Skip to main content
Log in

A microstructure study on silicified wood from the Permian Petrified Forest of Chemnitz

  • Research Paper
  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Abstract

Three typical plant taxa from the fossil assemblage of the 290-million-year-old Chemnitz Petrified Forest (Zeisigwald Tuff Horizon, Leukersdorf Formation) were studied with regard to the microstructure of the petrifactions: samples of the tree fern Psaronius sp., the seed fern Medullosa stellata, and the gymnosperm Dadoxylon sp. The plant’s tissues are anatomically preserved by silica exhibiting different crystalline order and by other mineralisations. Specimens were studied by means of electron backscatter imaging and electron backscatter diffraction in a scanning electron microscope. The cell walls were largely preserved by quartz crystals, the cell lumina by cryptocrystalline silica. The former organisation and chemical composition of the vascular tissue are mirrored by varying grain formation and grain size. Results are discussed in terms of extant xylem cell wall organisation showing highly hydrophilic cellulose and hemicellulose cross-linked by hydrophobic lignin. The effect of polar and non-polar wood components on the precipitation of silica from aqueous solution and on the formation of crystals is convincing, and the reported results provide a better understanding of how silica replaced organic matter during the petrifaction process.

Kurzfassung

Drei typische Kieselhölzer des 290 Millionen Jahre alten Versteinerten Waldes von Chemnitz (Zeisigwald Tuff-Horizont, Leukersdorf-Formation) wurden hinsichtlich ihrer Mikrostruktur untersucht: Proben des Baumfarns Psaronius sp., des Farnsamers Medullosa stellata, und des Nacktsamers Dadoxylon sp. Mittels Rückstreuelektronen-Abbildungen und Beugungsuntersuchungen im Rasterelektronenmikroskop wird die vorzügliche anatomische Erhaltung des Pflanzengewebes durch Silifizierung und andere Mineralisationen gezeigt. Die Zellwände weisen zumeist Quarz in gut ausgebildeten Kristallen auf, während die eingeschlossenen Zelllumina durch kryptokristalline Siliziumdioxid-Varietäten konserviert wurden. Die unterschiedliche Kristallinität sowie die Anordnung und Größe der Kristallite spiegeln den ursprünglich vorhandenen Aufbau der Zellwand und deren chemische Zusammensetzung im Holzteil wider. Die Ergebnisse werden mit Bezug auf die Zellwandorganisation des Xylems rezenter Pflanzen diskutiert, das aus stark hydrophiler Zellulose und Hemizellulose besteht, die durch hydrophobes Lignin vernetzt sind. Der Einfluss der polaren und unpolaren Holzbestandteile auf die Ausfällung von Silica aus einem wässrigen Sol und auf die Kristallisation ist auffallend. Im Umkehrschluss ermöglichen die vorgestellten Ergebnisse ein vertieftes Verständnis, wie während des Versteinerungsprozesses die organischen Bestandteile silifiziert wurden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abalos, B., P. Puelles, S. Fernandez-Armas, and F. Sarrionandia. 2011. EBSD microfabric study of pre-Cambrian deformations recorded in quartz pebbles from the Sierra de la Demanda (N Spain). Journal of Structural Geology 33: 500–518.

    Article  Google Scholar 

  • Agarwal, U.P. 2006. Raman imaging to investigate ultrastructure and composition of plant cell walls: Distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224(5): 1141–1153. doi:10.1007/s00425-006-0295-z.

    Article  Google Scholar 

  • Beall, F.C., and H.W. Eickner. 1970. Thermal degradation of wood components: A review of the literature, 1–28. Madison, WI: Forest Products Lab.

    Google Scholar 

  • Bailey, I.W., and I.T. Kerr. 1935. The visible structure of the secondary wall and its significance in physical and chemical investigations of tracheary cells and fibres. Journal of the Arnold Arboretum 16: 273–300.

    Google Scholar 

  • Bailey, I.W., and M.R. Vestal. 1937. The orientation of cellulose in the secondary wall of tracheary cells. Journal of the Arnold Arboretum 18: 185–195.

    Google Scholar 

  • Ballhaus, C., C.T. Gee, K. Greef, C. Bockrath, T. Mansfeldt, and D. Rhede. 2012. The silicification of trees in volcanic ash: An experimental study. Geochimica et Cosmochimica Acta 84(2012): 62–74. doi:10.1016/j.gca.2012.01.018.

    Article  Google Scholar 

  • Brebu, M., and C. Vasile. 2010. Thermal degradation of lignin: A review. Cellulose Chemistry and Technology 44(9): 353–363.

    Google Scholar 

  • Buurman, P. 1972. Mineralization of fossil wood. Scripta Geologica 12: 1–43.

    Google Scholar 

  • Cotta, B. 1832. Die Dendrolithen in Bezug auf ihren inneren Bau. Leipzig und Dresden: Arnoldische Buchhandlung.

    Google Scholar 

  • Dietrich, D., T. Lampke, and R. Rößler. 2011. Mikrostrukturuntersuchungen mit Rückstreuelektronen an Chemnitzer Holzversteinerungen. Veröffentlichungen des Museums für Naturkunde Chemnitz 34: 85–94.

    Google Scholar 

  • Döring, H., F. Fischer, and R. Rößler. 1999. Sporostratigraphische Korrelation des Rotliegend im Erzgebirge-Becken mit dem Permprofil des Donezk-Beckens. Veröffentlichungen des Museums für Naturkunde Chemnitz 22: 29–56.

    Google Scholar 

  • Drum, R.W. 1968. Silicification of Betula woody tissue in vitro. Science 161: 175–176.

    Article  Google Scholar 

  • Garrote, G., H. Domínguez, and J.C. Parajó. 2001. Study on the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. European Journal of Wood and Wood Products 59(1–2): 53–59. doi:10.1007/s001070050473.

    Article  Google Scholar 

  • Götze, G., and R. Rößler. 2000. Kathodolumineszenz-Untersuchungen an Kieselhölzern. Silifizierungen aus dem Versteinerten Wald von Chemnitz, Perm, Deutschland. Veröffentlichungen des Museums für Naturkunde Chemnitz 23: 35–50.

    Google Scholar 

  • Karowe, A.L., and T.H. Jefferson. 1987. Burial of trees by eruptions of Mount St Helens, Washington: Implications for the interpretation of fossil forests. Geological Magazine 124(3): 191–204. doi:10.1017/S001675680001623X.

    Article  Google Scholar 

  • Kirkbir, F., H. Murata, D. Meyers, S.R. Chaudhuri, and A. Sarkar. 1996. Drying and sintering of sol-gel derived large SiO2 monoliths. Journal of Sol-Gel Science and Technology 6: 203–217.

    Article  Google Scholar 

  • Kunze, K., Adams, B.L., Heidelbach, F., and Wenk, H.-R. 1994. Local microstructural investigations in recrystallized quartzite using orientation imaging microscopy. Material Science Forum 157–162: 1243–1250. Trans Tech Publications, Switzerland.

    Google Scholar 

  • Matysová, P., R. Rössler, J. Götze, J. Leichmann, G. Forbes, E.L. Taylor, J. Sakala, and T. Grygar. 2010. Alluvial and volcanic pathways to silicified plant stems (Upper Carboniferous–Triassic) and their taphonomic and palaeoenvironmental meaning. Palaeogeography, Palaeoclimatology, Palaeoecology 292: 127–143.

    Article  Google Scholar 

  • Murata, K.J. 1940. Volcanic ash as a source of silica for the silification of wood. American Journal of Science 238(8): 586–596.

    Article  Google Scholar 

  • Nestler, K., D. Dietrich, K. Witke, R. Rößler, and G. Marx. 2003. Thermogravimetric and Raman spectroscopic investigations on different coals in comparison to dispersed anthracite found in permineralized tree fern Psaronius sp. Journal of Molecular Structure 661–662: 357–362.

    Article  Google Scholar 

  • O’Sullivan, A. 1997. Cellulose: The structure slowly unravels. Cellulose 4(3): 173–207. doi:10.1023/A:1018431705579.

    Article  Google Scholar 

  • Paris, O., I. Burgert, and P. Fratzl. 2010. Biomimetics and biotemplating of natural materials. MRS Bulletin 35: 219–225.

    Article  Google Scholar 

  • Persson, P.V., A. Fogden, J. Hafrén, G. Daniel, and T. Iversen. 2004. Silica-cast replicas for morphology studies on spruce and birch xylem. IAWA Journal 25(2): 155–164.

    Article  Google Scholar 

  • Prior, D.J., Mariani, E., and Wheeler, J. 2009. EBSD in the earth sciences: Applications, common practice, and challenges. In Electron backscatter diffraction in materials science, ed. Adam J. Schwartz, Mukul Kumar, Brent L. Adams and David P. Field, 345–357. New York: Springer.

  • Poole, I., and G.E. Lloyd. 2000. Alternative SEM techniques for observing pyritised fossil material. Review of Palaeobotany and Palynology 112: 287–295.

    Article  Google Scholar 

  • Rößler, R., Zierold, T., Feng, Z., Kretzschmar, R., Merbitz, M., Annacker, V., and Schneider, J.W. 2012. A snapshot of an Early Permian ecosystem preserved by explosive volcanism: new results from the petrified forest of Chemnitz, Germany. Palaois (in print) 27:000-000. doi:10.2110/palo.2011.p11-112r.

  • Rößler, R., Philippe, M., Van Konijnenburg-van Cittert, J.H.A., McLoughlin, S., Sakala, J., and Zijlstra, G. 2013. Which name(s) should be used for Araucaria-like fossil wood? Results of a poll. Taxon 62 (in print).

  • Shafizadeh, F., and A.G.W. Bradburry. 1979. Thermal degradation of cellulose in air and nitrogen at low temperatures. Journal of Applied Polymer Science 23(5): 1431–1442.

    Article  Google Scholar 

  • Sjöström, E., and Westermark, U. 1998. Chemical composition of wood and pulp: Basic constituents and their distribution. In Analytical methods in wood chemistry, pulping and papermaking. ed. Eero Sjöström and Raimo Alén, 3–14. Berlin: Springer.

  • Stamm, A.J. 1956. Thermal degradation of wood cellulose. Industrial and Engineering Chemistry 48(3): 413–417.

    Article  Google Scholar 

  • Stöber, W., A. Fink, and E. Bohn. 1968. Controlled growth of monodisperse silica spheres in the micron size range. 1968. Journal of Colloid and Interface Science 26(1): 62–69. doi:10.1016/0021-9797(68)90272-5.

    Article  Google Scholar 

  • Van Opdenbosch, D., G. Fritz-Popovski, O. Paris, and C. Zollfrank. 2011. Silica replication of the hierarchical structure of wood with nanometer precision. Journal of Material Research 26(10): 1193–1202.

    Article  Google Scholar 

  • Witke, K., J. Götze, R. Rößler, D. Dietrich, and G. Marx. 2004. Raman and cathodoluminescence spectroscopic investigations on Permian fossil wood from Chemnitz: A contribution to the study of the permineralization process. Spectrochimica Acta Part A 60: 2903–2912.

    Article  Google Scholar 

  • Yang, H., R. Yan, H. Chen, C. Zheng, D.H. Lee, and D.T. Liang. 2006. Depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy & Fuels 20: 388–393.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the reviewers Prof. Edith L. Taylor, and Dr. Ignacio H. Escapa for detailed and helpful comments as well as valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Dietrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, D., Lampke, T. & Rößler, R. A microstructure study on silicified wood from the Permian Petrified Forest of Chemnitz. Paläontol Z 87, 397–407 (2013). https://doi.org/10.1007/s12542-012-0162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-012-0162-0

Keywords

Schlüsselwörter

Navigation