Paläontologische Zeitschrift

, Volume 87, Issue 4, pp 493–503 | Cite as

Exceptional three-dimensional preservation and coloration of an originally iridescent fossil feather from the Middle Eocene Messel Oil Shale

  • Natasha S. Vitek
  • Jakob Vinther
  • James D. Schiffbauer
  • Derek E. G. Briggs
  • Richard O. Prum
Research Paper

Abstract

A feather from the Eocene Messel Formation, Germany, has been demonstrated to have been originally structurally colored by densely packed sheets of melanosomes similar to modern iridescent feathers exhibiting thin-film diffraction. The fossil itself currently exhibits a silvery sheen, but the mechanism for generating this optical effect was not fully understood. Here we use scanning electron microscopy, electron probe microanalysis, and dual-beam focused ion beam scanning electron microscopy to investigate the source of the silvery sheen that occurs in the apical feather barbules. Focused ion beam scanning electron microscopy provides a powerful tool for studying three-dimensionality of nanostructures in fossils. Use of the method reveals that the flattened apical barbules are preserved almost perfectly, including smooth structural melanosome sheets on the obverse surface of the fossil feather that are identical to those that cause iridescence in modern bird feathers. Most of each apical barbule is preserved beneath a thin layer of sediment. The silvery sheen is generated by incoherent light diffraction between this sediment layer and melanosomes and, although related to the original iridescence of the feather, is not a feature of the feather itself. The reddish and greenish hues frequently exhibited by fossil feathers from the Messel Formation appear to be due to precipitates on the surface of individual melanosomes.

Keywords

Exceptional preservation Color Melanin Iridescence Fossil bird 

Kurzfassung

Bei einer Feder aus der eozänen Messel Formation von Deutschland wurde eine originale strukturelle Färbung aus dicht gepackten Melanosomen nachgewiesen, die modernen irridisierenden Federn ähnlich ist, die Dünnschichtdiffraktion zeigen. Das Fossil selbst zeigt in seinem derzeitigen Zustand einen silbrigen Glanz, aber es ist unklar, durch welchen Mechanismus dieser entsteht. Mit Hilfe von Rasterelektronenmikroskopie, Elektronenstrahlmikroanalyse und doppelt fokussierter Ionenfeinstrahlmikroskopie untersuchen wir die Herkunft der glänzenden Färbung, die an den apikalen Hakenstrahlen auftritt. Ionenfeinstrahlmikroskopie stellt eine leistungsfähige Methode zur Untersuchung dreidimensionaler Nanostrukturen in Fossilien dar. Ergebnisse dieser Untersuchungsmethode zeigen, dass sowohl die abgeflachten, apikalen Hakenstrahlen, als auch die einzelnen Schichten aus Strukturmelanosomen, die mit denen heutiger Vogelfedern nahezu identisch sind, annähernd unversehrt überliefert sind. Ein Großteil der apikalen Hakenstrahlen ist unter einer dünnen Sedimentschicht erhalten, die aufgrund der Interferenz mit den Melanosomen zu dem silber glänzenden Farbeffekt führt. Dieser Effekt wird durch die irridisierende Färbung der Feder verstärkt, trat allerdings nicht im Originalzustand auf. Dies deutet darauf hin, dass die rötliche und grünliche Färbung, die typisch für Federn aus Messel ist, aufgrund von Ablagerungen auf der Oberfläche der einzelnen Melanosome zustande kommt.

Schlüsselwörter

Außergewöhnliche Erhaltung Farberhaltung Melanin Iridisieren Fossile Vögel 

References

  1. Clarke, J.A., D.T. Ksepka, R. Salas-Gismondi, A.J. Altamirano, M.D. Shawkey, L. D’Alba, J. Vinther, T.J. DeVries, and P. Baby. 2010. Fossil evidence for evolution of the shape and color of penguin feathers. Science 330: 954–967.CrossRefGoogle Scholar
  2. Davis, P.G., and D.E.G. Briggs. 1995. The fossilization of feathers. Geology 23: 783–786.CrossRefGoogle Scholar
  3. Felder, M., and M.-J. Harms. 2004. Lithologie und genetische Interpretation der vulkano-sedimentären Ablagerungen aus der Grube Messel anhand der Forschungsbohrung Messel 2001 und weiterer Bohrungen. Courier Forschungsinstitut Senckenberg 252: 151–203.Google Scholar
  4. Foth, C. 2012. On the identification of feather structures in stem-line representatives of birds: evidence from fossils and actuopalaeontology. Paläontologische Zeitschrift 86: 91–102.CrossRefGoogle Scholar
  5. Glass, K., S. Ito, P.R. Wilby, T. Sota, A. Nakamura, C.R. Bowers, J. Vinther, S. Dutta, R. Summons, D.E.G. Briggs, K. Wakamatsu, and J.D. Simon. 2012. Direct chemical evidence for undegraded eumelanin pigment from the Jurassic period. Proceedings of the National Academy of Sciences 109: 10218–10223.CrossRefGoogle Scholar
  6. Goth, K. 1990. Der Messeler Ölschiefer ein Algenlaminit. Courier Forschungsinstitut Senckenberg 131: 1–143.Google Scholar
  7. Goldstein, G., K.R. Flory, B.A. Browne, S. Majid, J.M. Ichida, and E.H. Burtt Jr. 2004. Bacterial degredation of black and white feathers. The Auk 121: 656–659.Google Scholar
  8. Kear, A.J., D.E.G. Briggs, and D.T. Donovan. 1995. Decay and fossilization of non-mineralised tissue in coleoid cephalopods. Palaeontology 38: 105–131.Google Scholar
  9. Li, Q., K.-Q. Gao, J. Vinther, M.D. Shawkey, J.A. Clarke, L. D’Alba, Q. Meng, D.E.G. Briggs, and R.O. Prum. 2010. Plumage color patterns of an extinct dinosaur. Science 327: 1369–1372.CrossRefGoogle Scholar
  10. Li, Q., K.-Q. Gao, Q. Meng, J.A. Clarke, M.D. Shawkey, L. D’Alba, R. Pei, M. Ellison, M.A. Norrell, and J. Vinther. 2012. Reconstruction of Microraptor and the evolution of iridescent plumage. Science 335: 1215–1219.CrossRefGoogle Scholar
  11. Liu, Y., L. Hong, V.R. Kempf, K. Wakamatsu, S. Ito, and J.D. Simon. 2004. Ion-exchange and absorption of Fe(III) by Sepia melanin. Pigment Cell Research 17: 262–266.CrossRefGoogle Scholar
  12. Lucas, A.M., and P.R. Stettenheim. 1972. Avian anatomy: integument. Washington, D.C: U.S. Agricultural Research Service.Google Scholar
  13. McGraw, K.J. 2008. An update on the honesty of melanin-based color signals in birds. Pigment Cell and Melanoma Research 21: 133–138.CrossRefGoogle Scholar
  14. Niecke, M., M. Heid, and A. Kruger. 1999. Correlations between melanin pigmentations and element concentration in feathers of white-tailed eagles (Haliaeetus albicilla). Journal of Ornithology 140: 355–356.CrossRefGoogle Scholar
  15. Pinheiro, F.L., B.L.D. Horn, C.L. Schultz, J.A.F.G. de Andrade, and P.A. Sucerquia. 2012. Fossilized bacteria in a Cretaceous pterosaur headcrest. Lethaia 45: 495–499.CrossRefGoogle Scholar
  16. Premović, P.I., N.D. Nikolić, I.R. Tonsa, M.S. Pavlović, M.P. Premović, and D.T. Dulanović. 2000. Copper and copper(II) porphyrins of the Cretaceous-Tertiary boundary at Stevns Klint (Denmark). Earth and Planetary Science Letters 177: 105–118.CrossRefGoogle Scholar
  17. Prum, R.O. 2006. Anatomy, physics, and evolution of avian structural colors. In Bird coloration, vol 1, Mechanisms and measurements, ed. G.E. Hill, and K.J. McGraw, 295–353. Cambridge: Harvard University Press.Google Scholar
  18. Riley, P.A. 1997. Melanin. The International Journal of Biochemistry and Cell Biology 29: 1235–1239.CrossRefGoogle Scholar
  19. Schiffbauer, J.D., and S. Xiao. 2009. Novel application of focused ion beam electron microscopy (FIB-EM) in preparation and analysis of microfossil ultrastructures: a new view of complexity in early eukaryotic organisms. Palaios 24: 616–626.CrossRefGoogle Scholar
  20. Schiffbauer, J.D., and S. Xiao. 2011. Paleobiological applications of focused ion beam electron microscopy (FIB-EM): an ultrastructural approach to the (micro) fossil record. In Quantifying the evolution of early life, ed. M. Laflamme, J.D. Schiffbauer, and S.Q. Dornbos, 321–354. Springer: Berlin.CrossRefGoogle Scholar
  21. Shawkey, M.D., M.E. Hauber, L.K. Estep, and G.E. Hill. 2006. Evolutionary transitions and mechanisms of matte and iridescent plumage coloration in grackles and allies (Icteridae). Journal of the Royal Society, Interface 3: 777–786.CrossRefGoogle Scholar
  22. Vinther, J., D.E.G. Briggs, J. Clarke, G. Mayr, and R.O. Prum. 2010. Structural coloration in a fossil feather. Biology Letters 6: 128–131.CrossRefGoogle Scholar
  23. Vinther, J., D.E.G. Briggs, R.O. Prum, and V. Saranathan. 2008. The colour of fossil feathers. Biology Letters 4: 522–525.CrossRefGoogle Scholar
  24. Wogelius, R.A., P.L. Manning, H.E. Barden, N.P. Edwards, S.M. Webb, W.I. Sellers, K.G. Taylor, P.L. Larson, P. Dodson, H. You, L. Da-qing, and U. Bergmann. 2011. Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 333: 1622–1626.CrossRefGoogle Scholar
  25. Zhang, F., S.L. Kearns, P.J. Orr, M.J. Benton, Z. Zhou, D. Johnson, X. Xu, and X. Wang. 2010. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463: 1075–1078.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Natasha S. Vitek
    • 1
    • 2
  • Jakob Vinther
    • 1
    • 2
    • 3
  • James D. Schiffbauer
    • 4
  • Derek E. G. Briggs
    • 1
    • 5
  • Richard O. Prum
    • 5
    • 6
  1. 1.Department of Geology and GeophysicsYale UniversityNew HavenUSA
  2. 2.Jackson School of GeosciencesThe University of Texas at AustinAustinUSA
  3. 3.Department of Earth Sciences and Biological SciencesUniversity of BristolBristolUK
  4. 4.Department of Geological SciencesUniversity of MissouriColumbiaUSA
  5. 5.Peabody Museum of Natural HistoryYale UniversityNew HavenUSA
  6. 6.Department of Ecology and Evolutionary BiologyYale UniversityNew HavenUSA

Personalised recommendations