Skip to main content
Log in

Measurement of Global Sizes of Cylinder Based on Spiral Profile Extraction Strategy

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The single spiral profile and the single spiral-double roundness profiles extraction strategies of cylindrical feature were promoted. According to the definitions of cylinder’s global sizes, their evaluation models were established based on two extraction strategies. The axis parameters of the reference cylindrical surface for two extraction strategies were determined by using the artificial ecosystem-based optimization algorithm, the program flowchart of which was given. Through the profiles’ extraction of one sample and evaluation of global sizes, the correctness of the established evaluation models and the availability of the developed program were verified. The optimal eigenvalues of nine optimization algorithms showed that the artificial ecosystem-based optimization algorithm is one of the optimization algorithms suitable for evaluating cylinder’s global sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. ISO/TC 213 (2016). ISO 14405-1:2016 Geometrical product specifications (GPS) - Dimensional tolerancing - Part 1: Linear sizes. Geneva, Switzerland.

  2. ISO/TC 213. (2011). ISO 12180-2:2011 Geometrical product specifications (GPS) – Cylindricity—Part 2: Specification operators. Geneva, Switzerland.

  3. Zhao, Z., Li, B., Zhang, G., Yu, H., Wang, W., He, X., Hou, X., Cheng, X., & Yao, B. (2017). Study on the evaluation of cylinder’s global sizes. Precision Engineering, 49, 189–199. https://doi.org/10.1016/j.precisioneng.2017.02.007

    Article  Google Scholar 

  4. Zhao, Z., Shi, X., Zhao, X., & Xi, J. (2023). Influence of sampling points on evaluation results of calculated sizes of cylinder. Journal of Mechanical & Electrical Engineering, 40(1), 104–112. https://doi.org/10.3969/j.issn.1001-4551.2023.01.014

    Article  Google Scholar 

  5. Braune, S., Liu, S. & Mercorelli, P. (2006). Design and control of an electromagnetic valve actuator. In 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, Munich, Germany. pp 1657–1662. https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776890

  6. Jerin, W. R., Park, S. J., & Moon, S. K. (2023). A design optimization framework for 3D printed lattice structures. International Journal of Precision Engineering and Manufacturing, 1, 145–156. https://doi.org/10.57062/ijpem-st.2023.0059

    Article  Google Scholar 

  7. Yang, Y., Wang, Y., Liao, Q. F., Pan, J. L., Meng, J. Y., & Huang, H. (2022). CNC corner milling parameters optimization based on variable-fidelity metamodel and improved MOPSO regarding energy consumption. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 977–995. https://doi.org/10.1007/s40684-021-00338-3

    Article  Google Scholar 

  8. Shen, C., Xiao, Y., & Xiong, L. (2022). Grinding wheel parametric design for machining arbitrary grooves on the helical rake face of the tool. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(4), 997–1008. https://doi.org/10.1007/s40684-021-00372-1

    Article  Google Scholar 

  9. Zhang, L., Wu, Y., Zhao, X., Pan, S., Li, Z., Bao, H., & Tian, Y. (2022). A multi-objective two-sided disassembly line balancing optimization based on artificial bee colony algorithm: A case study of an automotive engine. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 1329–1347. https://doi.org/10.1007/s40684-021-00394-9

    Article  Google Scholar 

  10. Herwan, J., Misaka, T., Kano, S., Sawada, H., Furukawa, Y., & Ryabov, O. (2023). Improving sustainability index of grey cast iron finish cutting through high-speed dry turning and cutting parameters optimization using Taguchi-based Bayesian method. International Journal of Precision Engineering and Manufacturing-Green Technology, 10(3), 729–745. https://doi.org/10.1007/s40684-022-00457-5

    Article  Google Scholar 

  11. He, G. H., Du, Y. B., Liang, Q., Zhou, Z. J., & Shu, L. S. (2023). Modeling and optimization method of laser cladding based on GA-ACO-RFR and GNSGA-II. International Journal of Precision Engineering and Manufacturing-Green Technology, 10, 1207–1222. https://doi.org/10.1007/s40684-022-00492-2

    Article  Google Scholar 

  12. Sim, B., & Lee, W. Y. (2023). Digital twin based machining condition optimization for CNC machining center. International Journal of Precision Engineering and Manufacturing-Smart Technology, 1(2), 115–123. https://doi.org/10.57062/ijpem-st.2023.0010

    Article  Google Scholar 

  13. Li, B., Tian, X. T., & Zhang, M. (2022). Modeling and multi-objective optimization method of machine tool energy consumption considering tool wear. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 127–141. https://doi.org/10.1007/s40684-021-00320-z

    Article  Google Scholar 

  14. Liu, D., Zheng, P., Wu, J., Yin, H., & Zhang, L. (2020). A new method for cylindricity error evaluation based on increment-simplex algorithm. Science Progress, 103(4), 1–25. https://doi.org/10.1177/0036850420959878

    Article  Google Scholar 

  15. Liu, F., Cao, Y., Li, T., Ren, L., Zhi, J., Yang, J., & Jiang, X. (2023). An Iterative Minimum Zone Algorithm for assessing cylindricity deviation. Measurement, 213, 112738. https://doi.org/10.1016/j.measurement.2023.112738

    Article  Google Scholar 

  16. Wang, Y., Wang, H., & Tian, H. (2022). Cylindricity error measurement and evaluation based on step acceleration algorithm in crankshaft measuring machine. Mapan, 37, 823–832. https://doi.org/10.1007/s12647-022-00556-3

    Article  Google Scholar 

  17. Liu, W., Zhou, X., Li, H., Liu, S., & Fu, J. (2020). An algorithm for evaluating cylindricity according to the minimum condition. Measurement, 158, 107698. https://doi.org/10.1016/j.measurement.2020.107698

    Article  Google Scholar 

  18. Yang, Y., Li, M., Wang, C., & Wei, Q. (2018). Cylindricity error evaluation based on an improved harmony search algorithm. Scientific Programming, 2, 1–13. https://doi.org/10.1155/2018/2483781

    Article  Google Scholar 

  19. Wu, Q., Zhang, C., Zhang, M., Yang, F., & Gao, L. (2019). A modified comprehensive learning particle swarm optimizer and its application in cylindricity error evaluation problem. Mathematical Biosciences and Engineering., 16(3), 1190–1209. https://doi.org/10.3934/mbe.2019057

    Article  MathSciNet  Google Scholar 

  20. An, D., Chang, C., Li, G., Shao, M., Wang, S., Zhang, L., & Li, S. (2023). Cylindricity error evaluation based on an improved artificial gorilla troop optimizer. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(11), 608. https://doi.org/10.1007/s40430-023-04502-5

    Article  Google Scholar 

  21. Yao, Y., & Zhang, K. (2022). An improved self-born weighted least square method for cylindricity error evaluation. Applied Sciences, 12, 12319. https://doi.org/10.3390/app122312319

    Article  Google Scholar 

  22. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer methods in applied mechanics and engineering, 376, 113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  Google Scholar 

  23. Sun, M., Ji, C., Luan, T., & Wang, N. (2023). LQR pendulation reduction control of ship-mounted crane based on improved grey wolf optimization algorithm. International Journal of Precision Engineering and Manufacturing, 24(3), 395–407. https://doi.org/10.1007/s12541-022-00763-7

    Article  Google Scholar 

  24. Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers & Structures, 169, 1–12. https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  25. Faramarzi, A., Heidarinejad, M., Stephens, M., & Mirjalili, S. (2020). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems, 191, 105190. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  26. Sengupta, S., Basak, S., & Peters, R. A., II. (2019). Particle swarm optimization: A survey of historical and recent developments with hybridization perspectives. Machine Learning and Knowledge Extraction, 1(1), 157–191. https://doi.org/10.3390/make1010010

    Article  Google Scholar 

  27. Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: Past, present, and future. Multimedia Tools and Application, 80, 8091–8126. https://doi.org/10.1007/s11042-020-10139-6

    Article  Google Scholar 

  28. Ahmad, M. F., Isa, N. A. M., Lim, W. H., & Ang, K. M. (2022). Differential evolution: A recent review based on state-of-the-art works. Alexandria Engineering Journal, 61(5), 3831–3872. https://doi.org/10.1016/j.aej.2021.09.013

    Article  Google Scholar 

  29. Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-Based Systems, 165, 169–196. https://doi.org/10.1016/j.knosys.2018.11.024

    Article  Google Scholar 

  30. Zhao, W., Wang, L., & Zhang, Z. (2020). Artificial ecosystem-based optimization: A novel nature-inspired meta-heuristic algorithm. Neural Computing and Applications, 32(4), 1–43. https://doi.org/10.1007/s00521-019-04452-x

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant No. 51975598).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyu Zhao or Zexiang Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Xi, J., Zhao, Z. et al. Measurement of Global Sizes of Cylinder Based on Spiral Profile Extraction Strategy. Int. J. Precis. Eng. Manuf. (2024). https://doi.org/10.1007/s12541-024-01021-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12541-024-01021-8

Keywords

Navigation