Skip to main content

Advertisement

Log in

Advancements in Biodegradable Printed Circuit Boards: Review of Material Properties, Fabrication Methods, Applications and Challenges

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

As electronic waste poses environmental challenges, exploring eco-friendly alternatives becomes imperative. In this review, the introduction reveals the disposal problem of existing printed circuit boards (PCBs) and the potential impacts of implementing biodegradable PCBs towards the United Nations Sustainable Development Goals. Various biodegradable materials, including polylactic acid, cellulose/cellulose acetate, silk proteins, gelatin, polyvinyl alcohol, mycelium, and wood, were evaluated for their properties and suitability in PCB manufacturing. Each material is scrutinised for its suitability in creating environmentally friendly circuit boards. The study meticulously analyses these biodegradable PCBs' electrical, mechanical, thermal and decomposition properties, providing insights into their performance under various conditions. The article also explores different fabrication methods and their advantages and limitations for manufacturing biodegradable PCBs. Solvent and non-solvent based decomposition of the biodegradable PCBs were revealed. The research outcome on a balance between hygroscopic property and degradability of biodegradable PCBs is revealed. The narrative extends to encompass the challenges and issues associated with the Design-for-Manufacturing processes and life cycle assessment of biodegradable PCBs, shedding light on potential hurdles and areas for improvement. The article concludes with a forward-looking perspective on the future of biodegradable printed circuit boards, environmentally friendly fire-retardants, a proposal for alternative standards for biodegradable PCBs, and their increasing role in sustainable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdo, S. M., & Ali, G. H. (2019). Analysis of polyhydroxybutrate and bioplastic production from microalgae. Bulletin of the National Research Centre, 43(1), 97. https://doi.org/10.1186/s42269-019-0135-5

    Article  Google Scholar 

  2. Adamatzky, A., Ayres, P., Beasley, A. E., Chiolerio, A., Dehshibi, M. M., Gandia, A., Albergati, E., Mayne, R., Nikolaidou, A., Roberts, N., Tegelaar, M., Tsompanas, M.-A., Phillips, N., & Wösten, H. A. B. (2022). Fungal electronics. Bio Systems, 212, 104588. https://doi.org/10.1016/j.biosystems.2021.104588

    Article  Google Scholar 

  3. Adnan, S. M., Lee, K. M., Ghasr, M. T., O’Keefe, M. J., Day, D. E., & Kim, C. S. (2016). Water-soluble glass substrate as a platform for biodegradable solid-state devices. IEEE Journal of the Electron Devices Society, 4, 490–494. https://doi.org/10.1109/JEDS.2016.2606340

    Article  Google Scholar 

  4. Andooz, A., Eqbalpour, M., Kowsari, E., Ramakrishna, S., & Cheshmeh, Z. A. (2022). A comprehensive review on pyrolysis of E-waste and its sustainability. Journal of Cleaner Production, 333, 130191. https://doi.org/10.1016/j.jclepro.2021.130191

    Article  Google Scholar 

  5. Appels, F. V. W., van den Brandhof, J. G., Dijksterhuis, J., de Kort, G. W., & Wösten, H. A. B. (2020). Fungal mycelium classified in different material families based on glycerol treatment. Communications Biology, 3(1), 334. https://doi.org/10.1038/s42003-020-1064-4

    Article  Google Scholar 

  6. Argumedo-Delira, R., Díaz-Martínez, M. E., & Gómez-Martínez, M. J. (2020). Microorganisms and plants in the recovery of metals from the printed circuit boards of computers and cell phones: A mini review. Metals, 10(9), 1120. https://doi.org/10.3390/met10091120

    Article  Google Scholar 

  7. Baumgartner, M., Hartmann, F., Drack, M., Preninger, D., Wirthl, D., Gerstmayr, R., Lehner, L., Mao, G., Pruckner, R., Demchyshyn, S., & Reiter, L. (2020). Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nature Materials, 19(10), 1102–1109. https://doi.org/10.1038/s41563-020-0699-3

    Article  Google Scholar 

  8. Bel, G. (2019). A new circular vision for electronics time for a global reboot—United Nation Report. Retrieved 31 March 2024, from https://www.weforum.org/publications/a-new-circular-vision-for-electronics-time-for-a-global-reboot/

  9. Ben Halima, N. (2016). Poly(vinyl alcohol): Review of its promising applications and insights into biodegradation. RSC Advances, 6(46), 39823–39832. https://doi.org/10.1039/C6RA05742J

    Article  Google Scholar 

  10. Beniwal, A., Ganguly, P., Aliyana, A. K., Khandelwal, G., & Dahiya, R. (2023). Screen-printed graphene-carbon ink based disposable humidity sensor with wireless communication. Sensors and Actuators B: Chemical, 374, 132731. https://doi.org/10.1016/j.snb.2022.132731

    Article  Google Scholar 

  11. Bharath, K. N., Madhu, P., Gowda, T. G. Y., Verma, A., Sanjay, M. R., & Siengchin, S. (2020). A novel approach for development of printed circuit board from biofiber based composites. Polymer Composites, 41, 4550–4558. https://doi.org/10.1002/pc.25732

    Article  Google Scholar 

  12. Bharath, K. N., Puttegowda, M., Yashas Gowda, T. G., Arpitha, G. R., Pradeep, S., Rangappa, S. M., & Siengchin, S. (2023). Development of banana fabric incorporated polymer composites for printed circuit board application. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04249-y

    Article  Google Scholar 

  13. Börcsök, Z., & Pásztory, Z. (2021). The role of lignin in wood working processes using elevated temperatures: An abbreviated literature survey. European Journal of Wood and Wood Products, 79(3), 511–526. https://doi.org/10.1007/s00107-020-01637-3

    Article  Google Scholar 

  14. Boussatour, G., Cresson, P.-Y., Genestie, B., Joly, N., & Lasri, T. (2018). Dielectric characterization of polylactic acid substrate in the frequency band 0.5–67 GHz. IEEE Microwave and Wireless Components Letters, 28(5), 374–376. https://doi.org/10.1109/LMWC.2018.2812642

    Article  Google Scholar 

  15. Byrne, F. P., Jin, S., Paggiola, G., Petchey, T. H. M., Clark, J. H., Farmer, T. J., Hunt, A. J., Robert McElroy, C., & Sherwood, J. (2016). Tools and techniques for solvent selection: Green solvent selection guides. Sustainable Chemical Processes, 4(1), 7. https://doi.org/10.1186/s40508-016-0051-z

    Article  Google Scholar 

  16. Campo, E. A. (2008). 4 - Electrical properties of polymeric materials. In E. A. Campo (Ed.), Selection of polymeric materials (pp. 141–173). William Andrew Publishing. https://doi.org/10.1016/B978-081551551-7.50006-1

  17. Cebe, P., Partlow, B. P., Kaplan, D. L., Wurm, A., Zhuravlev, E., & Schick, C. (2017). Silk I and Silk II studied by fast scanning calorimetry. Acta Biomaterialia, 55, 323–332. https://doi.org/10.1016/j.actbio.2017.04.001

    Article  Google Scholar 

  18. Chandrasekaran, S., Cruz-Izquierdo, A., Castaing, R., Kandola, B., & Scott, J. L. (2023). Facile preparation of flame-retardant cellulose composite with biodegradable and water resistant properties for electronic device applications. Scientific Reports, 13(1), 3168. https://doi.org/10.1038/s41598-023-30078-0

    Article  Google Scholar 

  19. Chen, H., Xia, W., Wang, N., Liu, Y., Fan, P., Wang, S., Li, S., Liu, J., Tang, T., Zhang, A., Ding, Z., Wu, W., & Chen, Q. (2022). Flame retardancy of biodegradable polylactic acid with piperazine pyrophosphate and melamine cyanurate as flame retardant. Journal of Fire Sciences, 40(4), 254–273. https://doi.org/10.1177/07349041221093546

    Article  Google Scholar 

  20. Costa, C. M., Reizabal, A., i Serra, R. S., Balado, A. A., Pérez-Álvarez, L., Ribelles, J. G., Vilas-Vilela, J. L., & Lanceros-Méndez, S. (2021). Broadband dielectric response of silk Fibroin/BaTiO3 composites: Influence of nanoparticle size and concentration. Composites Science and Technology, 213, 108927. https://doi.org/10.1016/j.compscitech.2021.108927

    Article  Google Scholar 

  21. Danninger, D., Pruckner, R., Holzinger, L., Koeppe, R., & Kaltenbrunner, M. (2022). MycelioTronics: Fungal mycelium skin for sustainable electronics. Science Advances, 8(45), eaad7118. https://doi.org/10.1126/sciadv.add7118

    Article  Google Scholar 

  22. Dashora, H., Kumar, J., & Mamatha, D. (2020, 10 December 2020). Effect of dielectric substrate and substrate selection at microwave frequencies. In IEEE International Conference on Technology, Engineering, Management for Societal Impact Using Marketing, Entrepreneurship and Talent (TEMSMET 2020), Bengaluru, India. https://doi.org/10.1109/TEMSMET51618.2020.9557454

  23. Dichtl, C., Sippel, P., & Krohns, S. (2017). Dielectric properties of 3D printed polylactic acid. Advances in Materials Science and Engineering, 2017, 6913835. https://doi.org/10.1155/2017/6913835

    Article  Google Scholar 

  24. El-Meligy, M. G., Mohamed, S. H., & Mahani, R. M. (2010). Study mechanical, swelling and dielectric properties of prehydrolysed banana fiber: Waste polyurethane foam composites. Carbohydrate Polymers, 80(2), 366–372. https://doi.org/10.1016/j.carbpol.2009.11.034

    Article  Google Scholar 

  25. Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M., & Garnier, C. (2023). A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 19, 101271. https://doi.org/10.1016/j.rineng.2023.101271

    Article  Google Scholar 

  26. European Union, E. (2015). RoHS Restricted Substances (6 + 4). Retrieved 1 April 2024, from https://www.rohsguide.com/rohs-substances.htm

  27. Fakirov, S., Cagiao, M. E., Baltá Calleja, F. J., Sapundjieva, D., & Vassileva, E. (1999). Melting of gelatin crystals below glass transition temperature: A direct crystal-glass transition as revealed by microhardness. International Journal of Polymeric Materials and Polymeric Biomaterials, 43(3–4), 195–206. https://doi.org/10.1080/00914039908009685

    Article  Google Scholar 

  28. Fang, Z., Zhang, H., Qiu, S., Kuang, Y., Zhou, J., Lan, Y., Sun, C., Li, G., Gong, S., & Ma, Z. (2021). Versatile wood cellulose for biodegradable electronics. Advanced Materials Technologies, 6(2), 2000928. https://doi.org/10.1002/admt.202000928

    Article  Google Scholar 

  29. Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications: A comprehensive review. Advanced Drug Delivery Reviews, 107, 367–392. https://doi.org/10.1016/j.addr.2016.06.012

    Article  Google Scholar 

  30. Farkas, C., Gál, L., Csiszár, A., Grennerat, V., Jeannin, P.-O., Xavier, P., Rigler, D., Krammer, O., Plachy, Z., Dusek, K., Kovács, R., Fehér, A. É., & Géczy, A. (2024). Sustainable printed circuit board substrates based on flame-retarded PLA/flax composites to reduce environmental load of electronics: Quality, reliability, degradation and application tests. Sustainable Materials and Technologies, 40, e00902. https://doi.org/10.1016/j.susmat.2024.e00902

    Article  Google Scholar 

  31. Farkas, C., Krammer, O., Csiszár, A., IHajdu, s., Gál, L., & Géczy, A. (2023). Decomposition study of sustainable biodegradable Printed Circuit Boards. In 2023 46th International Spring Seminar on Electronics Technology (ISSE), Timisoara, Romania.https://doi.org/10.1109/ISSE57496.2023.10168393

  32. Feig, V. R., Tran, H., & Bao, Z. (2018). Biodegradable polymeric materials in degradable electronic devices. ACS Central Science, 4(3), 337–348. https://doi.org/10.1021/acscentsci.7b00595

    Article  Google Scholar 

  33. Fekiri, C., Kim, C., Kim, H.-C., Cho, J. H., & Lee, I. H. (2022). Multi-material additive fabrication of a carbon nanotube-based flexible tactile sensor. International Journal of Precision Engineering and Manufacturing, 23(4), 453–458. https://doi.org/10.1007/s12541-022-00632-3

    Article  Google Scholar 

  34. Foroughian, F., Ghahremani, A., Fathy, A. E., & Simpson, J. (2016, 26 June-1 July 2016). Flexible RF-antennas coated by a super hydrophobic paint for minimal water absorption. In 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, PR, USA. https://doi.org/10.1109/APS.2016.7696680

  35. Fukasawa, Y., & Matsukura, K. (2021). Decay stages of wood and associated fungal communities characterise diversity–decomposition relationships. Scientific Reports, 11(1), 8972. https://doi.org/10.1038/s41598-021-88580-2

    Article  Google Scholar 

  36. Gan, K., Li, R., Zheng, Y., Xu, H., Gao, Y., Qian, J., Wei, Z., Kong, B., & Zhang, H. (2024). Development and experimental study of a 3-dimensional enhanced heat pipe radiator for cooling high-power electronic devices. Applied Thermal Engineering, 238, 121924. https://doi.org/10.1016/j.applthermaleng.2023.121924

    Article  Google Scholar 

  37. García-Morales, M., Fernández-Silva, S. D., Roman, C., Olariu, M. A., Cidade, M. T., & Delgado, M. A. (2020). Preliminary insights into electro-sensitive ecolubricants: A comparative analysis based on nanocelluloses and nanosilicates in castor oil. Processes, 8(9), 1060. https://doi.org/10.3390/pr8091060

    Article  Google Scholar 

  38. Geczy, A., Csiszar, A., Xavier, P., Corrao, N., Rauly, D., Kovacs, R., Feher, A. E., Rozs, E., & Gal, L. (2022). Thermal and RF characterization of novel PLA/Flax based biodegradable printed circuit boards. In Proceedings of the 24th Electronics Packaging Technology Conference, EPTC 2022, Singapore. https://doi.org/10.1109/EPTC56328.2022.10013255

  39. Geczy, A., Garami, T., Kovacs, B., Nagy, D., Gal, L., Ruszinko, M., & Hajdu, I. (2013). Soldering tests with biodegradable printed circuit boards. In 19th International Symposium for Design and Technology in Electronic Packaging (SIITME 2013), Galati, Romaniahttps://doi.org/10.1109/SIITME.2013.6743641

  40. Geczy, A., Hajdu, I., Gal, L., Barna, C. N., Kovacs, M., & Harsanyi, G. (2019). Challenges of SMT assembling on biodegradable PCB substrates. In 22nd European Microelectronics and Packaging Conference and Exhibition (EMPC 2019), Pisa, Italy. https://doi.org/10.23919/EMPC44848.2019.8951848

  41. Geczy, A., Kovacs, M., & Hajdu, I. (2012). Conductive layer deposition and peel tests on biodegradable printed circuit boards. In 18th International Symposium for Design and Technology of Electronics Packages (SIITME 2012) Alba Iulia, Romania.https://doi.org/10.1109/SIITME.2012.6384363

  42. Géczy, A., Léner, V., Hajdu, I., & Illyefalvi-Vitéz, Z. (2011). Low temperature soldering on biopolymer (PLA) printed wiring board substrate. In Proceedings of the International Spring Seminar on Electronics Technology, Tratanska Lomnica, Slovakiahttps://doi.org/10.1109/ISSE.2011.6053550

  43. Geczy, A., Nagy, D., Hajdu, I., Kmetty, A., & Szolnoki, B. (2015). Investigating mechanical performance of PLA and CA biodegradable printed circuit boards. In 21st International Symposium for Design and Technology in Electronic Packaging (SIITME 2015), Brasov, Romania. https://doi.org/10.1109/SIITME.2015.7342293

  44. Géczy A., Csiszár A., Rozs E., Hajdu I., Medgyes B., Krammer O., Straubinger D., & Gál, L. (2022). Novel PLA / Flax based biodegradable printed circuit boards. 45th International Spring Seminar on Electronics Technology (ISSE), Vienna, Austria. https://doi.org/10.1109/isse54558.2022.9812817

  45. Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., & Savino, E. (2019). Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: A review. Sustainability, 11(1), 281. https://doi.org/10.3390/su11010281

    Article  Google Scholar 

  46. Grennerat, V., Xavier, P., Jeannin, P.-O., Corrao, N., & Géczy, A. (2023, 10–14 May 2023). High-speed digital electronics board on a novel biobased and biodegradable substrate. 46th International Spring Seminar on Electronics Technology (ISSE), Timisoara, Romania. https://doi.org/10.1109/ISSE57496.2023.10168477

  47. Guan, J., Wang, Y., Mortimer, B., Holland, C., Shao, Z., Porter, D., & Vollrath, F. (2016). Glass transitions in native silk fibres studied by dynamic mechanical thermal analysis. Soft Matter, 12(27), 5926–5936. https://doi.org/10.1039/C6SM00019C

    Article  Google Scholar 

  48. Guna, V. K., Murugesan, G., Basavarajaiah, B. H., Ilangovan, M., Olivera, S., Krishna, V., & Reddy, N. (2016). Plant-based completely biodegradable printed circuit boards. IEEE Transactions on Electron Devices, 63, 4893–4898. https://doi.org/10.1109/TED.2016.2619983

    Article  Google Scholar 

  49. Hao, J., Wang, Y., Wu, Y., & Guo, F. (2020). Metal recovery from waste printed circuit boards: A review for current status and perspectives. Resources, Conservation and Recycling, 157, 104787. https://doi.org/10.1016/j.resconrec.2020.104787

    Article  Google Scholar 

  50. Havstad, M. R. (2020). Biodegradable plastics. In T. M. Letcher (Ed.), Plastic Waste and Recycling (pp. 97–129). Academic Press. https://doi.org/10.1016/B978-0-12-817880-5.00005-0

  51. Henning, C., Schmid, A., Hecht, S., Ruckmar, C., Harre, K., & Bauer, R. (2019). Usability of bio-based polymers for PCB. Proceedings of the International Spring Seminar on Electronics Technology, Wroclaw, Poland. https://doi.org/10.1109/ISSE.2019.8810257

    Article  Google Scholar 

  52. Hirman, M., Navratil, J., Steiner, F., Dzugan, T., & Hamacek, A. (2019). Alternative technology for SMD components connection by non-conductive adhesive on a flexible substrate. Journal of Materials Science: Materials in Electronics, 30, 14214–14223. https://doi.org/10.1007/s10854-019-01789-w

    Article  Google Scholar 

  53. Honarbari, A., Cataldi, P., Zych, A., Merino, D., Paknezhad, N., Ceseracciu, L., Perotto, G., Crepaldi, M., & Athanassiou, A. (2023). A green conformable thermoformed printed circuit board sourced from renewable materials. ACS Applied Electronic Materials, 5(9), 5050–5060. https://doi.org/10.1021/acsaelm.3c00799

    Article  Google Scholar 

  54. Hosseini, E. S., Dervin, S., Ganguly, P., & Dahiya, R. (2021). Biodegradable materials for sustainable health monitoring devices. ACS Applied Bio Materials, 4(1), 163–194. https://doi.org/10.1021/acsabm.0c01139

    Article  Google Scholar 

  55. Huang, X., Liu, Y., Hwang, S. W., Kang, S. K., Patnaik, D., Cortes, J. F., & Rogers, J. A. (2014). Biodegradable materials for multilayer transient printed circuit boards. Advanced Materials, 26, 7371–7377. https://doi.org/10.1002/adma.201403164

    Article  Google Scholar 

  56. Immonen, K., Lyytikäinen, J., Keränen, J., Eiroma, K., Suhonen, M., Vikman, M., Leminen, V., Välimäki, M., & Hakola, L. (2022). Potential of commercial wood-based materials as PCB substrate. Materials, 15, 1–13. https://doi.org/10.3390/ma15072679

    Article  Google Scholar 

  57. Insights, F. B. (2021). Market research report: . Consumer Electronics Market. Retrieved 2 August 2023, from https://www.fortunebusinessinsights.com/consumer-electronics-market-104693

  58. IPC-4101B, (2006). Specification for base materials for rigid and multilayer printed boards, 109.

  59. Ishak, K. A., Velayutham, T. S., Annuar, M. S. M., & Sirajudeen, A. A. O. (2021). Structure-property interpretation of biological polyhydroxyalkanoates with different monomeric composition: Dielectric spectroscopy investigation. International Journal of Biological Macromolecules, 169, 311–320. https://doi.org/10.1016/j.ijbiomac.2020.12.090

    Article  Google Scholar 

  60. Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., & Picu, R. C. (2017). Morphology and mechanics of fungal mycelium. Scientific Reports, 7(1), 13070. https://doi.org/10.1038/s41598-017-13295-2

    Article  Google Scholar 

  61. Jain, N., Singh, V. K., & Chauhan, S. (2017). A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films. Journal of the Mechanical Behavior of Materials, 26(5–6), 213–222. https://doi.org/10.1515/jmbm-2017-0027

    Article  Google Scholar 

  62. Jaiswal, A. K., Kumar, V., Jansson, E., Huttunen, O.-H., Yamamoto, A., Vikman, M., Khakalo, A., Hiltunen, J., & Behfar, M. H. (2023). Biodegradable cellulose nanocomposite substrate for recyclable flexible printed electronics. Advanced Electronic Materials, 9(4), 2201094. https://doi.org/10.1002/aelm.202201094

    Article  Google Scholar 

  63. Jerin, W. R., Je Park, S., & Ki Moon, S. (2023). A design optimization framework for 3D printed lattice structures. International Journal of Precision Engineering and Manufacturing-Smart Technology, 1(2), 145–156. https://doi.org/10.57062/ijpem-st.2023.0059

    Article  Google Scholar 

  64. Jiang, T., Meng, X., Zhou, Z., Wu, Y., Tian, Z., Liu, Z., Lu, G., Eginlidil, M., Yu, H.-D., Liu, J., & Huang, W. (2021). Highly flexible and degradable memory electronics comprised of all-biocompatible materials. Nanoscale, 13(2), 724–729. https://doi.org/10.1039/D0NR05858K

    Article  Google Scholar 

  65. Jo, Y. J., Kim, H., Ok, J., Shin, Y.-J., Shin, J. H., Kim, T. H., Jung, Y., & Kim, T.-I. (2020). Biocompatible and biodegradable organic transistors using a solid-state electrolyte incorporated with choline-based ionic liquid and polysaccharide. Advanced Functional Materials, 30(29), 1909707. https://doi.org/10.1002/adfm.201909707

    Article  Google Scholar 

  66. Jung, Y. H., Chang, T.-H., Zhang, H., Yao, C., Zheng, Q., Yang, V. W., Mi, H., Kim, M., Cho, S. J., Park, D.-W., Jiang, H., Lee, J., Qiu, Y., Zhou, W., Cai, Z., Gong, S., & Ma, Z. (2015). High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nature Communications, 6(1), 7170. https://doi.org/10.1038/ncomms8170

    Article  Google Scholar 

  67. Kashyap, S., Pratihar, S. K., & Behera, S. K. (2016). Strong and ductile graphene oxide reinforced PVA nanocomposites. Journal of Alloys and Compounds, 684, 254–260. https://doi.org/10.1016/j.jallcom.2016.05.162

    Article  Google Scholar 

  68. Khoo, S. C., Peng, W. X., Yang, Y., Ge, S. B., Soon, C. F., Ma, N. L., & Sonne, C. (2020). Development of formaldehyde-free bio-board produced from mushroom mycelium and substrate waste. Journal of Hazardous Materials, 400, 123296. https://doi.org/10.1016/j.jhazmat.2020.123296

    Article  Google Scholar 

  69. Khrustalev, D., Tirzhanov, A., Khrustaleva, A., Mustafin, M., & Yedrissov, A. (2022). A new approach to designing easily recyclable printed circuit boards. Scientific Reports, 12(1), 22199. https://doi.org/10.1038/s41598-022-26677-y

    Article  Google Scholar 

  70. Kim, M., Ahmed, T., Lee, J. H., Kim, D., Kim, H. T., Lee, G.-Y., Yeo, D.-H., & Lee, S. (2023). Effects of chemical ordering and homogeneity on microwave dielectric properties of LaGaO3-SrTiO3 compounds. Ceramics International, 49(11), 17158–17165. https://doi.org/10.1016/j.ceramint.2023.02.079

    Article  Google Scholar 

  71. Koh, L.-D., Cheng, Y., Teng, C.-P., Khin, Y.-W., Loh, X.-J., Tee, S.-Y., Low, M., Ye, E., Yu, H.-D., Zhang, Y.-W., & Han, M.-Y. (2015). Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science, 46, 86–110. https://doi.org/10.1016/j.progpolymsci.2015.02.001

    Article  Google Scholar 

  72. Kovács, B., Géczy, A., Horváth, G., Hajdu, I., & Gál, L. (2016). Advances in producing functional circuits on biodegradable PCBs. Periodica polytechnica Electrical engineering and computer science, 60, 223–231. https://doi.org/10.3311/PPee.9690

    Article  Google Scholar 

  73. Kumar, A., Holuszko, M. E., & Janke, T. (2018). Characterization of the non-metal fraction of the processed waste printed circuit boards. Waste Management, 75, 94–102. https://doi.org/10.1016/j.wasman.2018.02.010

    Article  Google Scholar 

  74. Kumar Sahi, A., Gundu, S., Kumari, P., Klepka, T., & Sionkowska, A. (2023). Silk-based biomaterials for designing bioinspired microarchitecture for various biomedical applications. Biomimetics, 8(1), 55. https://doi.org/10.3390/biomimetics8010055

    Article  Google Scholar 

  75. Kumar, V., & Gupta, M. (2021). Comparative study of different natural fibre printed circuit board (PCB) composites. Materials Today: Proceedings, 44, 2097–2101. https://doi.org/10.1016/j.matpr.2020.12.182

    Article  Google Scholar 

  76. Le Bras, D., Strømme, M., & Mihranyan, A. (2015). Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications. The Journal of Physical Chemistry B, 119(18), 5911–5917. https://doi.org/10.1021/acs.jpcb.5b00715

    Article  Google Scholar 

  77. Lee, J. H., Kwak, H. W., Park, M. H., Hwang, J., Kim, J. W., Jang, H. W., Jin, H.-J., & Lee, W. H. (2018). Understanding hydroscopic properties of silk fibroin and its use as a gate-dielectric in organic field-effect transistors. Organic Electronics, 59, 213–219. https://doi.org/10.1016/j.orgel.2018.05.012

    Article  Google Scholar 

  78. Li, J., Liu, J., Lu, W., Wu, Z., Yu, J., Wang, B., Ma, Z., Huo, W., & Huang, X. (2021). Water-sintered transient nanocomposites used as electrical interconnects for dissolvable consumer electronics. ACS Applied Materials and Interfaces, 13(27), 32136–32148. https://doi.org/10.1021/acsami.1c07102

    Article  Google Scholar 

  79. Li, W., Liu, Q., Zhang, Y., Li, C. A., He, Z., Choy, W. C., Low, P. J., Sonar, P., & Kyaw, A. K. K. (2020). Biodegradable materials and green processing for green electronics. Advanced Materials, 32(33), 2001591. https://doi.org/10.1002/adma.202001591

    Article  Google Scholar 

  80. Li, Y., Cheng, M., Jungstedt, E., Xu, B., Sun, L., & Berglund, L. (2019). Optically transparent wood substrate for perovskite solar cells. ACS Sustainable Chemistry and Engineering, 7(6), 6061–6067. https://doi.org/10.1021/acssuschemeng.8b06248

    Article  Google Scholar 

  81. Lincoln, J. D., Shapiro, A. A., Earthman, J. C., Saphores, J. D. M., & Ogunseitan, O. A. (2008). Design and evaluation of bioepoxy-flax composites for printed circuit boards. IEEE Transactions on Electronics Packaging Manufacturing, 31, 211–220. https://doi.org/10.1109/TEPM.2008.926273

    Article  Google Scholar 

  82. Ling, H., Chen, R., Huang, Q., Shen, F., Wang, Y., & Wang, X. (2020). Transparent, flexible and recyclable nanopaper-based touch sensors fabricated via inkjet-printing. Green Chemistry, 22(10), 3208–3215. https://doi.org/10.1039/D0GC00658K

    Article  Google Scholar 

  83. Liu, C., Sun, Y., Liu, P., Ma, F., Wu, S., Li, J., Li, S., Hu, R., Wang, Z., Wang, Y., Liu, G., Xing, K., Tian, H., Huang, H., Guo, X., Ge, C., Yang, X., & Huang, Y. (2023). Fabrication and characterization of highly sensitive flexible strain sensor based on biodegradable gelatin nanocomposites and double strain layered structures with crack for gesture recognition. International Journal of Biological Macromolecules, 231, 123568. https://doi.org/10.1016/j.ijbiomac.2023.123568

    Article  Google Scholar 

  84. Liu, J., Yang, C., Wu, H., Lin, Z., Zhang, Z., Wang, R., Li, B., Kang, F., Shi, L., & Wong, C. P. (2014). Future paper based printed circuit boards for green electronics: Fabrication and life cycle assessment. Energy and Environmental Science, 7(11), 3674–3682. https://doi.org/10.1039/c4ee01995d

    Article  Google Scholar 

  85. Lukacs, P., Pietrikova, A., Vehec, I., & Provazek, P. (2022). Influence of various technologies on the quality of ultra-wideband antenna on a polymeric substrate. Polymers, 14(3), 507. https://doi.org/10.3390/polym14030507

    Article  Google Scholar 

  86. Luo, Q., Shen, H., Zhou, G., & Xu, X. (2023). A mini-review on the dielectric properties of cellulose and nanocellulose-based materials as electronic components. Carbohydrate Polymers, 303, 120449. https://doi.org/10.1016/j.carbpol.2022.120449

    Article  Google Scholar 

  87. Magoshi, J., & Magoshi, Y. (1975). Physical properties and structure of silk. II. Dynamic mechanical and dielectric properties of silk fibroin. Journal of Polymer Science: Polymer Physics Edition, 13(7), 1347–1351. https://doi.org/10.1002/pol.1975.180130707

    Article  Google Scholar 

  88. Mairizal, A. Q., Sembada, A. Y., Tse, K. M., Haque, N., & Rhamdhani, M. A. (2023). Techno-economic analysis of waste PCB recycling in Australia. Resources, Conservation and Recycling, 190, 106784. https://doi.org/10.1016/j.resconrec.2022.106784

    Article  Google Scholar 

  89. Merino, D., Zych, A., & Athanassiou, A. (2022). Biodegradable and biobased mulch films: Highly stretchable PLA composites with different industrial vegetable waste. ACS Applied Materials and Interfaces, 14(41), 46920–46931. https://doi.org/10.1021/acsami.2c10965

    Article  Google Scholar 

  90. Mir, S., & Dhawan, N. (2022). A comprehensive review on the recycling of discarded printed circuit boards for resource recovery. Resources, Conservation and Recycling, 178, 106027. https://doi.org/10.1016/j.resconrec.2021.106027

    Article  Google Scholar 

  91. Mishra, S., Ghosh, S., van Hullebusch, E. D., Singh, S., & Das, A. P. (2023). A critical review on the recovery of base and critical elements from electronic waste-contaminated streams using microbial biotechnology. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-023-04440-x

    Article  Google Scholar 

  92. Monroe, M. M., Villanueva, L. G., & Briand, D. (2023). Low-temperature processing of screen-printed piezoelectric KNbO3 with integration onto biodegradable paper substrates. Microsystems and Nanoengineering, 9(1), 19. https://doi.org/10.1038/s41378-023-00489-0

    Article  Google Scholar 

  93. Nandy, S., Fortunato, E., & Martins, R. (2022). Green economy and waste management: An inevitable plan for materials science. Progress in Natural Science: Materials International, 32(1), 1–9. https://doi.org/10.1016/j.pnsc.2022.01.001

    Article  Google Scholar 

  94. Nassajfar, M. N., Deviatkin, I., Leminen, V., & Horttanainen, M. (2021). Alternative materials for printed circuit board production: An environmental perspective. Sustainability, 13(21), 12126. https://doi.org/10.3390/su132112126

    Article  Google Scholar 

  95. Nassajfar, M. N., Deviatkin, I., Leminen, V., & Horttanainen, M. (2021). alternative materials for printed circuit board production: an environmental perspective. Sustainability, 13(21).

  96. Nations, U. (2024). Sustainable Development Goals. Retrieved 29 March 2024, from https://sdgs.un.org/goals

  97. Ogunseitan, O. A., Schoenung, J. M., Lincoln, J., Nguyen, B. H., Strauss, K., Frost, K., Schwartz, E., He, H., & Ibrahim, M. (2022). Biobased materials for sustainable printed circuit boards. Nature Reviews Materials, 7(10), 749–750. https://doi.org/10.1038/s41578-022-00485-2

    Article  Google Scholar 

  98. Orlov, A. V., Chursova, L. V., Grebeneva, T. A., & Panina, N. N. (2022). Flame retardants for slow-burning and fire-resistant polymer-composite materials. Polymer Science, Series D, 15(4), 568–573. https://doi.org/10.1134/S199542122204030X

    Article  Google Scholar 

  99. Pal, R. K., Kundu, S. C., & Yadavalli, V. K. (2018). Fabrication of flexible, fully organic, degradable energy storage devices using silk proteins. ACS Applied Materials and Interfaces, 10(11), 9620–9628. https://doi.org/10.1021/acsami.7b19309

    Article  Google Scholar 

  100. Pan, C., Gaur, A. P. S., Lynn, M., Olson, M. P., Ouyang, G., & Cui, J. (2022). Enhanced electrical conductivity in graphene–copper multilayer composite. AIP Advances, 12(1), 015310. https://doi.org/10.1063/5.0073879

    Article  Google Scholar 

  101. Pansino, S., & Taisne, B. (2020). Shear wave measurements of a Gelatin’s young’s modulus. Frontiers in Earth Science, 8, 171. https://doi.org/10.3389/feart.2020.00171

    Article  Google Scholar 

  102. Patil, D. D., Subramanian, K. S., Pradhan, N. C., Varadharaj, E. K., Senthilkumaran, K., & Murugesan, M. (2023). 3D-printed dual-band energy harvester for WSNs in green IoT applications. AEU-International Journal of Electronics and Communications, 164, 154641. https://doi.org/10.1016/j.aeue.2023.154641

    Article  Google Scholar 

  103. Peelman, N., Ragaert, P., Ragaert, K., De Meulenaer, B., Devlieghere, F., & Cardon, L. (2015). Heat resistance of new biobased polymeric materials, focusing on starch, cellulose, PLA, and PHA. Journal of Applied Polymer Science. https://doi.org/10.1002/app.42305

    Article  Google Scholar 

  104. Pritchard, C. Q., Funk, G., Owens, J., Stutz, S., Gooneie, A., Sapkota, J., Foster, E. J., & Bortner, M. J. (2022). Adjustable film properties of cellulose nanofiber and cellulose nanocrystal composites. Carbohydrate Polymers, 286, 119283. https://doi.org/10.1016/j.carbpol.2022.119283

    Article  Google Scholar 

  105. Rezvani Ghomi, E., Khosravi, F., Saedi Ardahaei, A., Dai, Y., Neisiany, R., Foroughi, F., Wu, M., Das, O., & Ramakrishna, S. (2021). The life cycle assessment for polylactic acid (PLA) to make it a low-carbon material. Polymers, 13(11), 1854. https://doi.org/10.3390/polym13111854

    Article  Google Scholar 

  106. Ribeiro, S. D., Meneguin, A. B., Barud, H. D. S., Silva, J. M., Oliveira, R. L., Asunção, R. M. N. D., Tormin, T. F., Muñoz, R. A. A., Filho, G. R., & Ribeiro, C. A. (2022). Synthesis and characterization of cellulose acetate from cellophane industry residues. Application as acetaminophen controlled-release membranes. Journal of Thermal Analysis and Calorimetry, 147(13), 7265–7275. https://doi.org/10.1007/s10973-021-11022-8

    Article  Google Scholar 

  107. Roy, S., Ghosh, S., Saha, P. B., Singh, M. S., Sarkhel, A., & Pattanayak, S. (2021). Design and analysis of low cost biodegradable substrate material for microwave device application. In 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), https://doi.org/10.1109/InCAP52216.2021.9726363.

  108. Saiki, K., & Okamoto, Y. (1966). Dielectric properties of solid-state gelatin and collagen. Japanese Journal of Applied Physics, 5(10), 962. https://doi.org/10.1143/JJAP.5.962

    Article  Google Scholar 

  109. Sanchez-Montero, R., Lopez-Espi, P.-L., Alen-Cordero, C., & Martinez-Rojas, J.-A. (2019). Bend and moisture effects on the performance of a U-shaped slotted wearable antenna for off-body communications in an industrial scientific medical (ISM) 2.4 GHz band. Sensors, 19(8), 1804. https://doi.org/10.3390/s19081804

    Article  Google Scholar 

  110. Santos, R. P., Souza, L. M., Balieiro, A. L., Soares, C. M., Lima, Á. S., & Souza, R. L. (2018). Integrated process of extraction and purification of betanin from Opuntia ficus-indica using aqueous two-phase systems based on THF and sodium salts. Separation Science and Technology, 53(5), 734–744. https://doi.org/10.1080/01496395.2017.1397022

    Article  Google Scholar 

  111. Schramm, R., Reinhardt, A., & Franke, J. (2012). Capability of biopolymers in electronics manufacturing. Proceedings of the International Spring Seminar on Electronics Technology, Bad Aussee, Austria. https://doi.org/10.1109/ISSE.2012.6273157

    Article  Google Scholar 

  112. Sedlak, J., Joska, Z., Jansky, J., Zouhar, J., Kolomy, S., Slany, M., Svasta, A., & Jirousek, J. (2023). Analysis of the mechanical properties of 3D-printed plastic samples subjected to selected degradation effects. Materials, 16(8), 3268. https://doi.org/10.3390/ma16083268

    Article  Google Scholar 

  113. Shahabuddin, M., Uddin, M. N., Chowdhury, J. I., Ahmed, S. F., Uddin, M. N., Mofijur, M., & Uddin, M. A. (2023). A review of the recent development, challenges, and opportunities of electronic waste (e-waste). International Journal of Environmental Science and Technology, 20(4), 4513–4520. https://doi.org/10.1007/s13762-022-04274-w

    Article  Google Scholar 

  114. Shim, J.-S., Rogers, J. A., & Kang, S.-K. (2021). Physically transient electronic materials and devices. Materials Science and Engineering: R: Reports, 145, 100624. https://doi.org/10.1016/j.mser.2021.100624

    Article  Google Scholar 

  115. Shivananda, C. S., Lakshmeesha Rao, B., & Sangappa. (2020). Structural, thermal and electrical properties of silk fibroin–silver nanoparticles composite films. Journal of Materials Science: Materials in Electronics, 31(1), 41–51. https://doi.org/10.1007/s10854-019-00786-3

    Article  Google Scholar 

  116. Smittarello, D., Pinel, V., Maccaferri, F., Furst, S., Rivalta, E., & Cayol, V. (2021). Characterizing the physical properties of gelatin, a classic analog for the brittle elastic crust, insight from numerical modeling. Tectonophysics, 812, 228901. https://doi.org/10.1016/j.tecto.2021.228901

    Article  Google Scholar 

  117. Sudheshwar, A., Malinverno, N., Hischier, R., Nowack, B., & Som, C. (2023). The need for design-for-recycling of paper-based printed electronics: A prospective comparison with printed circuit boards. Resources, Conservation and Recycling, 189, 106757. https://doi.org/10.1016/j.resconrec.2022.106757

    Article  Google Scholar 

  118. Suresh Khurd, A., & Kandasubramanian, B. (2022). A systematic review of cellulosic material for green electronics devices. Carbohydrate Polymer Technologies and Applications, 4, 100234. https://doi.org/10.1016/j.carpta.2022.100234

    Article  Google Scholar 

  119. Szcześniak, L., Rachocki, A., & Tritt-Goc, J. (2008). Glass transition temperature and thermal decomposition of cellulose powder. Cellulose, 15(3), 445–451. https://doi.org/10.1007/s10570-007-9192-2

    Article  Google Scholar 

  120. Tanguy, N. R., Moradpour, M., Jain, M. C., Yan, N., & Zarifi, M. H. (2023). Transient and recyclable organic microwave resonator using nanocellulose for 5G and Internet of Things applications. Chemical Engineering Journal, 466, 143061. https://doi.org/10.1016/j.cej.2023.143061

    Article  Google Scholar 

  121. Tezara, C., Zalinawati, M., Siregar, J. P., Jaafar, J., Hamdan, M. H. M., Oumer, A. N., & Chuah, K. H. (2022). Effect of stacking sequences, fabric orientations, and chemical treatment on the mechanical properties of hybrid woven jute–ramie composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(1), 273–285. https://doi.org/10.1007/s40684-021-00311-0

    Article  Google Scholar 

  122. Torgovnikov, G. I. (1993). Wood composition and dielectric properties of its components. In G. I. Torgovnikov (Ed.), Dielectric Properties of Wood and Wood-Based Materials (pp. 20–40). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-77453-9_2

  123. Turner, B. L., Twiddy, J., Wilkins, M. D., Ramesh, S., Kilgour, K. M., Domingos, E., Nasrallah, O., Menegatti, S., & Daniele, M. A. (2023). Biodegradable elastomeric circuit boards from citric acid-based polyesters. npj Flexible Electronics, 7(1), 25. https://doi.org/10.1038/s41528-023-00258-z

    Article  Google Scholar 

  124. Underwriters Laboratories United States. (2023). UL 94 Tests for flammability of plastic materials for parts in devices and appliances (7th Edition). https://www.ul.com/services/combustion-fire-tests-plastics

  125. Vaccari, M., Vinti, G., Cesaro, A., Belgiorno, V., Salhofer, S., Dias, M. I., & Jandric, A. (2019). WEEE treatment in developing countries: Environmental pollution and health consequences-an overview. International Journal Reserach Public Health, 16(9), 1595. https://doi.org/10.3390/ijerph16091595

    Article  Google Scholar 

  126. Vandelook, S., Elsacker, E., Van Wylick, A., De Laet, L., & Peeters, E. (2021). Current state and future prospects of pure mycelium materials. Fungal Biology and Biotechnology, 8(1), 20. https://doi.org/10.1186/s40694-021-00128-1

    Article  Google Scholar 

  127. Varadhan, C., Arulselvi, S., & Ashine Chamatu, F. (2021). Effects of the FR 4 substrate realized in a circularly polarized UHF-RFID reader antenna with fractal geometry for enhancing parameters. Advances in Materials Science and Engineering, 2021, 865–867. https://doi.org/10.1155/2021/8475621

    Article  Google Scholar 

  128. Wang, C., Xia, K., Zhang, Y., & Kaplan, D. L. (2019). Silk-based advanced materials for soft electronics. Accounts of Chemical Research, 52(10), 2916–2927. https://doi.org/10.1021/acs.accounts.9b00333

    Article  Google Scholar 

  129. Wang, J., Guo, J., & Xu, Z. (2016). An environmentally friendly technology of disassembling electronic components from waste printed circuit boards. Waste Management, 53, 218–224. https://doi.org/10.1016/j.wasman.2016.03.036

    Article  Google Scholar 

  130. Wang, T., Li, S., Tao, X., Yan, Q., Wang, X., Chen, Y., Huang, F., Li, H., Chen, X., & Bian, Z. (2022). Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring. Nano Energy, 93, 106787. https://doi.org/10.1016/j.nanoen.2021.106787

    Article  Google Scholar 

  131. Wang, Y., Wang, H., Liu, F., Wu, X., Xu, J., Cui, H., Wu, Y., Xue, R., Tian, C., Zheng, B., & Yao, W. (2020). Flexible printed circuit board based on graphene/polyimide composites with excellent thermal conductivity and sandwich structure. Composites Part A: Applied Science and Manufacturing, 138, 106075. https://doi.org/10.1016/J.COMPOSITESA.2020.106075

    Article  Google Scholar 

  132. Wei, Y., Jiang, S., Li, X., Li, J., Dong, Y., Shi, S. Q., Li, J., & Fang, Z. (2021). “Green” fexible electronics: Biodegradable and mechanically strong soy protein-based nanocomposite films for human motion monitoring. ACS Applied Materials and Interfaces, 13(31), 37617–37627. https://doi.org/10.1021/acsami.1c09209

    Article  Google Scholar 

  133. Wen, D.-L., Sun, D.-H., Huang, P., Huang, W., Su, M., Wang, Y., Han, M.-D., Kim, B., Brugger, J., Zhang, H.-X., & Zhang, X.-S. (2021). Recent progress in silk fibroin-based flexible electronics. Microsystems and Nanoengineering, 7(1), 35. https://doi.org/10.1038/s41378-021-00261-2

    Article  Google Scholar 

  134. Yedrissov, A., Khrustalev, D., Alekseev, A., Khrustaleva, A., & Vetrova, A. (2021). New composite material for biodegradable electronics. Materials Today: Proceedings, 49, 2443–2448. https://doi.org/10.1016/j.matpr.2020.11.053

    Article  Google Scholar 

  135. Yoshihara, H., & Maruta, M. (2021). Determining the Young’s modulus of solid wood by considering the fundamental frequency under the free-free flexural vibration mode. Wood Science and Technology, 55(4), 919–936. https://doi.org/10.1007/s00226-021-01306-5

    Article  Google Scholar 

  136. Yu, L., Huo, S., Wang, C., Ye, G., Song, P., Feng, J., Fang, Z., Wang, H., & Liu, Z. (2023). Flame-retardant poly(L-lactic acid) with enhanced UV protection and well-preserved mechanical properties by a furan-containing polyphosphoramide. International Journal of Biological Macromolecules, 234, 123707. https://doi.org/10.1016/j.ijbiomac.2023.123707

    Article  Google Scholar 

  137. Zhai, Z., Du, X., Long, Y., & Zheng, H. (2022). Biodegradable polymeric materials for flexible and degradable electronics. Frontiers in Electronics, 3, 681. https://doi.org/10.3389/felec.2022.985681

    Article  Google Scholar 

  138. Zhang, J., Ying, Y., Yi, X., Han, W., Yin, L., Zheng, Y., & Zheng, R. (2023). H2O2 solution steaming combined method to cellulose skeleton for transparent wood infiltrated with cellulose acetate. Polymers, 15(7), 1733. https://doi.org/10.3390/polym15071733

    Article  Google Scholar 

  139. Zhang, Y., Zhu, Y., Zheng, S., Zhang, L., Shi, X., He, J., Chou, X., & Wu, Z.-S. (2021). Ink formulation, scalable applications and challenging perspectives of screen printing for emerging printed microelectronics. Journal of Energy Chemistry, 63, 498–513. https://doi.org/10.1016/j.jechem.2021.08.011

    Article  Google Scholar 

  140. Zhao, X., Hu, H., Wang, X., Yu, X., Zhou, W., & Peng, S. (2020). Super tough poly(lactic acid) blends: A comprehensive review. RSC Advances, 10(22), 13316–13368. https://doi.org/10.1039/D0RA01801E

    Article  Google Scholar 

  141. Zheng, P., Wang, R., Wang, D., Peng, X., Zhao, Y., & Liu, Q. (2021). A phosphorus-containing hyperbranched phthalocyanine flame retardant for epoxy resins. Scientific Reports, 11(1), 17731. https://doi.org/10.1038/s41598-021-96927-y

    Article  Google Scholar 

  142. Zhu, B., Wang, H., Leow, W. R., Cai, Y., Loh, X. J., Han, M.-Y., & Chen, X. (2016). Silk fibroin for flexible electronic devices. Advanced Materials, 28(22), 4250–4265. https://doi.org/10.1002/adma.201504276

    Article  Google Scholar 

  143. Zhu, J., Wen, H., Zhang, H., Huang, P., Liu, L., & Hu, H. (2023). Recent advances in biodegradable electronics- from fundament to the next-generation multi-functional, medical and environmental device. Sustainable Materials and Technologies, 35, e00530. https://doi.org/10.1016/j.susmat.2022.e00530

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Universiti Tun Hussein Onn Malaysia Industry (UTHM) through Industry Matching Grant (Vot. No.: Q331).

Funding

The research was financially supported by the Industry Matching Grant (Vot. No. Q331) awarded by Universiti Tun Hussein Onn Malaysia (UTHM).

Author information

Authors and Affiliations

Authors

Contributions

CFS designed the concept of the manuscript and written the first draft. NMS carried out the data curation. ISLAH and CH performed the data analysis. CFS, SKY, ANN, RAR, NLM, KST wrote the manuscript with input from all authors. CFS conceived the study and managed overall direction and planning.

Corresponding author

Correspondence to Chin Fhong Soon.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent to Publication

All authors have given consent to publish this manuscript.

Competing interests

The authors have no competing interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soon, C.F., Yee, S.K., Nordin, A.N. et al. Advancements in Biodegradable Printed Circuit Boards: Review of Material Properties, Fabrication Methods, Applications and Challenges. Int. J. Precis. Eng. Manuf. (2024). https://doi.org/10.1007/s12541-024-01027-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12541-024-01027-2

Keywords

Navigation