, Volume 91, Issue 4, pp 463–472 | Cite as

Ontogenetic sequence comparison of extant and fossil tadpole shrimps: no support for the “living fossil” concept

  • Philipp Wagner
  • Joachim T. Haug
  • Jürgen Sell
  • Carolin Haug
Research Paper


The tadpole shrimp Triops cancriformis (Branchiopoda, Eucrustacea) is often referred to as a “living fossil.” This term implies that the morphology of a species has barely changed for hundreds of millions of years; in the case of T. cancriformis, for about 200 million years. In 1938, Trusheim documented fossil notostracans from the Upper Triassic of southern Germany (237–200 million years) and named them T. cancriformis minor due to their small size compared to modern forms of T. cancriformis. We compared the ontogenetic sequence of the fossil forms to that of modern forms. Fossil material came from the Museum Terra Triassic in Euerdorf and originated from the same geological formation (the Hassberge Formation) as the Trusheim material, which is considered to be nearly entirely lost. The specimens were documented using cross-polarized light and processed into high-resolution images. Fluorescence microscopy was used to document exuviae and carcasses of extant representatives of T. cancriformis. Both forms showed an elongation and similar trends in the length/width ratio of the shield during ontogeny. However, differences were found in the starting point of the developmental processes. Fossil forms start out with a more roundly shaped shield, which becomes more elliptical, while extant forms already start with a more elliptical shield shape. Further differences between extant and fossil forms were found upon comparing shield to trunk ratios. All differences are highly significant statistically. These differences in ontogeny cast severe doubt on the interpretation that T. cancriformis has been static for 237 million years. While the term “living fossil” is misleading and its use should be discouraged in general, it seems to be especially inappropriate to apply it to T. cancriformis.


Notostraca Eucrustacea Upper Triassic Fossil development Heterochrony Triops cancriformis 


Triops cancriformis (Branchiopoda, Eucrustacea) wird oft als „lebendes Fossil“ bezeichnet. Dieser Terminus impliziert, dass sich die Morphologie einer Art seit einigen hundert Millionen Jahren nicht verändert hat, im Falle von Triops cancriformis seit rund 200 Millionen Jahren. 1938 untersuchte Trusheim fossile Notostracen aus der Oberen Trias von Süddeutschland (237–200 Millionen Jahre) und verwendete für diese den Namen Triops cancriformis minor, da sich diese für ihn nur durch ihre geringere Größe von modernen Vertretern von Triops cancrifomis unterscheiden ließen. In der vorliegenden Studie wurde die Ontogenese fossiler und rezenter Vertreter verglichen. Die untersuchten Fossilien stammen aus dem Museum Terra Triassica in Euerdorf und wurden in derselben geologischen Formation (Hassberge-Formation) wie die Trusheim-Fossilien gefunden. Das Trusheim-Material gilt, bis auf ein einzelnes Stück, als verschollen und konnte somit nicht untersucht werden. Die Fossilien wurden hochauflösend unter kreuz-polarisiertem Licht fotografiert. Zum Vergleich wurden Exuvien rezenter Exemplare von Triops cancriformis fluoreszenzmikroskopisch dokumentiert. Beide Formen zeigten eine Verlängerung und eine ähnliche Veränderung des Längen-Breiten-Verhältnisses des Schildes während ihrer Ontogenese. Allerdings unterschied sich der Zustand zu Beginn des Entwicklungsprozesses. Die fossilen Vertreter weisen zunächst einen eher runden Schild auf, welcher während der Ontogenese eine elliptischere Form annimmt. Rezente Vertreter hingegen beginnen bereits mit einem elliptischen Schild, welcher schließlich noch länglicher wird. Weitere Unterschiede wurden im Verhältnis von Schild zu Rumpf gefunden, wobei alle Ergebnisse hoch signifikant sind. Diese ontogenetischen Unterschiede ziehen die morphologische Stasis von Triops cancriformis seit rund 200 Millionen Jahren stark in Zweifel. Daher erscheint der Begriff „lebendes Fossil“, welcher auch generell sehr kritisch gesehen werden sollte, unpassend.


Notostraca Eucrustacea Ober-Trias fossile Entwicklung Heterochronie Triops cancriformis 



We would like to thank all the people without whose help this study would not have been possible. Our acknowledgements go to the people supporting the Museum Terra Triassica. We thank all the private collectors who helped to collect and provide all examined specimens. Tom Hegna, Macomb, and Mike Reich, Munich, provided helpful comments on the manuscript. We are grateful to J. Matthias Starck for interesting discussions and support of this study. Furthermore, we thank all of the people who spent their time programming the open source or open access software that was used during this study, such as Open Office and Combine ZM. CH was supported by the Bavarian Gender Equality Grant; JTH was supported by the German Research Foundation.

Author contributions

CH initiated the study. PW documented the specimens, performed the measurements and the statistical analyses, and drafted the manuscript with input from JTH and CH. JS collected and prepared the fossil specimens and wrote the geological section. All authors discussed the results and approved the manuscript.


  1. Bengtson, S. 2000. Teasing fossils out of shales with cameras and computers. Palaeontologia Electronica 3 (1): 14.Google Scholar
  2. Bosc, L.A., G.L.L.C. de Buffon, and R.R.L. Castel. 1801. Histoire naturelle des crustacés: contenant leur description et leurs moeurs: avec figures dessinées d’après nature (Vol. 2). Paris: Deterville. (In French).Google Scholar
  3. Brendonck, L., D.C. Rogers, J. Olesen, S. Weeks, and W.R. Hoeh. 2008. Global diversity of large branchiopods (Crustacea: Branchiopoda) in freshwater. Hydrobiologia 595 (1): 167–176.CrossRefGoogle Scholar
  4. Casane, D., and P. Laurenti. 2013. Why coelacanths are not ‘living fossils’. BioEssays 35 (4): 332–338.CrossRefGoogle Scholar
  5. Claus, C. 1873. Zur Kenntnis des Baus und der Entwicklung von Branchipus stagnalis und Apus cancriformis. Abhandlung der Königlichen Gesellschaft der Wissenschaften in Göttingen 18: 93–140.Google Scholar
  6. Deutsche Stratigraphische Kommission. 2002. Stratigraphische Tabelle von Deutschland 2002. Potsdam, Frankfurt: GeoForschungsZentrum; Forschungsinstitut Senckenberg.Google Scholar
  7. Haug, J.T., and C. Haug. 2016. “Intermetamorphic” developmental stages in 150 million-year-old achelatan lobsters—the case of the species tenera Oppel, 1862. Arthropod Structure and Development 45 (2): 108–121.CrossRefGoogle Scholar
  8. Haug, C., J.T. Haug, D. Waloszek, A. Maas, R. Frattigiani, and S. Liebau. 2009. New methods to document fossils from lithographic limestones of southern Germany and Lebanon. Palaeontologia Electronica 12 (3): 6T.Google Scholar
  9. Haug, C., P. Van Roy, A. Leipner, P. Funch, D.M. Rudkin, L. Schöllmann, and J.T. Haug. 2012. A holomorph approach to xiphosuran evolution—a case study on the ontogeny of Euproops. Development Genes and Evolution 222(5): 253–268.CrossRefGoogle Scholar
  10. Haug, J.T., A. Maas, and D. Waloszek. 2010. †Henningsmoenicaris scutula, †Sandtorpia vestrogothiensis gen. et. sp. nov. and heterochronic events in early crustacean evolution. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 100(03): 311–350.CrossRefGoogle Scholar
  11. Haug, C., G. Mayer, V. Kutschera, D. Waloszek, A. Maas, and J.T. Haug. 2011. Imaging and documenting gammarideans. International Journal of Zoology. art. 380829.Google Scholar
  12. Hegna, T.A., and Ren Dong. 2010. Two new “notostracans”, Chenops gen. nov. and Jeholops gen. nov.(Crustacea: Branchiopoda:? Notostraca) from the Yixian Formation, northeastern China. Acta Geologica Sinica (English Edition) 84(4): 886–894.Google Scholar
  13. Hornung, J., and T. Aigner. 2004. Sedimentäre Architektur und Poroperm-Analyse fluviatiler Sandsteine: Fallbeispiel Coburger Sandstein, Franken. Hallesches Jahrbuch Geowissenschaften. B, Beiheft. 18: 121–138.Google Scholar
  14. Kano, Y., S. Kimura, T. Kimura, and A. Waren. 2012. Living Monoplacophora: morphological conservatism or recent diversification? Zoologica Scripta 41 (5): 471–488.CrossRefGoogle Scholar
  15. Keilhack, L. 1909. Zur Nomenklatur der deutschen Phyllopoden. Zoologische Annalen 3: 177–184.Google Scholar
  16. Kelber, K.P. 1998. New triopsids (Crustacea, Notostraca) from the Upper Triassic of Franconia, Germany. Hallesches Jahrbuch Geowissenschaften. B, Beiheft 5: 85–86.Google Scholar
  17. Kelber, K.P. 1999. Triops cancriformis (Crustacea, Notostraca): Ein bemerkenswertes Fossil aus der Trias Mitteleuropas. In Trias - Eine ganz andere Welt, III.16, ed. N. Hauschke, and V. Wilde, 383–394. München: Verlag Dr. F. Pfeil.Google Scholar
  18. Kerp, H., and B. Bomfleur. 2011. Photography of plant fossils—new techniques, old tricks. Review of Palaeobotany and Palynology 166 (3): 117–151.CrossRefGoogle Scholar
  19. Kin, A., and B. Błażejowski. 2014. The horseshoe crab of the genus Limulus: living fossil or stabilomorph? PLoS One 9 (10): e108036.CrossRefGoogle Scholar
  20. King, J.L., and R. Hanner. 1998. Cryptic species in a “living fossil” lineage: taxonomic and phylogenetic relationships within the genus Lepidurus (Crustacea: Notostraca) in North America. Molecular Phylogenetics and Evolution 10 (1): 23–36.Google Scholar
  21. Korn, M., and A.K. Hundsdoerfer. 2006. Evidence for cryptic species in the tadpole shrimp Triops granarius (Lucas, 1864)(Crustacea: Notostraca). Zootaxa 1257: 57–68.Google Scholar
  22. Korn, M., N. Rabet, H.V. Ghate, F. Marrone, and A.K. Hundsdoerfer. 2013. Molecular phylogeny of the Notostraca. Molecular Phylogenetics and Evolution 69 (3): 1159–1171.CrossRefGoogle Scholar
  23. Lagebro, L., P. Gueriau, T.A. Hegna, N. Rabet, A.D. Butler, and G.E. Budd. 2015. The oldest notostracan (Upper Devonian Strud locality, Belgium). Palaeontology 58 (3): 497–509.CrossRefGoogle Scholar
  24. Longhurst, A.R. 1955. Evolution in the Notostraca. Evolution 9: 84–86.CrossRefGoogle Scholar
  25. Mantovani, B., M. Cesari, and F. Scanabissi. 2004. Molecular taxonomy and phylogeny of the ‘living fossil’ lineages Triops and Lepidurus (Branchiopoda: Notostraca). Zoologica Scripta 33 (4): 367–374.CrossRefGoogle Scholar
  26. Mathers, T.C., R.L. Hammond, R.A. Jenner, B. Hänfling, and A. Gomez. 2013. Multiple global radiations in tadpole shrimps challenge the concept of ‘living fossils’. PeerJ 1: e62.CrossRefGoogle Scholar
  27. McKenzie, K.G., and P. Chen. 1999. Kazacharthra. In Functional Morphology of the Invertebrate Skeleton, ed. E. Savazzi, 443–458. Chichester: Wiley.Google Scholar
  28. Møller, O.S., J. Olesen, and J.T. Høeg. 2003. SEM studies on the early larval development of Triops cancriformis (Bosc)(Crustacea: Branchiopoda, Notostraca). Acta Zoologica 84 (4): 267–284.CrossRefGoogle Scholar
  29. Obst, M., S. Faurby, S. Bussarawit, and P. Funch. 2012. Molecular phylogeny of extant horseshoe crabs (Xiphosura, Limulidae) indicates Paleogene diversification of Asian species. Molecular Phylogenetics and Evolution 62 (1): 21–26.CrossRefGoogle Scholar
  30. Olesen, J., and O.S. Møller. 2014. Notostraca. In Atlas of Crustacean Larvae, ed. J.W. Martin, J. Olesen, and J.T. Høeg, 40–46. Baltimore: Johns Hopkins University Press.Google Scholar
  31. Paclt, J. 2008. On the triple usage of the family name Apodidae in zoology. Senckenbergiana Biologica 88: 49–52.Google Scholar
  32. Rogers, D.C. 2001. Revision of the Nearctic Lepidurus (Notostraca). Journal of Crustacean Biology 21 (4): 991–1006.CrossRefGoogle Scholar
  33. Rötzer, M.A.I.N. and J.T. Haug. 2015. Larval development of the European lobster and how small heterochronic shifts lead to a more pronounced metamorphosis. International Journal of Zoology. art. 345172.Google Scholar
  34. Schaarschmidt, F. 1973. Pflanzenfossilien in ungewöhnlichem Licht. Natur und Musuem. 103: 247–253.Google Scholar
  35. Trusheim, F. 1938. Triopsiden (Crust. Phyll.) aus dem Keuper Frankens. Paläontologische Zeitschrift 19 (3): 198–216.CrossRefGoogle Scholar
  36. Voigt, S., N. Hauschke, and J.W. Schneider. 2008. Nachweise fossiler Notostraken in Deutschland—ein Überblick. Abhandlungen und Berichte für Naturkunde 31: 7–24.Google Scholar
  37. von Freyberg, B. 1965. Der Coburger Bausandstein (Mittlerer Keuper) von Zeil-Ebelsbach als Beispiel einer epikontinentalen Schichtfolge. Erlanger Geologische Abhandlungen 58: 1–60.Google Scholar
  38. Webster, M., and M.L. Zelditch. 2005. Evolutionary modifications of ontogeny: heterochrony and beyond. Paleobiology 31 (3): 354–372.CrossRefGoogle Scholar
  39. Williams, W.D., and J.R. Busby. 1991. The geographical distribution of Triops australiensis (Crustacea: Notostraca) in Australia: a biogeoclimatic analysis. Hydrobiologia 212 (1): 235–240.CrossRefGoogle Scholar
  40. Wray, C.G., N.H. Landman, W.B. Saunders, and J. Bonacum. 1995. Genetic divergence and geographic diversification in Nautilus. Paleobiology 21: 220–228.CrossRefGoogle Scholar
  41. Zaddach, E.G. 1841. De apodis cancriformis Schaeff. anatome et historia evolutionis. Apud A. Marcum. Dissertation. Bonn.Google Scholar

Copyright information

© Paläontologische Gesellschaft 2017

Authors and Affiliations

  1. 1.LMU MunichDepartment of Biology IIPlanegg-MartinsriedGermany
  2. 2.GeoBio-Center of the LMU MunichMunichGermany
  3. 3.Museum Terra TriassicaEuerdorfGermany

Personalised recommendations