Skip to main content

Advertisement

Log in

Anchitherium aurelianense (Equidae, Mammalia): a brachydont “dirty browser” in the community of herbivorous large mammals from Sandelzhausen (Miocene, Germany)

  • Research Paper
  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Abstract

The Anchitheriinae are an extinct subfamily of Equidae that first appeared in North America near the base of the Miocene. Anchitheriinae are found in subtropical to warm temperate habitats and were long considered to be adapted to eating browse. In Europe the genus Anchitherium first occurred in the MN3 mammal zone and became extinct in MN9. The assemblage from Sandelzhausen (Early/Middle Miocene, boundary MN5) is one of the best dental samples known of Old World Anchitherium. The mesowear method was applied to reconstruct the dietary regime of A. aurelianense from Sandelzhausen. Hierarchical cluster statistics and principal component analysis was performed on mesowear variables. Thirty-five upper cheek teeth of A. aurelianense were analysed, and mesowear signatures compared with those of five ruminant species from Sandelzhausen. The extant analogue species indicate that A. aurelianense at Sandelzhausen had a diet similar in abrasiveness to that of extant mixed feeders and that the Sandelzhausen ruminants all occupied a browsing niche with little or no abrasives in their diet. Knowing now that brachydont anchitheres were able to cope with rather abrasive diets, it is assumed that hypsodont North American equids of the Cormohipparion clade, arriving in Europe successively with the extinction of anchitheres shortly after the “hipparion datum” in the MN9, introduced a new component of competition in their dietary niche. The extinction of the Anchitheriidae can now be better understood as response to this competition.

Kurzfassung

Die Anchitheriinae sind eine ausgestorbene Unterfamilie der Equidae, die erstmals in Nordamerika an der Basis des Miozäns erscheinen. Anchitheriinae treten in subtropischen bis warm gemäßigten Lebensräumen auf und wurden lange Zeit als gut angepasste Konzentratfresser (browser) angesehen. In Europa trat die Gattung Anchitherium erstmals im MN3 auf und starb im MN9 wieder aus. Das Material von Sandelzhausen (Grenzbereich Unter-/Mittelmiozän, MN5) umfasst eine der besten Stichproben des altweltlichen Anchitherium. Die Mesowear-Methode wurde angewandt, um das Nahrungsregime von A. aurelianense von Sandelzhausen zu untersuchen. Auf Basis der Mesowearvariablen wurden hierarchische Cluster-Statistik und PCA durchgeführt. Fünfunddreißig obere Backenzähne von A. aurelianense wurden analysiert und die Mesowearsignaturen mit jenen der fünf Ruminantierarten von Sandelzhausen verglichen. Die Ernährungsstrategien der rezenten Vergleichsarten zeigen an, dass A. aurelianense von Sandelzhausen eine ähnlich abrasive Diät hatte wie rezente Mischkostfresser, und dass alle Ruminantier von Sandelzhausen die Nische von Konzentratfressern innehatten. Nachdem nun bekannt ist, dass niederkronige Anchitherien in der Lage waren mit verhältnismäßig abrasiver Pflanzennahrung zurechtkommen, wird postuliert, dass hypsodonte nordamerikanische Equiden aus der Cormohipparion-Gruppe, die Europa kurz nach dem “Hipparion-Datum” im MN9 erreichten, in der Folge als neue Konkurrenten in der Ernährungsnische der Anchitherien auftraten. Das Aussterben der Anchitheriidae kann daher als Antwort auf diese Konkurrenz verstanden werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abusch-Siewert, S. 1983. Gebissmorphologische untersuchungen an eurasiatischen anchitherien (equidae, mammalia) unter besonderer Berücksichtigung der Fundstelle Sandelzhausen. Courier Forschungsinstitut Senckenberg 62:1–36.

    Google Scholar 

  • Bernor, R.L., and M. Armour Chelu. 1999. The family equidae. In The Miocene Land mammals of Europe, eds. Rössner, G.E., and Heissig, K, 193–202. München: Pfeil.

  • Bernor, R.L., and T.M. Kaiser. 2006. Systematics and Paleoecology of the Earliest Pliocene Equid, Eurygnathohippus hooijeri n. sp. from Langebaanweg, South Africa. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 103:149–186.

    Google Scholar 

  • Bernor, R.L., J. Kovar-Eder, D. Lipscomb, F. Rögl, S. Sen, and H. Tobien. 1988. Systematic, stratigraphic and paleoenvironmental contexts of first-appearing Hipparion in the Vienna Basin, Austria. Journal of Vertebrate Paleontology 8(4):427–452.

    Google Scholar 

  • Bernor, R.L., V. Fahlbusch, and H.-W. Mittmann. 1996a. The Evolution of western Eurasian Neogene mammal fauna, 487. New York: Columbia University Press.

  • Bernor, R.L., S.V. Koufos, M.O. Woodbune, and M. Fortelius. 1996b. The Evolutionary History and Biochronology of European and Southwest Asian Late Miocene and Pliocene Hipparionine horses. In The Evolution of Western Eurasian Neogene Mammal Faunas, ed. R.L. Bernor, V. Fahlbusch, and H.W. Mittmann, 307–338. New York: Columbia University Press.

    Google Scholar 

  • Bernor, R.L., R.S. Scott, M. Fortelius, J. Kappelman, and S. Sen. 2003. Systematics and Evolution of the Late Miocene Hipparions from Sinap, Turkey. In The Geology and Paleontology of the Miocene Sinap Formation, Turkey, ed. M. Fortelius, J. Kappelman, S. Sen, and R.L. Bernor, 220–281. New York: Columbia University Press.

    Google Scholar 

  • Bernor, R.L., T.M. Kaiser, and S.V. Nelson. 2004. The Oldest Ethiopian Hipparion (Equinae, Perissodactyla) from Chorora: Systematics, Paleodiet and Paleoclimate. Courier Forschungsinstitut Senckenberg 246:213–226.

    Google Scholar 

  • Böhme, M. 2003. The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 195:389–401.

    Article  Google Scholar 

  • Böhme, M., and B. Reichenbacher. 2003. Teleost Fishes from the Karpatian (Lower Miocene) of the Western Paratethys. In The Karpatian—an Early Miocene Stage of the Central Paratethys, ed. R. Brzobohaty, I. Cicha, M. Kovac, and F. Rögl, 23–45. Brno: Masaryk University.

    Google Scholar 

  • Cerling, T.E., J.R. Ehleringer, and J.M. Harris. 1998. Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. Philosophical Transactions of the Royal Society London 353:159–171.

    Article  Google Scholar 

  • Cerling, T.E., J.M. Harris, S.H. Ambrose, M.G. Leakey, and N. Solounias. 1997a. Dietary and environmental reconstruction with stable isotope analyses of herbivore tooth enamel from the Miocene locality of Fort Ternan. Kenya. Journal of Human Evolution 33(6):635–650.

    Article  Google Scholar 

  • Cerling, T.E., J.M. Harris, B.J. McFadden, M.G. Leakey, J. Quade, V. Eisenmann, and J.R. Ehleringer. 1997b. Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158.

    Article  Google Scholar 

  • Eronen, J.T., and G.E. Rössner. 2007. Wetland paradise lost: miocene community dynamics in large herbivore mammals from the German Molasse Basin. Evolutionary Ecology Research 9:471–494.

    Google Scholar 

  • Fahlbusch, V., H. Gall, and N. Schmidt-Kittler. 1972. Die obermiozäne Fossil-Lagerstätte Sandelzhausen. 2. Sediment und Fossilinhalt–Probleme der Genese und Ökologie. Neues Jahrbuch für Geologie und Paläontologie. Monatshefte 1972:331–343.

    Google Scholar 

  • Forstén, A.M. 1991. Size trends in holarctic Anchitherines (Mammalia, Equidae). Journal of Paleaontology 65:147–159.

    Google Scholar 

  • Fortelius, M., and N. Solounias. 2000. Functional characterization of ungulate molars using the Abrasion-Attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates 3301:1–36.

    Article  Google Scholar 

  • Fortelius, M., P. Andrews, R.L. Bernor, S. Viranta, and L. Werdelin. 1996a. Preliminary analysis of taxonomic diversity, turnover and provinciality in a subsample of large land mammals from the later Miocene of western Eurasia. Acta Zoologica Cracoviensia 39:167–178.

    Google Scholar 

  • Fortelius, M., L. Werdelin, P. Andrews, R.L. Bernor, A. Gentry, L. Humphrey, H.W. Mittmann, and S. Viranta. 1996b. Provinciality, diversity, turnover, and paleoecology in Land Mammal Faunas of the Later Miocene of Western Eurasia. In The Evolution of Western Eurasian Neogene Mammal Faunas, ed. R.L. Bernor, V. Fahlbusch, and H.W. Mittmann, 414–448. New York: Columbia University Press.

    Google Scholar 

  • Fortelius, M., J. Eronen, J. Jernvall, L. Liu, D. Pushkina, J. Rinne, A. Tesakov, I. Vislobokova, Z. Zhang, and L. Zhou. 2002. Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research 4:1005–1016.

    Google Scholar 

  • Franz-Odendaal, T.A., and T.M. Kaiser. 2003. Differential mesowear in the maxillary and mandibular cheek dentition of some ruminants (Artiodactyla). Annales Zoologici Fennici 40:395–410.

    Google Scholar 

  • Franz-Odendaal, T.A., T.M. Kaiser, and R.L. Bernor. 2003. Systematics and dietary evaluation of a fossil equid from South Africa. South African Journal of Science 99:453–459.

    Google Scholar 

  • Gagnon, M., and A.E. Chew. 2000. Dietary preferences in extant African Bovidae. Journal of Mammology 81(2):490–511.

    Article  Google Scholar 

  • Göhlich, U.B. 2002. The Avifauna of the Miocene Fossil-Lagerstätte Sandelzhausen (Bavaria, Southern Germany). Zitteliana 22:169–190.

    Google Scholar 

  • Gregor, H.-J. 1982. Die jungtertiären Floren Süddeutschlands, 278. Stuttgart: Enke.

  • Gregor, H.-J., M. Hottenrott, E. Knobloch, and E. Planderova. 1989. Neue mega- und mikrofloristische Untersuchungen in der jungtertiären Molasse Bayerns. Geologica Bavarica 94:281–369.

    Google Scholar 

  • Gruvaeus, G., and H. Weiner. 1972. Two additions to hierarchical cluster analysis. The British Journal of Mathematical and Statistical Psychology 25:200–206.

    Google Scholar 

  • Hansen, R.M., and R.C. Clarke. 1977. Foods of elk and other ungulates at low elevation in Northwestern Colorado. Journal of Wildlife Management 41:76–80.

    Article  Google Scholar 

  • Hansen, R.M., M.M. Mugambi, and S.M. Banni. 1985. Diet and trophic ranking of ungulates in the Northern Serengeti. Journal of Wildlife Management 49:823–829.

    Article  Google Scholar 

  • Harper, J.A., J.H. Ha, W.W. Bentley, and C.F. Yocum. 1967. The status nd ecology of the Roosevelt elk in Canada. Wildlife Monographs 16:1–49.

    Google Scholar 

  • Hartigan, J.A. 1975. Clustering algorithms, 365. New York: Wiley

  • Hayek, L.A.C., R.L. Bernor, N. Solounias, P. Steigerwald. 1991. Preliminary studies of hipparionine horse diet as measured by tooth microwear. In Bjorn Kurten. A Memorial Volume. Annales Zoologici Fennici, eds. Forsten, A., Fortelius, M., and Werdelin, L., 28(3–4). 187–200.

  • Hofmann, R.R. 1989. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443–457.

    Article  Google Scholar 

  • Hoppe, P.P., S.A. Quortrup, and M.H. Woodford. 1977. Rumen fermentation and food selection in East African sheep, goats, Thomson’s gazelle, Grant’s gazelle, and impala. Journal of Agricultural Science 89:129–135.

    Article  Google Scholar 

  • Janis, C.M. 1984. The use of fossil ungulate communities as indicators of climate and environment. In Fossils and climate, ed. Brenchley, P., 85–104. London: Wiley.

    Google Scholar 

  • Janis, C.M., and D. Ehrhard. 1988. Correlation of relative muzzle width and relative incisor width with dietary preference in ungulates. Zoological Journal of the Linnean Society 92:267–284.

    Article  Google Scholar 

  • Jechorek, H., and J, Kovar-Eder. 2004. Vegetational characteristics in Europe around the Late Early to Early Middle Miocene based on the plant macro record. In The middle miocene environments and ecosystem dynamics of the Eurasian Neogene (EEDEN). Courier Forschungsinstitut Senckenberg, eds. Steininger, F.F., Kovar-Eder, J., and Fortelius, M., 249. 53–62.

  • Jernvall, J., and M. Fortelius. 2002. Common mammals drive the evolutionary increase of hypsodonty in the Neogene. Nature 417:538–540.

    Article  Google Scholar 

  • Jernvall, J., J.P. Hunter, and M. Fortelius. 1996. Molar tooth diversity, disparity and ecology in Cenozoic ungulate radiations. Science 274:1489–1492.

    Article  Google Scholar 

  • Kaiser, T.M. 2003. The dietary regimes of two contemporaneous populations of Hippotherium primigenium (Perissodactyla, Equidae) from the Vallesian (upper Miocene) of Southern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 198:381–402.

    Article  Google Scholar 

  • Kaiser, T.M., and M. Fortelius. 2003. Differential mesowear in occluding upper and lower molars—opening mesowear analysis for lower molars and premolars in hypsodont equids. Journal of Morphology 258(1):67–83.

    Article  Google Scholar 

  • Kaiser, T.M., and T. Franz-Odendaal. 2004. A mixed feeding Equus species from the Middle Pleistocene of South Africa. Quaternary Science Reviews 62:316–323.

    Google Scholar 

  • Kaiser, T.M., and G.E. Rössner. 2007. Dietary resource partitioning in ruminant communities of Miocene wetland and karst palaeoenvironments in Southern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 252:424–439.

    Article  Google Scholar 

  • Kaiser, T.M., and N. Solounias. 2003. Extending the tooth mesowear method to extinct and extant equids. Geodiversitas 25(2):321–345.

    Google Scholar 

  • Kaiser, T.M., N. Solounias, M. Fortelius, R.L. Bernor, and F. Schrenk. 2000. Tooth mesowear analysis on Hippotherium primigenium from the Vallesian Dinotheriensande (Germany)—a blind test study. Carolinea 58:103–114.

    Google Scholar 

  • Kingdon, J. 1979. East African mammals: an atlas of evolution in Africa, volume III, parts C and D (Bovids), 746. London: Academic Press.

  • Lamprey, H.F. 1963. Ecological separation of the large mammal species in the Taramgire Game Reserve, Tanganyika. East African Wildlife Journal 1:63–92.

    Google Scholar 

  • MacFadden, B.J. 1992. Fossil horses. Systematics, paleobiology, and evolution of the family Equidae, 368. Cambridge: Cambridge University Press

  • MacFadden, B.J. 1997. Origin and evolution of the grazing guild in New World terrestrial mammals. Trends in Ecology and Evolution 12:182–187.

    Article  Google Scholar 

  • MacFadden, B.J. 2000. Origin and evolution of the grazing guild in New World terrestrial mammals. In Evolution of herbivory in terrestrial vertebrates: perspectives from the fossil record, eds. Sues, H.-D., 223–244. New York: Cambridge University Press

  • MacFaddden, B.J., and T.E. Cerling. 1996. Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 Myr sequence from the Neogene of Florida. Journal of Vertebrate Palaeontology 16(1):103–115.

    Google Scholar 

  • MacFadden, B.J., N. Solounias, and T.E. Cerling. 1999. Ancient diets, ecology, and extinctions of 5-million-year-old horses from Florida. Science 283:824–827.

    Article  Google Scholar 

  • MacLeod, S.B., G.I.H. Kerley, and A. Gaylard. 1996. Habitat and diet of bushbuck Tragelaphus scriptus in the Woody Cape Nature Reserve: observations from faecal analysis. South African Journal of Wildlife Research 26(1):19–25.

    Google Scholar 

  • Mein, P. 1989. Updating of MN Zones. In: Lindsay, E.H.; Fahlbusch, V. & Mein, P., eds. European Neogene Mammal Chronology, NATO ASI Series (A). New York: Plenum Press 180:73–90.

  • Meissner, H.H., E. Pieterse, and J.H.J. Potgieter. 1996. Seasonal food selection and intake by male impala Aepyceros melampus in two habitats. South African Journal of Wildlife Research 26(2):3–56.

    Google Scholar 

  • Osborn, H.F. 1910. The age of mammals in Europe. Macmillan: Asia and North America.

    Google Scholar 

  • Quade, J., N. Solounias, and T.E. Cerling. 1994. Stable isotopic evidence from paleosol carbonates and fossil teeth in Greece for forest or woodlands over the past 11 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology 108:41–53.

    Article  Google Scholar 

  • Reichenbacher, B., and J. Prieto. 2006. Lacustrine fish faunas (Teleostei) from the Karpatian of the northern Alpine Molasse Basin, with a description of two new species of Prolebias Sauvage. Palaeontographica A 278(1–6):5–87.

    Google Scholar 

  • Reichenbacher, B.; Böhme, M.; Heissig, K.; Prieto, J., and Kossler, A. 2004. New approaches to assess biostratigraphy, palaeoecology and past climate in the North Alpine Foreland Basin during the late Early Miocene (Ottnangian, Karpatian). In The Middle Miocene Environments and Ecosystem Dynamics of the Eurasian Neogene (EEDEN), Courier Forschungsinstitut Senckenberg, eds. Steininger, F.F.; Kovar-Eder, J., and Fortelius, M., 249, 71–89.

  • Riederle, R., and H.-J. Gregor. 1997. Die Tongrube Kirrberg bei Balzhausen–eine neue Fundstelle aus der Oberen Süßwassermolasse Bayerisch-Schwabens–Flora, Fauna, Stratigraphie. Documenta Naturae 110:1–3.

    Google Scholar 

  • Rögl, F., and G. Daxner-Höck. 1996. Late Miocene paratethis correlations. In The Evolution of Western Eurasian Neogene Mammal Faunas, ed. R.L. Bernor, V. Fahlbusch, and H.W. Mittmann, 47–55. New York: Columbia University Press.

    Google Scholar 

  • Rössner, G.E. 2002. Miozäne Ruminantia Süddeutschlands. Taxonomie und Ökologie, 160. Unpublished Habilitationsschrift. Germany: Ludwig-Maximilians-Universität München.

  • Rössner, G.E. 2004. Community structure and regional patterns in late Early to Middle Miocene Ruminantia of Central Europe. In The Middle Miocene environments and ecosystem dynamics of the Eurasian Neogene (EEDEN), Courier Forschungsinstitut Senckenberg, eds. Steininger, F.F., Kovar-Eder, J., and Fortelius, M., 249, 91–100.

  • Rössner, G.E. 2006. A community of Middle Miocene Ruminantia (Mammalian, Artiodactyla) from the German Molasse Basin. Palaeontographica A 278(1–6):101–110.

    Google Scholar 

  • Rössner, G.E. 2009 this volume. Systematics and palaeoecology of the Ruminantia (Artiodactyla, Mammalia) community from Sandelzhausen (Early/Middle Miocene) in the German Molasse Basin. In Fossil lagerstätte Sandelzhausen (Miocene, southern Germany): Contributions to the fauna. Paläontologische Zeitschrift, eds. Rössner, G.E., and Göhlich, U.B, 83 (1), 000–000.

  • Sach, V. 1999. Litho- und biostratigraphische Untersuchungen in der Oberen Süßwassermolasse des Landkreises Biberach a. d. Riß (Oberschwaben). Stuttgarter Beiträge zur Naturkunde B 276:1–167.

    Google Scholar 

  • Sach, V., J. Gaudant, B. Reichenbacher, and M. Böhme. 2003. Die Fischfaunen der Fundstellen Edelbeuren-Maurerkopf und Wannenwaldtobel 2 (Miozän, Obere Süßwassermolasse, Süddeutschland). Stuttgarter Beiträge zur Naturkunde B 334:1–25.

    Google Scholar 

  • Schaller, G.B. 1977. Mountain Monarchs, 425. Chicago: The University of Chicago Press

  • Schmid, W., and H.-J. Gregor. 1983. Gallenbach–eine neue mittelmiozäne Fossilfundstelle in der westlichen Oberen Süßwassermolasse Bayerns. Berichte des Naturwissenschaftlichen Vereins für Schwaben 8(3/4):51–63.

    Google Scholar 

  • Schulz, E., and Fahlke, L.M. 2009 this volume. The diet of Metaschizotherium bavaricum (Chalicotheriidae, Mammalia) from the MN5 of Sandelzhausen (Germany) implied by the mesowear method. In Fossil lagerstätte Sandelzhausen (Miocene, southern Germany): contributions to the fauna. Paläontologische Zeitschrift, eds. Rössner, G.E., and Göhlich, U.B., 83 (1). 000–000.

  • Schwarz, J., and B. Reichenbacher. 1989. Die Charophytenflora der Kirchberger Schichten (Unter-Miozän). Geologica Bavarica 94:179–193.

    Google Scholar 

  • Schweigert, G. 1992. Die untermiozäne Flora (Karpatium, MN5) des Süßwasserkalkes von Engelswies bei Meßkirch (Baden-Württemberg). Stuttgarter Beiträge zur Naturkunde, Serie B 188:1–55.

    Google Scholar 

  • Scott, R.S.; Bernor, R.L., and Raba, W. 2003. Hipparionine horses of the Greater Pannonian Basin: morphometric evidence from the postcranial skeleton. In Multidisciplinary Research at Rudabánya. Paleontographica Italiana, eds. Bernor, R.L., Kordos, L., and Rook, L., 90, 195–210.

  • Simbotwe, M.P., and P.W. Sichone. 1989. Aspects of behavior of bushbuck in Kafue National Park, Zambia. South African Journal of Wildlife Research 19(1):38–41.

    Google Scholar 

  • Simpson, C.D. 1974. Food studies on the Chobe Bushbuck, Tragelaphus scriptus arnatus Pocock 1900. Arnoldia 6(32):1–9.

    Google Scholar 

  • Spitzelberger, G. 1989. Die Miozänfundstelle Goldern bei Landshut (Niederbayern). Geologica Bavarica 94:371–407.

    Google Scholar 

  • Sponheimer, M., J.A. Lee-Thorp, J.D.J. DeRuither, J.M. Smith, N.J. Van Der Merwe, K. Reed, C.C. Grant, L.K. Ayliffe, T.F. Robinson, C. Heidelberger, and W. Marcus. 2003. Diets of Southern African bovidae: Stable isotope evidence. Journal of Mammalogy 84(2):471–479.

    Article  Google Scholar 

  • Strömberg, C. 2006. Evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology 32(2):236–258.

    Article  Google Scholar 

  • Tütken, T., and Vennemann, T. 2009 this volume. Stable isotope ecology of Miocene large mammals from Sandelzhausen, southern Germany. In Fossil lagerstätte Sandelzhausen (Miocene, southern Germany): contributions to the fauna. Paläontologische Zeitschrift, eds. Rössner, G.E., and Göhlich, U.B., 83 (1), 000–000.

  • Van Rooyen, A.F. 1992. Diets of impala and nyala in two game reserves in Natal, South Africa. S-Afr Tydskr Natuurnav 22(4):98–101.

    Google Scholar 

  • Van Wieren SE. 1996. Digestive strategies in ruminants and nonruminants, 191. Den Haag: Landbouwuniversiteit Wageningen

  • Van Zyl, J.H.M. 1965. The vegetation of the South African Lombard Reserve and its utilization by certain antelope. Zoologica Africana 1:55–71.

    Google Scholar 

  • Watson, L.H., and N. Owen-Smith. 2000. Diet composition and habitat selection of eland in semi-arid shrubland. African Journal of Ecology 38(2):130–137.

    Article  Google Scholar 

  • Williams, S.H., and R.F. Kay. 2001. A comparative test of adaptive explanations for Hypsodonty in Ungulates and Rodents. Journal of Mammalian Evolution 8(3):207–229.

    Article  Google Scholar 

  • Woodburne, M.O., R.L. Bernor, and C.C. Swisher III. 1996. An appraisal of the stratigraphic and phylogenetic bases for the “Hipparion Datum” in the old world. In The Evolution of Western Eurasian Neogene Mammal Faunas, eds. R.L. Bernor, V. Fahlbusch, and H.W. Mittmann, 124–136. New York: Columbia University Press.

    Google Scholar 

Download references

Acknowledgments

The Bayerische Staatssammlung für Paläontologie und Geologie in Munich, particular Kurt Heißig, is thanked for access to the specimens investigated. Gertrud Rössner (Munich) is gratefully acknowledged for inviting the author to attend the Sandelzhausen Symposium held in Mainburg in September 2005 and for helpful edits of an earlier version of this manuscript. Raymond L. Bernor and Florent Rivals reviewed the manuscript and provided comments and suggestions that greatly improved this contribution. The Deutsche Forschungsgemeinschaft is acknowledged for providing funds to attend the symposium (DFG GZ-4850/88/05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Kaiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, T.M. Anchitherium aurelianense (Equidae, Mammalia): a brachydont “dirty browser” in the community of herbivorous large mammals from Sandelzhausen (Miocene, Germany). Paläontol Z 83, 131–140 (2009). https://doi.org/10.1007/s12542-009-0002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-009-0002-z

Keywords

Schlüsselwörter

Navigation