazonia: the biogeographic history of the croaker genus Plagioscion (Sciaenidae). Journal of Biogeography 39 (4): 724–738.CrossRefGoogle Scholar
  14. Cozzuol, M.A. 2006. The Acre vertebrate fauna: age, diversity, and geography. Journal of South American Earth Sciences 21: 185–203.CrossRefGoogle Scholar
  15. Delfino, M., P. Piras, and T. Smith. 2005. Anatomy and phylogeny of the gavialoid crocodylian Eosuchus lerichei from the Paleocene of Europe. Acta Palaeontologica Polonica 50 (3): 565–580.Google Scholar
  16. Ferreira, G.S., A.D. Rincón, A. Solórzano, and M. Langer. 2016. Review of the fossil matamata turtles: earliest well-dated record and hypotheses on the origin of their present geographical distribution. The Science of Nature 103 (3–4): 1–12. doi: 10.1007/s00114-016-1355-2.Google Scholar
  17. Gürich, G. 1912. Gryposuchus Jessei, ein neues schmalschnäuziges Krokodil aus den jüngeren Ablagerungen des oberen Amazonas-Gebietes. Jahrbuch der Hamburgischen Wissenschaftlichen Anstalten 29 [for 1911], Beiheft 4: 59–71.Google Scholar
  18. Hoorn, C., F.P. Wesselingh, H. ter Steege, M.A. Bermúdez, A. Mora, J. Sevink, I. Sanmartín, A. Sánchez-Meseguer, C.L. Anderson, J.P. Figueiredo, C. Jaramillo, D. Riff, F.R. Negri, H. Hooghiemstra, J. Lundberg, T. Stadler, T. Särkinen, and A. Antonelli. 2010. Amazonia through time: andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927–931.CrossRefGoogle Scholar
  19. Hoorn, C., J. Guerrero, G.A. Sarmiento, and M.A. Lorente. 1995. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23 (3): 237–240.CrossRefGoogle Scholar
  20. Jouve, S., M. Iarochene, B. Bouya, and M. Amaghzaz. 2006. New material of Argochampsa krebsi (Crocodylia: Gavialoidea) from the Lower Paleocene of the Oulad Abdoun Basin (Morocco): phylogenetic implications. Geobios 39: 817–832.CrossRefGoogle Scholar
  21. Jouve, S., N. Bardet, N.E. Jalil, X.P. Suberbiola, B. Bouya, and M. Amaghzaz. 2008. The oldest African crocodylian: phylogeny, paleobiogeography, and differential survivorship of marine reptiles through the Cretaceous-Tertiary boundary. Journal of Vertebrate Paleontology 28 (2): 409–421.CrossRefGoogle Scholar
  22. Kraus, R. 1998. The cranium of Piscogavialis jugaliperforatus n. gen., n. sp. (Gavialidae, Crocodylia) from the Miocene of Peru. Paläontologische Zeitschrift 72 (3/4): 389–406.CrossRefGoogle Scholar
  23. Langston, W., and Z. Gasparini. 1997. Crocodilians, Gryposuchus, and the South Americans gavials. In Vertebrate Paleontology in the Neotropics: the Miocene Fauna of La Venta, Colombia, ed. R.F. Kay, R.L. Madden, R.L. Ciffelli, and J.J. Flynn, 113–154. Washington: Smithsonian Institution.Google Scholar
  24. Langston, W. 1965. Fossil crocodilians from Colombia and the Cenozoic history of the Crocodilia in South America. University of California Publications in Geological Sciences 52: 1–152.Google Scholar
  25. Leslie, A.J., and L.E. Taplin. 2001. Recent developments in osmoregulation of crocodilians. In Crocodilian Biology and Evolution, ed. G. Grigg, F. Seebacher, and C.E. Franklin, 265–279. Chipping Norton: Surrey Beatty.Google Scholar
  26. Lovejoy, N.R., J.S. Albert, and W.G.R. Crampton. 2006. Miocene marine incursions and marine/freshwater transitions: evidence from Neotropical fishes. Journal of South American Earth Sciences 21 (1): 5–13.CrossRefGoogle Scholar
  27. Monsch, K.A. 1998. Miocene fish fauna from northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogeography, Palaeoclimatology, Palaeoecology 143 (1): 31–50.CrossRefGoogle Scholar
  28. Moraes-Santos, H., J. Bocquentin-Villanueva, and P. Mann-Toledo. 2011. New remains of a gavialoid crocodilian from the late Oligocene—early Miocene of the Pirabas Formation, Brazil. Zoological Journal of the Linnean Society 163: 132–139.CrossRefGoogle Scholar
  29. Moreno-Bernal, J.W., J. Head, and C. Jaramillo. 2016. Fossil crocodilians from the High Guajira Peninsula of Colombia: Neogene faunal change in northernmost South America. Journal of Vertebrate Paleontology 36 (3): e1110586. doi: 10.1080/02724634.2016.1110586.CrossRefGoogle Scholar
  30. Núñez-Flores, M., A.D. Rincón, A. Solórzano, L. Sánchez, and C. Cáceres. 2017. Fish-otoliths from the early Miocene of Castillo Formation, Venezuela: a view into the proto-Caribbean teleostean assemblages. Historical Biology. doi: 10.1080/08912963.2017.1282474.Google Scholar
  31. Riff, D., and O.A. Aguilera. 2008. The world’s largest gharials Gryposuchus: description of G. croizati n. sp. (Crocodylia, Gavialidae) from the Upper Miocene Urumaco Formation, Venezuela. Paläontologische Zeitschrift 82 (2): 178–195.CrossRefGoogle Scholar
  32. Riff, D., P.S.R. Romano, G.R. Oliveira, and O.A. Aguilera. 2010. Neogene crocodile and turtle fauna in northern South America. In Amazonia, Landscape and Species Evolution, ed. C. Hoorn, and F.P. Wesselingh, 259–280. London: Blackwell Publishing.Google Scholar
  33. Rincón, A.D., A. Solórzano, H.G. McDonald, and M. Núñez-Flores. 2016. Baraguatherium takumara, gen. et sp. nov., the Earliest Mylodontoid Sloth (Early Miocene) from Northern South America. Journal of Mammalian Evolution. doi: 10.1007/s10914-016-9328-y.Google Scholar
  34. Rincón, A.D., A. Solórzano, M. Benammi, P. Vignaud, and H.G. McDonald. 2014. Chronology and geology of an Early Miocene mammalian assemblage in North of South America, from Cerro La Cruz (Castillo Formation), Lara State, Venezuela: implications in the “changing course of Orinoco River” hypothesis. Andean Geology 41 (3): 507–528.CrossRefGoogle Scholar
  35. Salas-Gismondi, R., J.J. Flynn, P. Baby, J.V. Tejada-Lara, J. Claude, and P.-O. Antoine. 2016. A New 13 million year old gavialoid crocodylian from proto-Amazonian mega-wetlands reveals parallel evolutionary trends in skull shape linked to longirostry. PLoS One 11: e0152453. doi: 10.1371/journal.pone.0152453.CrossRefGoogle Scholar
  36. Sánchez-Villagra, M.R., and O.A. Aguilera. 2006. Neogene vertebrates from Urumaco, Falcón State, Venezuela: diversity and significance. Journal of Systematic Palaeontology 4 (3): 213–220.CrossRefGoogle Scholar
  37. Sánchez-Villagra, M.R., O.A. Aguilera, R. Sánchez, and A.A. Carlini. 2010. The fossil vertebrate record of Venezuela of the last 65 million years. In Urumaco and Venezuelan palaeontology—The fossil record of the northern neotropics, ed. M.R. Sánchez-Villagra, O.A. Aguilera, and A.A. Carlini, 19–51. Bloomington: Indiana University Press.Google Scholar
  38. Scheyer, T.M., and J.W. Moreno-Bernal. 2010. Fossil Crocodylians from Venezuela in the context of South American faunas. In Urumaco and Venezuelan palaeontology—The fossil record of the northern neotropics, ed. M.R. Sánchez-Villagra, O.A. Aguilera, and A.A. Carlini, 192–213. Bloomington: Indiana University Press.Google Scholar
  39. Scheyer, T.M., O.A. Aguilera, M. Delfino, D.C. Fortier, A.A. Carlini, R. Sánchez, J.D. Carrillo-Briceno, L. Quiroz, and M.R. Sánchez-Villagra. 2013. Crocodylian diversity peak and extinction in the late Cenozoic of the northern Neotropics. Nature Communications 4: 1907. doi: 10.1038/ncomms2940.CrossRefGoogle Scholar
  40. Schweitzer, C.E., M. Iturralde-Vinent, J.L. Hetler, and J. Velez-Juarbe. 2006. Oligocene and Miocene decapods (Thalassinidea and Brachyura) from the Caribbean. Annals of Carnegie Museum 75 (2): 111–136.CrossRefGoogle Scholar
  41. Sill, W. 1970. Nota preliminar sobre un nuevo gavial del Plioceno de Venezuela y una discusión de los gaviales Sudamericanos. Ameghiniana 7: 151–159.Google Scholar
  42. Solórzano, A., and A.D. Rincón. 2015. The earliest record (early Miocene) of a bony-toothed bird from South America and a reexamination of Venezuelan pelagornithids. Journal of Vertebrate Paleontology 35 (6): e995188. doi: 10.1080/02724634.2014.995188.CrossRefGoogle Scholar
  43. Taplin, L.E., and G.C. Grigg. 1989. Historical zoogeography of the eusuchian crocodilians: a physiological perspective. American Zoologist 29: 885–901.CrossRefGoogle Scholar
  44. Vélez-Juarbe, J., C.A. Brochu, and H. Moraes-Santos. 2007. A gharial from the Oligocene of Puerto Rico: transoceanic dispersal in the history of a non-marine reptile. Proceedings of the Royal Society B 274: 1245–1254.CrossRefGoogle Scholar
  45. Wesselingh, F.P., C. Hoorn, S.B. Kroonenberg, A. Antonelli, L.G. Lundberg, H.B. Vonhof, and H. Hooghiemstra. 2010. On the origin of Amazonian landscapes and biodiversity: a synthesis. In Amazonia, landscape and species evolution: a look into the past, ed. C. Hoorn, and F.P. Wesselingh, 419–431. Oxford: Wiley-Blackwell.Google Scholar
  46. Whitaker, R., and D. Basu. 1983. The gharial (Gavialis gangeticus): a review. Journal of Bombay Natural History Society 79: 531–548.Google Scholar

Copyright information

© Paläontologische Gesellschaft 2017

Authors and Affiliations

  1. 1.Laboratorio de Paleontología, Centro de EcologíaInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela

Personalised recommendations