, Volume 91, Issue 1, pp 113–126 | Cite as

First record of a xiphosuran trackway (Kouphichnium isp.) from the Jurassic of India

  • Matthias AlbertiEmail author
  • Franz T. Fürsich
  • Dhirendra K. Pandey
Research Paper


A 44 cm long trackway from the Kimmeridgian-Tithonian of the western Kachchh Basin represents the first evidence of the occurrence of members of the order Xiphosura in the Jurassic of India. The track consists of the imprints of the legs and the tail spine of a 36–44 cm long limulid and can be assigned to the ichnogenus Kouphichnium Nopsca, 1923. It was formed in a soft, silty to fine sandy substrate below the storm wave-base and preserved as a hyporelief at the base of a thin sandstone bed deposited by storm-induced currents. Eight different types of xiphosuran behaviour are known to be preserved as trace fossils: “swimming”, running, walking, crawling, mating, dying, ploughing, and resting. The present trackway from the Jurassic of India represents crawling, i.e., comparatively slow locomotion (Repichnia).


Jurassic Xiphosura Limulidae Kouphichnium Ichnology Kachchh 


Eine 44 cm lange Spur aus dem Kimmeridgium–Tithonium des westlichen Kachchh-Beckens ist der erste Nachweis von Xiphosuren im Jura Indiens. Die Spur besteht aus Abdrücken der Beine und des Schwanzstachels eines 36 bis 44 cm langen Limuliden und kann der Spurengattung Kouphichnium Nopsca, 1923 zugeordnet werden. Sie wurde auf einem weichen, siltig bis feinsandigen Substrat unterhalb der Sturmwellenbasis angelegt und ist als Hyporelief an der Basis einer dünnen Sandsteinschicht erhalten, welche aufgrund von sturminduzierten Strömungen abgelagert wurde. Acht verschiedene Verhaltensmuster von Xiphosuren sind als Spurenfossilien bekannt: “schwimmen”, rennen, gehen, kriechen, sich paaren, sterben, pflügen und ruhen. Die vorliegende Spur aus dem Jura Indiens spiegelt Kriechen, eine vergleichsweise langsame Fortbewegung (Repichnia), wider.


Jura Xiphosura Limulidae Kouphichnium Ichnologie Kachchh 



The authors thank Mr. P. H. Bhatti, Valsamma Fürsich, and Jyotsana Rai for support during the field work in Kachchh. Manja Hethke is thanked for sharing important references. Matthias Alberti gratefully acknowledges financial support by the Alexander von Humboldt Foundation. Two anonymous reviewers and the editor Mike Reich are thanked for their constructive comments.


  1. Alberti, G., and B. Thaler-Knoflach. 2013. Chelicerata. In Spezielle Zoologie, Teil 1: Einzeller und wirbellose Tiere, ed. W. Westheide, and G. Rieger, 493–541. Berlin: Springer Spektrum.Google Scholar
  2. Bandel, K. 1967. Isopod and limulid marks and trails in Tonganoxie Sandstone (Upper Pennsylvanian) of Kansas. The University of Kansas Paleontological Contributions 19: 1–10.Google Scholar
  3. Barthel, K.W. 1970. On the deposition of the Solnhofen lithographic limestone (Lower Tithonian, Bavaria, Germany). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 135: 1–18.Google Scholar
  4. Barthel, K.W. 1974. Limulus: a living fossil—Horseshoe crabs aid interpretation of an Upper Jurassic environment (Solnhofen). Naturwissenschaften 61: 428–433.CrossRefGoogle Scholar
  5. Bhargava, O.N., and U.K. Bassi. 1988. Trace fossils from the Palaeozoic-Mesozoic sequence of Spiti-Kinnaur (Himachal Himalaya) with comments on palaeoenvironmental control on their frequency. Journal of the Geological Society of India 32: 227–238.Google Scholar
  6. Biswas, S.K. 1982. Rift basins in the western margin of India and their hydrocarbon prospects with special reference to Kutch basin. American Association of Petroleum Geologists Bulletin 66: 1497–1513.Google Scholar
  7. Biswas, S.K. 1991. Stratigraphy and sedimentary evolution of the Mesozoic basin of Kutch, western India. In Stratigraphy and sedimentary evolution of Western India, ed. S.K. Tandon, C.C. Pant, and S.M. Casshyap, 74–103. Nainital: Gyanodaya Prakashan.Google Scholar
  8. Briggs, D.E.G., R.A. Moore, J.W. Shultz, and G. Schweigert. 2005. Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstätte of Nusplingen, Germany. Proceedings of the Royal Society B 272: 627–632.CrossRefGoogle Scholar
  9. Buatois, L.A., M.G. Mangano, C.G. Maples, and W.P. Lanier. 1998. Ichnology of an Upper Carboniferous fluvio-estuarine paleovalley: the Tonganoxie Sandstone, Buildex Quarry, eastern Kansas, USA. Journal of Paleontology 72: 152–180.CrossRefGoogle Scholar
  10. Buta, R.J., D.C. Kopaska-Merkel, A.K. Rindsberg, and A.J. Martin. 2005. Atlas of Union Chapel Mine invertebrate trackways and other traces. In Pennsylvanian Footprints in the Black Warrior Basin of Alabama, eds. R.J. Buta, A.K. Rindsberg, and D.C. Kopaska-Merkel, 277–337. Alabama Paleontological Society Monograph 1.Google Scholar
  11. Caster, K.E. 1940. Die sogenannten “Wirbeltierspuren” und die Limulus-Fährten der Solnhofener Plattenkalke. Paläontologische Zeitschrift 22: 12–29.CrossRefGoogle Scholar
  12. Caster, K.E. 1944. Limuloid trails from the Upper Triassic (Chinle) of the petrified forest national monument, Arizona. American Journal of Science 242: 74–84.CrossRefGoogle Scholar
  13. Chakraborty, A., and H.N. Bhattacharya. 2012. Early Permian xiphosurid trackways from India. Journal of the Geological Society of India 80: 129–135.CrossRefGoogle Scholar
  14. Chisholm, J.I. 1983. Xiphosurid traces, Kouphichnium aff. variabilis (Linck), from the Namurian Upper Haslingden Flags of Whitworth, Lancashire. Reports of the Institute of Geological Sciences 83: 37–44.Google Scholar
  15. Collette, J.H., K.C. Gass, and J.W. Hagadorn. 2012. Protichnites eremita unshelled? Experimental model-based neoichnology and new evidence for a euthycarcinoid affinity for this ichnospecies. Journal of Paleontology 86: 442–454.CrossRefGoogle Scholar
  16. Conti, M.A., G. Leonardi, R. Manni, and C. Venturini. 1991. Limuloid tracks into the Meledis Fm. (Upper Carboniferous, Kasimovian) of the Carnic Alps. Giornale di Geologia, ser. 3a 53: 151–159.Google Scholar
  17. Diedrich, C.G. 2011. Middle Triassic horseshoe crab reproduction areas on intertidal flats of Europe with evidence of predation by archosaurs. Biological Journal of the Linnean Society 103: 76–105.CrossRefGoogle Scholar
  18. Draganits, E., S.J. Braddy, and D.E.G. Briggs. 2001. A Gondwanan coastal arthropod ichnofauna from the Muth Formation (Lower Devonian, Northern India): paleoenvironment and tracemaker behavior. Palaios 16: 126–147.CrossRefGoogle Scholar
  19. Draganits, E., B. Grasemann, and S.J. Braddy. 1998. Discovery of abundant arthropod trackways in the? Lower Devonian Muth Quartzite (Spiti, India): implications for the depositional environment. Journal of Asian Earth Sciences 16: 109–118.CrossRefGoogle Scholar
  20. Dunlop, J.A. 2010. Geological history and phylogeny of Chelicerata. Arthropod Structure & Development 39: 124–142.CrossRefGoogle Scholar
  21. Eagar, R.M.C., J.G. Baines, J.D. Collinson, P.G. Hardy, S.A. Okolo, and J.E. Pollard. 1985. Trace fossil assemblages and their occurrence in Silesian (mid-Carboniferous) deltaic sediments of the Central Pennine Basin, England. In Biogenic structures: their use in interpreting depositional environments, ed. H.A. Curran, 99–149. Society of Economic Paleontologists and Mineralogists Special Publications 35.Google Scholar
  22. Fernández, D.E., and P.J. Pazos. 2013. Xiphosurid trackways in a Lower Cretaceous tidal flat in Patagonia: Palaeoecological implications and the involvement of microbial mats in trace-fossil preservation. Palaeogeography, Palaeoclimatology, Palaeoecology 375: 16–29.CrossRefGoogle Scholar
  23. Fischer, W.A. 1978. The habitat of the early vertebrates: trace and body fossil evidence from the Harding Formation (Middle Ordovician), Colorado. The Mountain Geologist 15: 1–26.Google Scholar
  24. Frickhinger, K.A. 1994. The fossils of Solnhofen. Korb: Goldschneck.Google Scholar
  25. Fürsich, F.T. 1998. Environmental distribution of trace fossils in the Jurassic of Kachchh (western India). Facies 39: 243–272.CrossRefGoogle Scholar
  26. Fürsich, F.T., and D.K. Pandey. 2003. Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Upper Jurassic-Lower Cretaceous of Kachchh, western India. Palaeogeography, Palaeoclimatology, Palaeoecology 193: 285–309.CrossRefGoogle Scholar
  27. Fürsich, F.T., M. Alberti, and D.K. Pandey. 2013. Stratigraphy and palaeoenvironments of the Jurassic rocks of Kachchh—Field Guide. Beringeria Special Issue 7: 1–174.Google Scholar
  28. Fürsich, F.T., J.H. Callomon, D.K. Pandey, and A.K. Jaitly. 2004. Environments and faunal patterns in the Kachchh rift basin, western India, during the Jurassic. Rivista Italiana di Paleontologia e Stratigrafia 110: 181–190.Google Scholar
  29. Gaillard, C. 2011. A giant limulid trackway (Kouphichnium lithographicum) from the lithographic limestones of Cerin (Late Kimmeridgian, France): ethological and environmental implications. Swiss Journal of Geosciences 104: 57–72.CrossRefGoogle Scholar
  30. Goldring, R., and A. Seilacher. 1971. Limulid undertracks and their sedimentological implications. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 137: 422–442.Google Scholar
  31. Gregory, J.W. 1893. The Jurassic fauna of Cutch. Part I. The Echinoidea. Memoirs of the Geological Survey of India, Palaeontologia Indica, series 9 2: 1–11.Google Scholar
  32. Gregory, J.W. 1900. The Jurassic fauna of Cutch. The corals. Memoirs of the Geological Survey of India, Palaeontologia Indica, series 9 2: 12–196.Google Scholar
  33. Häntzschel, W. 1975. Trace fossils and problematica. In Treatise on invertebrate paleontology, part W, Miscellanea, ed. C. Teichert, W1–W269. Boulder: Geological Society of America and University of Kansas Press.Google Scholar
  34. Hardy, P.G. 1970. New xiphosurid trails from the Upper Carboniferous of northern England. Palaeontology 13: 188–190.Google Scholar
  35. Hasiotis, S.T. 2004. Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sedimentary Geology 167: 177–268.CrossRefGoogle Scholar
  36. Hauschke, N., and V. Wilde. 1991. Zur Verbreitung und Ökologie mesozoischer Limuliden. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 183: 391–411.Google Scholar
  37. Kitchin, F.L. 1900. The Jurassic fauna of Cutch. The Brachiopoda. Memoirs of the Geological Survey of India, Palaeontologia Indica, series 9 3: 1–87.Google Scholar
  38. Kitchin, F.L. 1903. The Jurassic fauna of Cutch. The Lamellibranchiata, genus Trigonia. Memoirs of the Geological Survey of India, Palaeontologia Indica, series 9 3 (part 2, no. 1): 1–122.Google Scholar
  39. Krishna, J., D.B. Pathak, and B. Pandey. 1996. Quantum refinement in the Kimmeridgian ammonoid chronology in Kachchh (India). GeoResearch Forum 1–2: 195–204.Google Scholar
  40. Krishna, J., B. Pandey, and D.B. Pathak. 2011. Current status of the Jurassic ammonoid stratigraphic framework in the Indian Subcontinent with focus on the tectonically controlled regional transgressive-regressive couplets. Memoir of the Geological Society of India 78: 140–176.Google Scholar
  41. Lomax, D.R., and C.A. Racay. 2012. A long mortichnial trackway of Mesolimulus walchi from the Upper Jurassic Solnhofen Lithographic Limestone near Wintershof, Germany. Ichnos 19: 175–183.CrossRefGoogle Scholar
  42. Lucas, S.G., A.J. Lerner, A.R.C. Milner, and M.G. Lockley. 2006. Lower Jurassic invertebrate ichnofossils from a clastic lake margin, Johnson Farm, southwestern Utah. New Mexico Museum of Natural History Bulletin 37: 128–136.Google Scholar
  43. Malz, H. 1964. Kouphichnium walchi, die Geschichte einer Fährte und ihres Tieres. Natur und Museum 94: 81–97.Google Scholar
  44. Miller, M.F. 1982. Limulicubichnus: a new ichnogenus of limulid resting traces. Journal of Paleontology 56: 429–433.Google Scholar
  45. Minter, N.J., S.J. Braddy, and R.B. Davis. 2007. Between a rock and a hard place: arthropod trackways and ichnotaxonomy. Lethaia 40: 365–375.CrossRefGoogle Scholar
  46. Moreau, J.-D., E. Fara, G. Gand, G. Lafaurie, and L. Baret. 2014. Gigantism among Late Jurassic limulids: new ichnological evidence from the Causses Basin (Lozère, France) and comments on body-size evolution among horseshoe crabs. Geobios 47: 237–253.CrossRefGoogle Scholar
  47. Nopsca, F. 1923. Die Familien der Reptilien. Fortschritte der Geologie und Paläontologie 2: 1–210.Google Scholar
  48. Oppel, A. 1862. Über Fährten im lithographischen Schiefer (Ichnites lithographicus). Paläontologische Mittheilungen aus dem Museum des Königlichen Bayerischen Staates 1: 121–125.Google Scholar
  49. Pandey, D.K., and F.T. Fürsich. 2001. Environmental distribution of scleractinian corals in the Jurassic of Kachchh, western India. Journal of the Geological Society of India 57: 479–495.Google Scholar
  50. Pandey, D.K., F.T. Fürsich, and M. Alberti. 2014. Stratigraphy and palaeoenvironments of the Jurassic rocks of the Jaisalmer Basin—Field Guide. Beringeria Special Issue 9: 1–111.Google Scholar
  51. Pandey, D.K., M. Alberti, F.T. Fürsich, S. Bhaumik, and W. Ayoub-Hannaa. 2016. A review of the Tithonian ammonites from the Kachchh Basin, western India. Journal of the Palaeontological Society of India 61: 141–173.Google Scholar
  52. Pandey, D.K., M. Alberti, F.T. Fürsich, E. Glowniak, and F. Olóriz. 2013. Ammonites from the Oxfordian-Kimmeridgian boundary and the Lower-Upper Kimmeridgian of Kachchh, western India. Volumina Jurassica 11: 97–146.Google Scholar
  53. Patel, S.J., P.N. Joshi, and J.K. Joseph. 2012. Ammonite zonation of the Jurassic rocks of the Gangta Bet area, Wagad region, eastern Kachchh, India. Journal of the Palaeontological Society of India 57: 129–133.Google Scholar
  54. Peyre de Fabrègues, C., and R. Allain. 2013. A limulid trackway from the Late Jurassic (Tithonian) Lagerstätte of Canjuers (Var, France). Comptes Rendus Palevol 12: 181–189.CrossRefGoogle Scholar
  55. Pickett, J.W. 1984. A new freshwater limuloid from the Middle Triassic of New South Wales. Palaeontology 27: 609–621.Google Scholar
  56. Pienkowski, G., and G. Niedzwiedzki. 2008. Invertebrate trace fossil assemblages from the Lower Hettangian of Soltyków, Holy Cross Mountains, Poland. Volumina Jurassica 6: 109–131.Google Scholar
  57. Poiré, D.G., and A. Del Valle. 1996. Trazas fosiles en barras submareales de la Formacion Balcarce (Cambro/Ordovicico), cabo corrientes, mar del Plata, Argentina. Asociación Paleontológica Argentina, Publicación Especial 4: 89–102.Google Scholar
  58. Rai, J., and S. Jain. 2013. Pliensbachian nannofossils from Kachchh: Implications on the earliest Jurassic transgressive event on the western Indian margin. Zitteliana 53: 105–120.Google Scholar
  59. Riek, E.F., and E.D. Gill. 1971. A new xiphosuran genus from Lower Cretaceous freshwater sediments at Koonwarra, Victoria, Australia. Palaeontology 14: 206–210.Google Scholar
  60. Romano, M., and M.A. Whyte. 1987. A limulid trace fossil from the Scarborough Formation (Jurassic) of Yorkshire; its occurrence, taxonomy and interpretation. Proceedings of the Yorkshire Geological Society 46: 85–95.CrossRefGoogle Scholar
  61. Romano, M., and M.A. Whyte. 1990. Selenichnites, a new name for the ichnogenus Selenichnus Romano & Whyte, 1987. Proceedings of the Yorkshire Geological Society 48: 221.CrossRefGoogle Scholar
  62. Romano, M., and M.A. Whyte. 2003. The first record of xiphosurid (arthropod) trackways from the Saltwick Formation, Middle Jurassic of the Cleveland Basin, Yorkshire. Palaeontology 46: 257–269.CrossRefGoogle Scholar
  63. Romano, M., and M.A. Whyte. 2015. A review of the trace fossil Selenichnites. Proceedings of the Yorkshire Geological Society 60: 275–288.CrossRefGoogle Scholar
  64. Schweigert, G. 1998. Die Spurenfauna des Nusplinger Plattenkalks (Oberjura, Schwäbische Alb). Stuttgarter Beiträge zur Naturkunde. Serie B (Geologie und Paläontologie) 262: 1–47.Google Scholar
  65. Seilacher, A. 2008. Biomats, biofilms, and bioglue as preservational agents for arthropod trackways. Palaeogeography, Palaeoclimatology, Palaeoecology 270: 252–257.CrossRefGoogle Scholar
  66. Sekiguchi, K. 1988. IV. Ecology. In Biology of Horse Shoe Crabs, ed. K. Sekiguchi, 50–68. Tokyo: Science House Co.Google Scholar
  67. Singh, C.S.P., A.K. Jaitly, and D.K. Pandey. 1982. First report of some Bajocian-Bathonian (Middle Jurassic) ammonoids and the age of the oldest sediments from Kachchh, W. India. Newsletters on Stratigraphy 11: 37–40.CrossRefGoogle Scholar
  68. Storch, V., and U. Welsch. 1994. Kurzes Lehrbuch der Zoologie. Stuttgart: Gustav Fischer.Google Scholar
  69. Tyler, D.J. 1988. Evidence and significance of limulid instars from trackways in the Bude Formation (Westphalian), south-west England. Proceedings of the Ussher Society 7: 77–80.Google Scholar
  70. Vosatka, E.D. 1970. Observations on the swimming, righting, and burrowing movements of young horse-shoe crabs, Limulus polyphemus. The Ohio Journal of Science 70: 276–283.Google Scholar
  71. Waagen, W. 1873–1875. Jurassic fauna of Cutch. The Cephalopoda. Memoirs of the Geological Survey of India, Palaeontologia Indica, Series 9 1: 1–247.Google Scholar
  72. Wang, G. 1993. Xiphosurid trace fossils from the Westbury Formation (Rhaetian) of southwest Britain. Palaeontology 36: 111–122.Google Scholar
  73. Xing, L.-D., M.G. Lockley, Q. He, M. Matsukawa, W.S. Persons IV, Y.-W. Xiao, and J.-P. Zhang. 2012. Forgotten Paleogene limulid tracks: Xishuangbanania from Yunnan, China. Palaeoworld 21: 217–221.CrossRefGoogle Scholar
  74. Yamasaki, T. 1988. II. Taxonomy. In Biology of Horse Shoe Crabs, ed. K. Sekiguchi, 10–21. Tokyo: Science House Co.Google Scholar
  75. Yamasaki, T., M. Toshiki, and S. Jun. 1988. V. Morphology. In Biology of Horse Shoe Crabs, ed. K. Sekiguchi, 69–132. Tokyo: Science House Co.Google Scholar

Copyright information

© Paläontologische Gesellschaft 2016

Authors and Affiliations

  1. 1.Institut für GeowissenschaftenChristian-Albrechts-Universität zu KielKielGermany
  2. 2.Department of GeologyUniversity of RajasthanJaipurIndia
  3. 3.GeoZentrum Nordbayern, Fachgruppe PaläoUmweltFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations