Advertisement

Paläontologische Zeitschrift

, Volume 88, Issue 3, pp 297–307 | Cite as

Arachnids from the Carboniferous of Russia and Ukraine, and the Permian of Kazakhstan

  • Paul A. Selden
  • Dmitry E. Shcherbakov
  • Jason A. Dunlop
  • Kirill Yu. Eskov
Research Paper

Abstract

New finds of Late Palaeozoic arachnids, based on three well-preserved carapaces from the Carboniferous of Russia and Ukraine and one complete, albeit poorly preserved, specimen from the Permian of Kazakhstan, are described. The spider genus Arthrolycosa is reported from the Late Carboniferous (Late Pennsylvanian: Kasimovian–Gzhelian) of Chunya in the Tunguska Basin of Siberia; it is the first find of a spider outside the Carboniferous tropics. Another fossil assigned to the same genus comes from the Late Carboniferous (Early Pennsylvanian: Bashkirian) of Kamensk–Shakhtinsky in the Donets Basin of Russia; it is probably the oldest fossil spider known. A thelyphonid (whip scorpion) carapace is described from the Late Carboniferous (Late Pennsylvanian: Kasimovian) of the adjacent Lugansk Province of the Donets Basin of Ukraine.

Keywords

Arachnida Araneae Carboniferous Permian Thelyphonida Uropygi 

Kurzfassung

Neue Funde fossiler Spinnentiere werden basierend auf drei gut erhaltenen Carapaxen aus dem Karbon Russlands und der Ukraine und einer schlecht erhaltenen, kompletten Spinne aus dem Perm Kazakhstans beschrieben. Die Spinnengattung Arthrolycosa wird im Oberkarbon (Kasimovium-Gzhelium, spätes Pennsylvanium) von Chunya im Tunguska-Becken Sibiriens nachgewiesen. Ein weiteres Fossil, das derselben Gattung zugewiesen wird, stammt aus dem Oberkarbon (frühes Pennsylvanium: Bashkirium) von Kamensk–Shakhtinsky im Donez-Becken von Russland. Es handelt sich wahrscheinlich um die älteste bekannte Spinne. Der Carapax eines Geißelskorpions wird aus dem Oberkarbon (Kasimovium, spätes Pennsylvanium) von dem benachbarten Gebiet Lugansk des Donez-Beckens der Ukraine beschrieben.

Schlüßelwörter

Arachnida Araneae Karbon Perm Thelyphonida Uropygi 

Notes

Acknowledgments

We thank Yulia V. Mosseichik (Geological Institute, Moscow), Dmitry V. Shaposhnikov (Kamensk–Shakhtinsky), and Alexander K. Shchegolev (Institute of Geological Sciences, Kiev) for providing information on fossil localities; Nikolay I. Udovichenko (University of Lugansk) for assistance in field work; and Roman A. Rakitov (PIN) for taking SEM micrographs. PAS is grateful to Peter J. Schwendinger (Natural History Museum, Geneva) and Hirotsugu Ono (National Museum of Nature and Science, Japan) for supplying specimens of modern mesotheles for comparative morphology. The visit by PAS to Berlin was funded by the Alexander von Humboldt Foundation. The work was supported by RFBR grants 10-04-01713 and 13-04-01839 to DES and KYE.

References

  1. Betekhtina, O.A., S.G. Gorelova, S.K. Batyaeva, L.L. Dryagina, and P.A. Tokareva. 1988. Palaeontological characteristic of the regional horizons or the Kuznetsk Basin. Trudy Instituta Geologii i Geophiziki 707: 9–12. [in Russian].Google Scholar
  2. Buckland, W. 1837. The Bridgewater treatises on the power, wisdom and goodness of God as manifested in the creation. Treatise IV. Geology and mineralogy with reference to natural theology. Second edition. London: William Pickering.Google Scholar
  3. Clerck C. 1757. Araneae suecici, descriptionibus et figuris oeneis illustrati, ad genera subalterna redacti speciebus ultra LX determinati. L. Salvii, Stockholm.Google Scholar
  4. Corda AJC. 1835. Ueber den in der Steinkohlenformation bei Cholme gefundenen fossilen Scorpion. Verhandlungen der Gesellschaft des vaterländischen Museums in Böhmen, Prag: 35–43.Google Scholar
  5. Davydov VI, Crowley JL, Schmitz MD, Poletaev VI. 2010. High-precision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets Basin, eastern Ukraine. Geochemistry, Geophysics, Geosystems 11, Q0AA04. doi: 10.1029/2009GC002736.
  6. Davydov VI, Korn D, Schmitz MD. 2012. Carboniferous. 603–651. In The Geologic Time Scale 2012, (eds.) Gradstein FM, Ogg JG, Schmitz MD, Ogg GM. Elsevier, Boston.Google Scholar
  7. Dunlop, J.A., and C.A. Horrocks. 1996. A new Upper Carboniferous whip scorpion (Arachnida: Uropygi) with a revision of the British Carboniferous Uropygi. Zoologischer Anzeiger 234: 293–306.Google Scholar
  8. Eskov K. 1999. First records of trigonotarbids (Arachnida, Trigonotarbida) from the Carboniferous of the cool-temperate Angarian Realm. 23. In 18th European Colloquium of Arachnology. Programme, Abstracts, Addresses and Notes. Stara Lesna, 1217th July 1999.Google Scholar
  9. Eskov, KYu., and P.A. Selden. 2005. First record of spiders from the Permian period (Araneae: Mesothelae). Bulletin of the British Arachnological Society 13: 111–116.Google Scholar
  10. Fet, V., D.E. Shcherbakov, and M.E. Soleglad. 2011. The first record of Upper Permian and Lower Triassic scorpions from Russia (Chelicerata: Scorpiones). Euscorpius 121: 1–16.Google Scholar
  11. Frič A. 1904. Palaeozoische Arachniden. A. Frič, Prague.Google Scholar
  12. Harger, O. 1874. Notice of a new spider from the Coal Measures of Illinois. American Journal of Science 7: 219–223.CrossRefGoogle Scholar
  13. Haupt, J. 1983. Vergleichende Morphologie der Genitalorgane und Phylogenie der liphistiomorphen Webspinnen (Araneae: Mesothelae). I. Revision der bisher bekannten Arten. Zeitschrift für Zoologische Systematik und Evolutionsforschung 21: 275–293.CrossRefGoogle Scholar
  14. Haupt, J. 2003. The Mesothelae—a monograph of an exceptional group of spiders (Araneae: Mesothelae). Zoologica 154: 1–102.Google Scholar
  15. Ivakhnenko, M.F. 1987. Permian parareptiles of USSR. Trudy paleontologicheskogo Instituta AN SSSR 223: 1–160. [in Russian].Google Scholar
  16. Jocqué, R., and A.S. Dippenaar-Schoeman. 2007. Spider families of the world, 2nd ed. Tervuren: Musée Royal de l’Afrique Centrale. 336 pp.Google Scholar
  17. Kishida, K. 1920. Occurrence of a liphistiid spider in Japan. Zoological Magazine Tokyo 32: 360–363. [In Japanese].Google Scholar
  18. Kuznetsov, V.V., and M.F. Ivakhnenko. 1981. Discosauriscids from the Upper Palaeozoic of South Kazakhstan. Paleontologicheskij zhurnal 3: 102–110. [In Russian].Google Scholar
  19. Kušta J. 1884. Thelyphonus bohemicus n. sp., ein fossiler Geisselscorpion aus der Steinkohlenformation von Rakonitz. Sitzungsberichte der Königlich Böhmischen Gesellschaft der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse: 186–191.Google Scholar
  20. Kušta J. 1888. O nových arachnidech z karbonu Rakovnického. Véstnik (Zprávy o Zasedání) Královské Cěské Spolěcnosti Nauk: 194–208. [In Czech and German].Google Scholar
  21. Latreille PA. 1804. Histoire naturelle, générale et particulière, des Crustacés et des Insectes, Vol. 7. 144–305. F. Dufart, Paris.Google Scholar
  22. Laurentiaux-Vieira, F., and D. Laurentiaux. 1963. Sur quelques restes nouveaux d’Arachnides du terrain houiller. Annales de la Société géologique du Nord 83: 23–29.Google Scholar
  23. Meek, F.B., and A.H. Worthen. 1865. Notice of some new types of organic remains from the Coal Measures of Illinois. Proceedings of the Academy of Natural Sciences of Philadelphia 17: 41–45.Google Scholar
  24. Millot, J. 1949. Ordre des Uropyges (Uropygi Thorell). In Traité de Zoologie. Tome VI, ed. P.-P. Grasse, 533–562. Paris: Masson et Cie.Google Scholar
  25. Ono, H. 1988. Liphistiid spiders (Araneae, Mesothelae) of south Thailand. Bulletin of the National Science Museum, Tokyo (A) 14: 145–150.Google Scholar
  26. Penney, D., and P.A. Selden. 2006. Assembling the tree of life—phylogeny of spiders: a review of the strictly fossil spider families. Acta zoologica bulgarica 1: 25–39.Google Scholar
  27. Petrunkevitch, A.I. 1913. A monograph of the terrestrial Palaeozoic Arachnida of North America. Transactions of the Connecticut Academy of Arts and Sciences 18: 1–137.Google Scholar
  28. Petrunkevitch AI. 1923. On families of spiders. Annals of the New York Academy of Sciences 29: 145–180, pls 1–2.Google Scholar
  29. Petrunkevitch, A.I. 1949. A study of Palaeozoic Arachnida. Transactions of the Connecticut Academy of Arts and Sciences 37: 69–315.Google Scholar
  30. Petrunkevitch AI. 1956. Arachnida. P42–P162. In Treatise on invertebrate paleontology. Part P. Arthropoda 2 ed. Moore RC, Boulder CO, Lawrence KS, Geological Society of America and University of Kansas Press.Google Scholar
  31. Platnick, N.I. 2013. The world spider catalog, version 13.5. New York, American Museum of Natural History. http://research.amnh.org/entomology/spiders/catalog/index.html.
  32. Platnick, N.I., and W.C. Sedgwick. 1984. A revision of the spider genus Liphistius (Araneae, Mesothelae). American Museum Novitates 2781: 1–31.Google Scholar
  33. Pocock, R.I. 1892. Liphistius and its bearing upon the classification of spiders. Annals and Magazine of Natural History, Series 6(10): 306–314.Google Scholar
  34. Pocock, R.I. 1911. A monograph of the terrestrial Carboniferous Arachnida of Great Britain. Monographs of the Palaeontographical Society 64: 1–84.Google Scholar
  35. Pointon, M.A., D.M. Chew, M. Ovtcharova, G.D. Sevastopulo, and Q.G. Crowley. 2012. New high-precision U-Pb dates from western European Carboniferous tuffs; implications for time scale calibration, the periodicity of Late Carboniferous cycles and stratigraphical correlation. Journal of the Geological Society 169: 713–721.CrossRefGoogle Scholar
  36. Raven, R.J. 1985. The spider infraorder Mygalomorphae (Araneae): cladistics and systematics. Bulletin of the American Museum of Natural History 182: 1–180.Google Scholar
  37. Raymond A, Scotese CR. 2009. Late Paleozoic paleoclimates. 498–504. In Encyclopedia of Paleoclimatology and Ancient Environments ed. V. Gornitz, Springer.Google Scholar
  38. Roemer F. 1866. Protolycosa antbracophila, eine fossil Spinne aus dem Steinkohlen-Gebirge Oberschlesiens. Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie: 136–143, pl. 3.Google Scholar
  39. Rohdendorf, B.B., E.E. Becker-Migdisova, O.M. Martynova, and A.G. Sharov. 1961. Paleozoic insects of Kuznetsk Basin. Transactions of Paleontological Institute of the USSR Academy of Sciences 85: 1–705. [in Russian].Google Scholar
  40. Schmitz, M.D., and V.I. Davydov. 2012. Quantitative radiometric and biostratigraphic calibration of the Pennsylvanian–Early Permian (Cisuralian) time scale, and pan-Euramerican chronostratigraphic correlation. Geological Society of America Bulletin 124: 549–577.CrossRefGoogle Scholar
  41. Schwendinger, P.J. 1990. On the spider genus Liphistius (Araneae: Mesothelae) in Thailand and Burma. Zoologica Scripta 19: 331–351.CrossRefGoogle Scholar
  42. Schwendinger, P.J. 2009. Liphistius thaleri, a new mesothelid spider species from southern Thailand (Araneae: Liphistiidae). Contributions to Natural History 12: 1253–1268.Google Scholar
  43. Scudder, S.H. 1884. A contribution to our knowledge of Paleozoic Arachnida. Proceedings of the American Academy of Arts and Sciences 20: 13–22.CrossRefGoogle Scholar
  44. Seitmuratova EYu. 2011. The Late Paleozoic of Zhongar-Balkhash Fold Belt, Kazakhstan: Stratigraphy, Magmatism, History of Continental Margin Formation. Evero, Almaty. [in Russian].Google Scholar
  45. Selden, P.A. 1996a. First fossil mesothele spider, from the Carboniferous of France. Revue Suisse de Zoologie volume hors série 2: 585–596.Google Scholar
  46. Selden, P.A. 1996b. Fossil mesothele spiders. Nature 379: 498–499.CrossRefGoogle Scholar
  47. Selden, P.A., W.A. Shear, and P.M. Bonamo. 1991. A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology 34: 241–281.Google Scholar
  48. Selden, P.A., W.A. Shear, and M.D. Sutton. 2008. Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order. Proceedings of the National Academy of Sciences of the United States of America 105: 20781–20785.Google Scholar
  49. Shcherbakov, D.E. 2008. On Permian and Triassic insect faunas in relation to biogeography and the Permian–Triassic crisis. Paleontological Journal 42: 15–31.Google Scholar
  50. Sharov, A.G., and N.D. Sinitshenkova. 1977. New Palaeodictyoptera from the USSR. Paleontological Journal 11: 44–59.Google Scholar
  51. Tetlie, O.E., and J.A. Dunlop. 2008. Geralinura carbonaria (Arachnida; Uropygi) from Mazon Creek, Illinois, USA, and the origin of subchelate pedipalps in whip scorpions. Journal of Paleontology 82: 299–312.CrossRefGoogle Scholar
  52. Thorell T. 1869. On European Spiders. Nova Acta Regiae Societatis Scientiarum Upsaliensis 7: 1–108, pls 1–24.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paul A. Selden
    • 1
  • Dmitry E. Shcherbakov
    • 2
  • Jason A. Dunlop
    • 3
  • Kirill Yu. Eskov
    • 2
  1. 1.Department of GeologyUniversity of KansasLawrenceUSA
  2. 2.Borissiak Paleontological InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Museum für NaturkundeLeibniz Institute for Research on Evolution and Biodiversity at the Humboldt University BerlinBerlinGermany

Personalised recommendations