Skip to main content

Jaw movement in fossil mammals: analysis, description and visualization

Abstract

A terminology for and visualizations of different mammalian mastication paths are provided, resulting from orientation of attritional and abrasional facets and striation on fossil (and extant) teeth. The occlusal motion of the left lower jaw is considered, and a moderate wear stage (IDAS 3) is used as standard. In contrast to conventional terminologies, the proposed nomenclature differentiates between the inclination and the direction of the lower jaw movement as projected onto a horizontal plane for each phase of the power stroke. The proposed mastication compass attempts to combine three aspects of the power stroke: (1) the number of phases, (2) the occlusal direction, and (3) the inclination of each phase. Descriptions and visualizations are given for several taxa in order to demonstrate its general applicability. The proposed new terminology and the mastication compass simplify comparisons of different modes of mastication in different mammalian taxa.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Addey, M., and R.P. Shellis. 2006. Interaction between attrition, abrasion and erosion in tooth wear. Monographs in Oral Science 20: 17–31.

    Article  Google Scholar 

  • Ahlgren, J. 1976. Masticatory movements in man. In Mastication, ed. D.J. Anderson, and B.M. Matthews, 119–130. Bristol: John Wright and Sons.

    Google Scholar 

  • Anders, U. 2011. Funktionsmorphologische Veränderungen und Funktionalitätserhaltung in bunodonten, selenodonten und secodonten Gebissen. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn.

  • Anders, U., W. von Koenigswald, I. Ruf, and B.H. Smith. 2011. Generalized individual dental age stages (IDAS) for fossil and extant placental mammals. Paläontologische Zeitschrift 85(3): 321–339.

    Article  Google Scholar 

  • Bargo, M.S. 2001. The ground sloth Megatherium americanum: Skull shape, bite forces, and diet. Acta Palaeontologica Polonica 46(2): 173–192.

    Google Scholar 

  • Bargo, M.S., S.F. Vizcaíno, and R.F. Kay. 2009. Predominance of orthal masticatory movements in the Early Miocene Eucholaeops (Mammalia, Xenarthra, Tardigrada, Megalonychidae) and other megatherioid sloths. Journal of Vertebrate Paleontology 29(3): 870–880.

    Article  Google Scholar 

  • Benazzi, S., O. Kullmer, I.R. Grosse, and G.W. Weber. 2011. Using occlusal wear information and finite element analysis to investigate stress distributions in human molars. Journal of Anatomy 219: 259–272.

    Article  Google Scholar 

  • Benazzi, S., O. Kullmer, I.R. Grosse, and G.W. Weber. 2012. Brief communication: comparing loading scenarios in lower first molar supporting bone structure using 3D finite element analysis. American Journal of Physical Anthropology 147(1): 128–134.

    Article  Google Scholar 

  • Boekschoten, G.J., and P.Y. Sondaar. 1972. On the fossil mammals of Cyprus I and II. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 75: 306–338.

  • Brainerd, E.L., D.B. Baier, S.M. Gatesy, T.L. Hedrick, K.A. Metzger, S.L. Gilbert, and J.J. Crisco. 2010. X-ray reconstruction of moving morphology (XROMM): Precision, accuracy and applications in comparative biomechanics research. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 313A(5): 262–279.

    Google Scholar 

  • Butler, P.M. 1952. The milk-molars of Perissodactyla, with remarks on molar occlusion. Proceedings of the Zoological Society 121: 777–817.

    Google Scholar 

  • Butler, P.M. 1971. Some functional aspects of molar evolution. Evolution 26(3): 474–483.

    Article  Google Scholar 

  • Butler, P.M. 1983. Evolution and mammalian dental morphology. Journal de Biologie Buccale 11: 285–302.

    Google Scholar 

  • Butler, P.M. 1985. Homologies of molar cusps and crests, and their bearing on assessments of rodent phylogeny. In Evolutionary Relationships Among Rodents—A Multidisciplinary Analysis, ed. W.P. Luckett, and J.-L. Hartenberger, 381–401. New York: Plenum Press.

    Google Scholar 

  • Charles, C., J.-.J. Jaeger, J. Michaux, and L. Viriot. 2007. Dental microwear in relation to changes in the direction of mastication during the evolution of Myodonta (Rodentia, Mammalia). Naturwissenschaften 94(1): 71–75.

    Article  Google Scholar 

  • Clemens, W.A. 1963. Fossil mammals of the type lance formation, Wyoming. Part I. Introduction and multituberculata. University of California Publications in Geological Sciences 48: 1–105.

    Google Scholar 

  • Court, N. 1992. A unique form of dental bilophodonty and a functional interpretation of peculiarities in the masticatory system of Arsinoitherium (Mammalia, Embrithopoda). Historical Biology 6: 91–111.

    Google Scholar 

  • Crompton, A.W. 1971. The origin of the tribosphenic molar. In Early Mammals, Zoological Journal of the Linnean Society 50, Suppl. 1, eds. D.M. Kermack, and K.A. Kermack, 65–87. New York: Academic Press.

  • Crompton, A.W., J. Barnet, D.E. Liebermann, T. Owerkowicz, J. Skinner, and R.V. Baudinette. 2008. Control of jaw movements in two species of macropodines (Macropus eugenii and Macropus rufus). Comparative Biochemistry and Physiology A 150: 109–123.

    Article  Google Scholar 

  • Crompton, A.W., and K. Hiiemäe. 1970. Molar occlusion and mandibular movements during occlusion in the American opossum, Didelphis marsupialis L. Zoological Journal of the Linnean Society 49: 21–47.

    Article  Google Scholar 

  • Crompton, A.W., and F.A. Jenkins Jr. 1968. Molar occlusion in late Triassic mammals. Biological Reviews 43(4): 427–458.

    Article  Google Scholar 

  • Crompton, A.W., T. Owerkowicz, and J. Skinner. 2010. Masticatory motor pattern in the koala (Phascolarctos cinereus): a comparison of jaw movements in marsupial and placental herbivores. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 313A(9): 564–578.

    Google Scholar 

  • Crompton, A.W., A.J. Thexton, P. Parker, and K. Hiiemäe. 1977. The activity of the jaw and hyoid musculature in the Virginia opossum, Didelphis virginiana. In The Biology of Marsupialia, ed. B. Stonehouse, and D. Gilmore, 287–305. London: Macmillan.

  • Crompton, A.W., C.B. Wood, and D.N. Stern. 1994. Differential wear of enamel: A mechanism for maintaining sharp cutting edges. In Biomechanics of Feeding in Vertebrates: Advances in Comparative and Environmental Physiology, ed. V.L. Bels, M. Chardon, and P. Vandewalle, 321–346. Berlin: Springer.

  • Dötsch, C. 1982. Der Kauapparat der Soricidae (Mammalia, Insectivora). Funktionsmorphologische Untersuchungen zur Kaufunktion bei Spitzmäusen der Gattung Sorex LINNAEUS, Neomys KAUP und Crocidura WAGLER. Zoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere 108: 421–484.

    Google Scholar 

  • Douglas,G.D., and J. De Vreugd. 1997. The dynamics of occlusal relationships. In Science and Practice of Occlusion, ed. C. McNeill, 69–78. Hanover Park: Quintessence Publishing Co, Inc.

  • Engels, S. 2011. Funktionelle und morphologische Transformationen der Molaren bei frühen Hippomorpha im Hinblick auf den Mastikationsprozess. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn.

  • Evans, A.R., and M. Fortelius. 2008. Three-dimensional reconstruction of tooth relationships during carnivoran chewing. Palaeontologia Electronica 11(2):10A:11 p; http://palaeo-electronica.org/2008_2002/2133/index.html.

    Google Scholar 

  • Evans, A.R., I.S. Harper, and G.D. Sanson. 2001. Confocal imaging, visualization and 3-D surface measurement of small mammalian teeth. Journal of Microscopy 204: 108–118.

    Article  Google Scholar 

  • Evans, A.R., and G.D. Sanson. 2006. Spatial and functional modeling of carnivore and insectivore molariform teeth. Journal of Morphology 267(6): 649–662.

    Article  Google Scholar 

  • Fortelius, M. 1982. Ecological aspects of dental functional morphology in Plio-Pleistocene Rhinoceroses of Europe. In Teeth: Form, Function and Evolution, ed. B. Kurten, 163–181. New York: Columbia University Press.

  • Fortelius, M. 1985. Ungulate cheek teeth: Developmental, functional and evolutionary interrelations. Acta Zoologica Fennica 180: 1–76.

    Google Scholar 

  • Greaves, W.S. 1980. The mammalian jaw mechanism—the high glenoid cavity. The American Naturalist 116(3): 432–440.

    Article  Google Scholar 

  • Gregory, W.K. 1922. The Origin and Evolution of the Human Dentition. Baltimore: Williams and Wilkins.

  • Herring, S.W. 1977. Mastication and maturity: A longitudinal study in pigs. Journal of Dental Research 56(11): 1377–1382.

    Google Scholar 

  • Herring, S.W. 1985. Morphological correlates of masticatory patterns in peccaris and pigs. Journal of Mammalogy 66: 603–617.

    Article  Google Scholar 

  • Herring, S.W., K.L. Rafferty, Z.J. Liu, and C.D. Marshall. 2001. Jaw muscles and the skull in mammals: The biomechanics of mastication. Comparative Biochemistry and Physiology A 131: 207–219.

    Article  Google Scholar 

  • Hiiemäe, K., and A.W. Crompton. 1971. A cinefluorographic study of feeding in the American opossum, Didelphis marsupialis. In Dental Morphology and Evolution, ed. A.A. Dahlberg, 299–334. Chicago: University of Chicago Press.

  • Hiiemäe, K., and R.F. Kay. 1972. Trends in the evolution of primate mastication. Nature 240: 486–487.

    Article  Google Scholar 

  • Hiiemäe, K., and R.F. Kay. 1973. Evolutionary trends in the dynamics of primate mastication. In Symposium of the Fourth International Congress on Primatology, ed. M.R. Zingeser, 28–64. Basel: Karger.

  • Hogue, A.S., and M.J. Ravosa. 2001. Transverse masticatory movements, occlusal orientation, and symphyseal fusion in selenodont artiodactyls. Journal of Morphology 249: 221–241.

    Article  Google Scholar 

  • Hylander, W.L., A.W. Crompton, and K.R. Johnson. 1987. Loading patterns and jaw movements during mastication in Macaca fascicularis: A bone-strain, electromyographic, and cineradiographic analysis. American Journal of Physical Anthropology 72: 287–312.

    Article  Google Scholar 

  • Hylander, W.L., C.E. Wall, C.J. Vinyard, M.J. Ravosa, C.F. Ross, S.H. Williams, and K.R. Johnson. 2005. Temporalis function in anthropoids and strepsirrhines: An EMG study. American Journal of Physical Anthropology 128: 35–36.

    Article  Google Scholar 

  • Janis, C.M., and M. Fortelius. 1988. On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biological Reviews 63: 197–230.

    Article  Google Scholar 

  • Kaidonis, J.A. 2008. Tooth wear: The view of the anthropologist. Clinical Oral Investigations 12(suppl. 1): 21–26.

    Article  Google Scholar 

  • Kaiser, T.M. 2000. Tooth mesowear analysis on Hippotherium primigenium from the Vallesian Dinotheriensande (Germany)—a blind test study. Carolinea 58: 103–114.

    Google Scholar 

  • Kay, R.F. 1977. The evolution of molar occlusion in the Cercopithecidae and early catarrhines. American Journal of Physical Anthropology 46: 327–352.

    Article  Google Scholar 

  • Kay, R.F., and K. Hiiemäe. 1974. Jaw movement and tooth use in recent and fossil primates. American Journal of Physical Anthropology 40(2): 227–256.

    Google Scholar 

  • Koenigswald, Wv. 1980. Schmelzstruktur und Morphologie in den Molaren der Arvicolidae (Rodentia). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 539: 1–129.

    Google Scholar 

  • Koenigswald, Wv., U. Anders, S. Engels, J.A. Schultz, and I. Ruf. 2010. Differentiation of mastication in fossil and extant Leporidae and Ochotonidae (Lagomorpha, Mammalia). Journal of Mammalian Evolution 17: 275–299.

    Article  Google Scholar 

  • Koenigswald, Wv., M. Sander, M. Leite, T. Mörs, and W. Santel. 1994. Functional symmetries in the schmelzmuster and morphology in rootless rodent molars. Zoological Journal of the Linnean Society 110: 141–179.

    Article  Google Scholar 

  • Krause, D.W. 1982. Jaw movement, dental function and diet in the Paleocene multituberculate Ptilodus. Paleobiology 8(3): 265–281.

    Google Scholar 

  • Kullmer, O., S. Benazzi, L. Fiorenza, D. Schulz, S. Bacso, and O. Winzen. 2009. Technical note: Occlusal fingerprint analysis (OFA): Quantification of tooth wear pattern. American Journal of Physical Anthropology 139: 600–605.

    Article  Google Scholar 

  • Kullmer, O., D. Schulz, and S. Benazzi. 2012. An experimental approach to evaluate the correspondence between wear facet position and occlusal movements. Anatomical Record 295: 84–852.

    Google Scholar 

  • Lazzari, V., C. Charles, P. Tafforeau, M. Vianey-Liaud, J.-P. Aguiler, J.J. Jaeger, J. Michaux, and L. Viriot. 2008. Mosaic convergence of rodent dentitions. PLoS One 3(10): 1–13.

    Article  Google Scholar 

  • Lazzari, V., J.A. Schultz, P. Tafforeau, and T. Martin. 2010. The occlusal pattern in paulchoffatiid multituberculates and the evolution of cusp morphology in mammaliamorphs with rodentlike dentitions. Journal of Mammalian Evolution 17(3): 177–192.

    Article  Google Scholar 

  • Lehmann, U. 1954. Über Kaubewegung und Abkauung bei bunodontem und tapiroidem Zahnbau. (Bemerkungen zum Zahnbau einiger pflanzenfressender Säugetiere). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen Series B 88: 385–400.

    Google Scholar 

  • Lumsden, A.G.S., and J.W. Osborn. 1977. The evolution of chewing: A dentist’s view of palaeontology. Journal of Dentistry 5(4): 269–287.

    Article  Google Scholar 

  • Maglio, V.J. 1972. Evolution of mastication in the Elephantidae. Evolution 26: 638–658.

    Article  Google Scholar 

  • Maglio, V.J. 1973. Origin and evolution of the Elephantidae. Transactions of the American Philosophical Society 69(3): 1–149.

    Article  Google Scholar 

  • Maier, W. 1977. Die Evolution der bilophodonten Molaren der Cercopitheciden—Eine funktionsmorphologische Untersuchung. Zeitschrift für Morphologie und Anthropologie 68: 26–56.

    Google Scholar 

  • Maier, W., and G. Schneck. 1981. Konstruktionsmorphologische Untersuchungen am Gebiß der hominoiden Primaten. Zeitschrift für Morphologie und Anthropologie 72: 127–169.

    Google Scholar 

  • Maier, W., and G. Schneck. 1982. Functional morphology of hominoid dentitions. Journal of Human Evolution 11: 693–696.

    Article  Google Scholar 

  • Martin, L.D. 1980. Functional morphology and evolution of cats. Transactions of the Nebraska Academy of Science 8: 141–154.

    Google Scholar 

  • McKenna, M.C., and S.K. Bell. 1997. Classification of Mammals Above the Species Level. New York: Columbia University Press.

  • Meng, J., C. Li, and Y. Hu. 2003. The osteology of Rhombomylus (Mammalia, Glires): implications for phylogeny and evolution of Glires. Bulletin of the American Museum of Natural History 275: 1–247.

    Article  Google Scholar 

  • Miles, A.E.W., and C. Grigson. 1990. Variations and Diseases of the Teeth of Animals, revised edition. Cambridge: Cambridge University Press.

  • Mills, J.R.E. 1963. Occlusion and malocclusion of the teeth of primates. In Dental Anthropology, ed. D.R. Brothwell. Oxford: Pergamon Press.

  • Mills, J.R.E. 1967. A comparison of lateral jaw movements in some mammals from wear facets on the teeth. Archives of Oral Biology 12(5): 645–661.

    Article  Google Scholar 

  • Nagao, M. 1992. The effects of aging on mastication. Nutrition Reviews 50(12): 434–437.

    Google Scholar 

  • Napels, V.L. 1982. Cranial osteology and function in the tree sloths, Bradypus and Choloepus. American Museum Novitates 2739: 1–41.

    Google Scholar 

  • Popowics, T.E., and S.W. Herring. 2006. Teeth, jaws and muscles in mammalian mastication. In Feeding in Domestic Vertebrates: From Structure to Behaviour, ed. V.L. Bels. Cambridge: CABI Publication.

  • Robinson, P.T. 1979. A literature review of dental pathology and aging by dental means in nondomestic animals. Part II. Journal of Zoo and Wildlife Medicine 10: 81–91.

    Google Scholar 

  • Rose, K.D., and W. von Koenigswald. 2007. The marmot-sized paramyid rodent Notoparamys costilloi from the early Eocene of Wyoming, with comments on dental variation and occlusion in paramyds. Bulletin of Carnegie Museum of Natural History 39: 111–125.

    Article  Google Scholar 

  • Roth, C. 1985. Kauzyklus und Usurfacetten von Microchoerus WOOD, 1984 (Omomyiformes, Primates). Mainzer Geowiss Mitt 14: 287–306.

    Google Scholar 

  • Sanson, G.D. 1980. The morphology and oclusion of the molariform cheek teeth in some Macropodinae (Marsupialia: Macropodidae). Australian Journal of Zoology 28: 341–365.

    Article  Google Scholar 

  • Schoch, R.M. 1986. Systematics, Functional Morphology and Macroevolution of the Extinct Mammalian Order Taeniodonta. New Haven: Peabody Museum of Natural History, Yale University.

  • Schultz, J.A. 2012. Funktionelle Morphologie und Abnutzungsmuster prätriboshenischer Molaren am Beispiel der Dryolestida (Mammalia, Cladotheria). Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn.

  • Stones, H.H. 1948. Oral and Dental Diseases. Edinburgh: Livingston.

  • Thenius, E. 1969. Phylogenie der Mammalia: Stammesgeschichte der Säugetiere (einschließlich der Hominiden). Berlin: Walter de Gruyter.

    Google Scholar 

  • Thenius, E. 1989. Zähne und Gebiß der Säugetiere. New York: Walter de Gruyter.

    Google Scholar 

  • Turnbull, W.D. 1970. Mammalian masticatory apparatus. Fieldiana Geology 18(2): 1–360.

    Google Scholar 

  • Ulhaas, L., O. Kullmer, F. Schrenk, S. E. Bailey, and J.-J. Hublin. 2007. Tooth wear and diversity in early hominid molars: a case study. In Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology, eds. S.E. Bailey, and J.-J. Hublin, 369–390. Vertebrate Paleobiology and Paleoanthropology. Dordrecht: Springer Netherlands.

  • Wall, C.E., C.J. Vinyard, K.R. Johnson, S.H. Williams, and W.L. Hylander. 2006. Phase II jaw movements and masseter muscle activity during chewing in Papio anubis. American Journal of Physical Anthropology 129: 215–224.

    Article  Google Scholar 

  • Weijs, W.A. 1994. Evolutionary approach of masticatory motor patterns in mammals. In Biomechanics of Feeding in Vertebrates, ed. V.L. Bels, M. Chardon, and P. Vandewalle, 281–320. Berlin: Springer.

Download references

Acknowledgments

This research was supported by the “Deutsche Forschungsgemeinschaft” (DFG, German Research Foundation), and is publication no. 40 of the DFG Research Unit 771 “Function and performance enhancement in the mammalian dentition—phylogenetic and ontogenetic impact on the masticatory apparatus”. We thank all of the curators who allowed us to investigate the collections of fossil and extant dentitions in their care. We are indebted to all members of the research unit FOR 771 for their enthusiastic and fruitful discussions. We appreciate the very helpful comments of the two reviewers Alister Evans and Peter Lucas, and thank them for their careful reviews. Many thanks to Peter Göddertz for providing μCT models, and to Georg Oleschinski for photos. We are also deeply grateful to Dick Byer for his help with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wighart von Koenigswald.

Appendix

Appendix

See Table 3.

Table 3 Movement of the left lower jaw during phases I and II of the power stroke, as documented by wear facets in various mammalian taxa (sequence according to McKenna and Bell 1997)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

von Koenigswald, W., Anders, U., Engels, S. et al. Jaw movement in fossil mammals: analysis, description and visualization. Paläontol Z 87, 141–159 (2013). https://doi.org/10.1007/s12542-012-0142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-012-0142-4

Keywords

  • Mastication
  • Dentition
  • Facets
  • Mammalia

Schlüsselwörter

  • Kauen
  • Bezahnung
  • Facetten
  • Mammalia