Skip to main content
Log in

Predicting the Critical Dimensions of Micron and Sub-micron Structures Using Joint Training Models and Electromagnetic Simulation Tools

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents an enhanced non-destructive optical measurement method crucial for 3D IC technology. Utilizing a deep neural network and electromagnetic simulation tool, an inverse model is established to predict the critical dimensions (CD) of micron and sub-micron structures. The forward model accelerates data generation, overcoming limitations of the finite-difference time-domain (FDTD) method. Compared to FDTD simulations of reflectance spectra which take about 50 min, the model's prediction time for reflectance spectra is only 0.01 s. The three key dimensions with better prediction results from the inverse model are top radius (Rtop), height, and bottom radius (Rbot). In the proposed joint training model, by simultaneously training forward and inverse models and adjusting the weights of forward and inverse loss functions, the mean absolute percentage error (MAPE) for Rtop, height, and Rbot is reduced from 0.26 to 0.08%, 0.69 to 0.44%, and 4.01 to 0.6% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lee, J., Dong, H., Ji, D. Y., & Kundu, P. (2023). Cyber-physical systems framework for predictive metrology in semiconductor manufacturing process. International Journal of Precision Engineering and Manufacturing-Smart Technology, 1, 107–113.

    Article  Google Scholar 

  2. Kim, S. W., Kong, J. H., Lee, S. W., & Lee, S. (2022). Recent advances of artificial intelligence in manufacturing industrial sectors: a review. International Journal of Precision Engineering and Manufacturing, 23, 1–19.

    Article  CAS  Google Scholar 

  3. Kim, S., Jeon, J., Kim, Y., Sugita, N., & Mitsuishi, M. (2023). Design and assessment of phase-shifting algorithms in optical interferometer. International Journal of Precision Engineering and Manufacturing-Green Technology, 10(2), 611–634.

    Article  Google Scholar 

  4. Peng, B., Hou, W., & Xu, Q. (2018). Precision 3D profile in-line measurement of through-silicon via (TSV) based on highfrequency spectrum signals in the pupil plane. Optics Communications, 424, 107–112.

    Article  CAS  ADS  Google Scholar 

  5. Wang, G. G., & Shan, S. (2007). Review of metamodeling techniques in support of engineering design optimization.

  6. Shan, S., & Wang, G. G. (2010). Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Structural and multidisciplinary optimization, 41(2), 219–241.

    Article  MathSciNet  Google Scholar 

  7. Kuo, H.-F., Faisal, M., & Su, S.-F. (2016). Linewidth reconstruction employing a radial basis function network in optical scatterometry. IEEE Access, 4, 6739–6748.

    Article  Google Scholar 

  8. Heidenreich, S., Gross, H., Henn, M., Elster, C., & Bär, M. (2014). A surrogate model enables a Bayesian approach to the inverse problem of scatterometry. Journal of Physics: Conference Series, 490(1), 012007.

    CAS  Google Scholar 

  9. Farchmin, N et al. (2019) Efficient global sensitivity analysis for silicon line gratings using polynomial chaos. In Modeling aspects in optical metrology VII (Vol. 11057, p. 110570J). International Society for Optics and Photonics.

  10. Heidenreich, S., Gross, H., & Bär, M. (2018). Bayesian approach to determine critical dimensions from scatterometric measurements. Metrologia, 55(6), S201.

    Article  ADS  Google Scholar 

  11. Kallioniemi, I., Saarinen, J., & Oja, E. (1998). Optical scatterometry of subwavelength diffraction gratings: Neural-network approach. Applied Optics, 37(25), 5830–5835.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Kallioniemi, I., Saarinen, J., & Oja, E. (1999). Characterization of diffraction gratings in a rigorous domain with optical scatterometry: Hierarchical neural-network model. Applied Optics, 38(28), 5920–5930.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Battie, Y., Robert, S., Gereige, I., Jamon, D., & Stchakovsky, M. (2009). Demonstration of the feasibility of a complete ellipsometric characterization method based on an artificial neural network. Applied Optics, 48(28), 5318–5323.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Kuo, H.-F., & Faricha, A. (2016). Artificial neural network for diffraction based overlay measurement. IEEE Access, 4, 7479–7486.

    Article  Google Scholar 

  15. Wei, S., & Li, L. (2008). Measurement of photoresist grating profiles based on multiwavelength scatterometry and artificial neural network. Applied Optics, 47(13), 2524–2532.

    Article  PubMed  ADS  Google Scholar 

  16. Zhu, J., Liu, Y., Purandare, S., Jin, J.-M., Liu, S., & Goddard, L. L. (2019). Optical deep learning nano-profilometry. arXiv preprint arXiv:1908.07017.

  17. Jin, W., Vuong, V., Bao, J., Lee, L.-Q., & Poslavsky, L. (2017) Accurate and fast neural network training for library-based critical dimension (CD) metrology. ed: Google Patents.

  18. Inampudi, S., & Mosallaei, H. (2018). Neural network based design of metagratings. Applied Physics Letters, 112(24), 241102.

    Article  ADS  Google Scholar 

  19. So, S., Badloe, T., Noh, J., Bravo-Abad, J., & Rho, J. (2020). Deep learning enabled inverse design in nanophotonics. Nanophotonics, 9(5), 1041–1057.

    Article  Google Scholar 

  20. Han, C., Zhang, B., Wang, H., & Ding, J. (2021). Metamaterial perfect absorber with morphology-engineered meta-atoms using deep learning. Optics Express, 29(13), 19955–19963.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Zhu, L., Zhang, C., Guo, J., Dong, L., & Gong, J. (2022). Deep learning for electromagnetically induced transparency (EIT) metasurface optimization design. Journal of Physics D: Applied Physics, 55(31), 315001.

    Article  CAS  Google Scholar 

  22. He, J., He, C., Zheng, C., Wang, Q., & Ye, J. (2019). Plasmonic nanoparticle simulations and inverse design using machine learning. Nanoscale, 11(37), 17444–17459.

    Article  CAS  PubMed  Google Scholar 

  23. Vahidzadeh, E., & Shankar, K. (2021). Artificial neural network-based prediction of the optical properties of spherical core–shell plasmonic metastructures. Nanomaterials, 11(3), 633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harper, E. S., Coyle, E. J., Vernon, J. P., & Mills, M. S. (2020). Inverse design of broadband highly reflective metasurfaces using neural networks. Physical Review B, 101(19), 195104.

    Article  CAS  ADS  Google Scholar 

  25. Xiang, J., & Zhong, Y. (2016). A novel personalized diagnosis methodology using numerical simulation and an intelligent method to detect faults in a shaft. Applied Sciences, 6(12), 414.

    Article  Google Scholar 

  26. Gao, Y., Liu, X., & Xiang, J. (2021). Fault detection in gears using fault samples enlarged by a combination of numerical simulation and a generative adversarial network. IEEE/ASME Transactions of Mechatronics, 27(5), 3798–3805.

    Article  Google Scholar 

  27. Lou, Y., Kumar, A., & Xiang, J. (2022). Machinery fault diagnosis based on domain adaptation to bridge the gap between simulation and measured signals. IEEE Transactions of Instrumentation and Measurement, 71, 1–9.

    Google Scholar 

Download references

Funding

This study was supported by National Science and Technology Council (Grant No. 112-2218-E-027-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Ching Ho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was presented at ISMTII2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JW., Hsu, CH., Wang, JK. et al. Predicting the Critical Dimensions of Micron and Sub-micron Structures Using Joint Training Models and Electromagnetic Simulation Tools. Int. J. Precis. Eng. Manuf. (2024). https://doi.org/10.1007/s12541-024-00981-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12541-024-00981-1

Keywords

Navigation