Skip to main content
Log in

Adaptive Identification of the Position-independent Geometric Errors for the Rotary Axis of Five-axis Machine Tools to Directly Improve Workpiece Geometric Errors

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Identification of, and compensation for, geometric errors is a cost-effective way to reduce the volumetric errors of five-axis machine tools and thus reduce workpiece geometric errors. An adaptive identification method is introduced to directly reduce workpiece geometric errors. We determined the relation between the root-sum-square values of geometric error sensitivity coefficients and workpiece geometric errors. Then, an optimal measurement path minimizing those values was adaptively determined to identify position-independent geometric errors of the rotary axis. We applied our method to improve the radial deviation of the cone-shaped ISO 10791-7 testpiece, as an example. The radial deviations were 22.6 and 27.6 μm in the counterclockwise (CCW) and clockwise (CW) directions, respectively, after compensating for the position-independent geometric errors identified using a common measurement path. These values improved by 27% and 17% to 16.4 and 22.9 μm in the CCW and CW directions, respectively, after compensating for the position-independent geometric errors identified using the optimal measurement path, thus confirming the validity of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(b\) :

Setting angle of a ball on the workpiece table, degrees

\(n_{A}\) :

Sample number of A-axis measurements, μm

\(n_{C}\) :

Sample number of C-axis measurements, μm

\(n_{W}\) :

Sample number along the workpiece toolpath, μm

\(o_{ij}\) :

Offset error of the j-axis relative to the i-direction \(\left( {i = x,y,z;\quad j = a,c} \right)\), μm

\(s_{ij}\) :

Squareness error of the j-axis around the i-direction \(\left( {i = x,y,z;\quad j = a,c} \right)\), μrad

\(R\) :

Nominal radius of a circular measurement path for the A-axis, mm

\(\Delta R_{i,j,k}\) :

k-Th deviation in the j-direction of the i-axis \(\left( {i = A,C;\quad j = radial,axial;\quad k = 1, \ldots ,n_{A} {\text{ for A - axis}};\quad k = 1, \ldots ,n_{C} {\text{ for C - axis}}} \right)\), μm

\(\left( {x_{M,i} ,y_{M,i} ,z_{M,i} } \right)\) :

Measured positional deviations \(\left( {i = 1, \ldots ,n_{A} {\text{ for A - axis}};\quad i = 1, \ldots ,n_{C} {\text{ for C - axis}}} \right)\), μm

\(\left( {x_{W,i} ,y_{W,i} ,z_{W,i} ,a_{W,i} ,c_{W,i} } \right)\) :

iTh workpiece coordinate \(\left( {i = 1, \ldots ,n_{W} } \right)\)

\(\left( {x_{TP,i} ,y_{TP,i} ,z_{TP,i} ,a_{TP,i} ,c_{TP,i} } \right)\) :

Toolpath command corresponding to the ith workpiece coordinate \(\left( {i = 1, \ldots ,n_{W} } \right)\)

\(\left( {\Delta x_{W} ,\Delta y_{W} ,\Delta z_{W} } \right)\) :

Set-up error of a ball on the workpiece table, μm

\(\left\{ {\mathbf{i}} \right\}\) :

Coordinate system of the i-axis \(\left\{ {i = X,Y,Z,A,C} \right\}\)

\(\left\{ {\mathbf{R}} \right\}\), \(\left\{ {\mathbf{W}} \right\}\), \(\left\{ {\mathbf{t}} \right\}\) :

Coordinate system of the reference, workpiece, and tool, respectively

\({\mathbf{VE}}_{i} \left( {x_{VE,i} ,y_{VE,i} ,z_{VE,i} } \right)\) :

Volumetric errors at the ith toolpath command \(\left( {i = 1, \ldots ,n_{W} } \right)\)

\({{\varvec{\uptau}}}_{i}^{j}\) :

4 × 4 Homogeneous transformation matrix from the j to i coordinate system

References

  1. Barakat, N. A., Elbestawi, M. A., & Spence, A. D. (2000). Kinematic and geometric error compensation of a coordinate measuring machine. International Journal of Machine Tools and Manufacture, 40, 833–850. https://doi.org/10.1016/S0890-6955(99)00098-X

    Article  Google Scholar 

  2. Fan, J., Tao, H., Pan, R., & Chen, D. (2020). Optimal tolerance allocation for five–axis machine tools in consideration of deformation caused by gravity. The International Journal of Advanced Manufacturing Technology, 111, 13–24. https://doi.org/10.1007/s00170-020-06096-x

    Article  Google Scholar 

  3. Gomez-Acedo, E., Olarra, A., Orive, J., & Lopez de la Calle, L. N. (2013). Methodology for the design of a thermal distortion compensation for large machine tools based in state–space representation with Kalman filter. International Journal of Machine Tools and Manufacture, 75, 100–108. https://doi.org/10.1016/j.ijmachtools.2013.09.005

    Article  Google Scholar 

  4. Schwenke, H., Knapp, W., Haitjema, H., Weckenmann, A., Schmitt, R., & Delbressine, F. (2008). Geometric error measurement and compensation of machines—An update. CIRP Annals, 57, 660–675. https://doi.org/10.1016/j.cirp.2008.09.008

    Article  Google Scholar 

  5. Ibaraki, S., & Knapp, W. (2012). Indirect measurement of volumetric accuracy for three-axis and five-axis machine tools: A review. International Journal of Automation Technology, 6, 110–124. https://doi.org/10.20965/ijat.2012.p0110

    Article  Google Scholar 

  6. ISO 230-1. (2012). Test code for machine tools—Part 1: Geometric accuracy of machines operating under no—Load or Quasi–static Conditions. ISO.

  7. Uddin, M. S., Ibaraki, S., Matsubara, A., & Matsushita, T. (2009). Prediction and compensation of machining geometric errors of five-axis machining centers with kinematic errors. Precision Engineering, 33, 194–201. https://doi.org/10.1016/j.precisioneng.2008.06.001

    Article  Google Scholar 

  8. Lee, K. I., Lee, D. M., & Yang, S. H. (2012). Parametric modeling and estimation of geometric errors for a rotary axis using double ball-bar. The International Journal of Advanced Manufacturing Technology, 62, 741–750. https://doi.org/10.1007/s00170-011-3834-0

    Article  Google Scholar 

  9. Lee, K. I., & Yang, S. H. (2016). Compensation of position-independent and position-dependent geometric errors in the rotary axes of five–axis machine tools with a tilting rotary table. The International Journal of Advanced Manufacturing Technology, 85, 1677–1685. https://doi.org/10.1007/s00170-015-8080-4

    Article  Google Scholar 

  10. Yao, Y., Nishizawa, K., Kato, N., Tsutsumi, M., & Nakamoto, K. (2020). Identification method of geometric deviations for multi-tasking machine tools considering the squareness of translational axes. Applied Sciences, 10, 1811. https://doi.org/10.3390/app10051811

    Article  Google Scholar 

  11. Yang, S. H., & Lee, K. I. (2022). A dual difference method for identification of the inherent spindle axis parallelism errors of machine tools. International Journal of Precision Engineering and Manufacturing, 23, 701–710. https://doi.org/10.1007/s12541-022-00653-y

    Article  Google Scholar 

  12. Bringmann, B., & Knapp, W. (2009). Machine tool calibration: Geometric test uncertainty depends on machine tool performance. Precision Engineering, 33, 524–529. https://doi.org/10.1016/j.precisioneng.2009.02.002

    Article  Google Scholar 

  13. Kenno, T., Sato, R., Shirase, K., Natsume, S., & Spaan, H. A. M. (2020). Influence of linear-axis error motions on simultaneous three-axis controlled motion accuracy defined in ISO 10791–6. Precision Engineering, 61, 110–119. https://doi.org/10.1016/j.precisioneng.2019.10.011

    Article  Google Scholar 

  14. Ibaraki, S., & Yanai, E. (2021). Identification of rotary axis location errors under spindle rotation by using a laser barrier tool measurement system—Experimental comparison with R-test. Transactions of the Institute of Systems, Control and Information Engineers, 34, 81–88. https://doi.org/10.5687/iscie.34.81

    Article  Google Scholar 

  15. Onishi, S., Ibaraki, S., Kato, T., Yamaguchi, M., & Sugimoto, T. (2022). A self-calibration scheme to monitor long-term changes in linear and rotary axis geometric errors. Measurement, 196, 111183. https://doi.org/10.1016/j.measurement.2022.111183

    Article  Google Scholar 

  16. Hong, C., Ibaraki, S., & Matsubara, A. (2011). Influence of position-dependent geometric errors of rotary axes on a machining test of cone frustum by five–axis machine tools. Precision Engineering, 35, 1–11. https://doi.org/10.1016/j.precisioneng.2010.09.004

    Article  Google Scholar 

  17. ISO 10791-7. (2020). Test conditions for machining centres—Part 7: Accuracy of finished test pieces. ISO.

  18. Li, Z., Sato, R., Shirase, K., & Sakamoto, S. (2021). Study on the influence of geometric errors in rotary axes on cubic-machining test considering the workpiece coordinate system. Precision Engineering, 71, 36–46. https://doi.org/10.1016/j.precisioneng.2021.02.011

    Article  Google Scholar 

  19. Ibaraki, S., Sawada, M., Matsubara, A., & Matsushita, T. (2010). Machining tests to identify kinematic errors on five-axis machine tools. Precision Engineering, 34, 387–398. https://doi.org/10.1016/j.precisioneng.2009.09.007

    Article  Google Scholar 

  20. Ibaraki, S., & Ota, Y. (2014). A machining test to calibrate rotary axis error motions of five-axis machine tools and its application to thermal deformation test. International Journal of Machine Tools and Manufacture, 86, 81–88. https://doi.org/10.1016/j.ijmachtools.2014.07.005

    Article  Google Scholar 

  21. Ibaraki, S., Tsujimoto, S., Nagai, Y., Sakai, Y., Morimoto, S., & Miyazaki, Y. (2018). A pyramid-shaped machining test to identify rotary axis error motions on five-axis machine tools. The International Journal of Advanced Manufacturing Technology, 94, 227–237. https://doi.org/10.1007/s00170-017-0906-9

    Article  Google Scholar 

  22. Yang, H., Huang, X., Ding, S., Yu, C., & Yang, Y. (2018). Identification and compensation of 11 position-independent geometric errors on five-axis machine tools with a tilting head. The International Journal of Advanced Manufacturing Technology, 94, 533–544. https://doi.org/10.1007/s00170-017-0826-8

    Article  Google Scholar 

  23. Jiang, Z., Song, B., Zhou, X., Tang, X., & Zheng, S. (2015). On-machine measurement of location errors on five-axis machine tools by machining tests and a laser displacement sensor. International Journal of Machine Tools and Manufacture, 95, 1–12. https://doi.org/10.1016/j.ijmachtools.2015.05.004

    Article  Google Scholar 

  24. Tsutsumi, M., & Saito, A. (2003). Identification and compensation of systematic deviations particular to 5-axis machining centers. International Journal of Machine Tools and Manufacture, 43, 771–780. https://doi.org/10.1016/S0890-6955(03)00053-1

    Article  Google Scholar 

  25. Weikert, S. (2004). R-test, a new device for accuracy measurements on five axis machine tools. CIRP Annals, 53, 429–432. https://doi.org/10.1016/S0007-8506(07)60732-X

    Article  Google Scholar 

  26. Flynn, J. M., Shokrani, A., Vichare, P., Dhokia, V., & Newman, S. T. (2018). A new methodology for identifying location errors in 5-axis machine tools using a single ballbar set-up. The International Journal of Advanced Manufacturing Technology, 99, 53–71. https://doi.org/10.1007/s00170-016-9090-6

    Article  Google Scholar 

  27. Liu, Y., Wang, M., Xing, W. J., & Zhang, W. H. (2018). Identification of position independent geometric errors of rotary axes for five-axis machine tools with structural restrictions. Robotics and Computer-Integrated Manufacturing, 53, 45–57. https://doi.org/10.1016/j.rcim.2018.03.010

    Article  Google Scholar 

  28. Lee, K. I., & Yang, S. H. (2013). Measurement and verification of position-independent geometric errors of a five-axis machine tool using a double ball-bar. International Journal of Machine Tools and Manufacture, 70, 45–52. https://doi.org/10.1016/j.ijmachtools.2013.03.010

    Article  Google Scholar 

  29. Jiang, X., & Cripps, R. J. (2015). A method of testing position independent geometric errors in rotary axes of a five-axis machine tool using a double ball bar. International Journal of Machine Tools and Manufacture, 89, 151–158. https://doi.org/10.1016/j.ijmachtools.2014.10.010

    Article  Google Scholar 

  30. Wang, Z., Wang, D., Yu, S., Li, X., & Dong, H. (2021). A reconfigurable mechanism model for error identification in the double ball bar tests of machine tools. International Journal of Machine Tools and Manufacture, 165, 103737. https://doi.org/10.1016/j.ijmachtools.2021.103737

    Article  Google Scholar 

  31. Mayer, J. R. R. (2012). Five–axis machine tool calibration by probing a scale enriched reconfigurable uncalibrated master balls artefact. CIRP Annals, 61, 515–518. https://doi.org/10.1016/j.cirp.2012.03.022

    Article  Google Scholar 

  32. Ibaraki, S., Iritani, T., & Matsushita, T. (2012). Calibration of location errors of rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe. International Journal of Machine Tools and Manufacture, 58, 44–53. https://doi.org/10.1016/j.ijmachtools.2012.03.002

    Article  Google Scholar 

  33. ISO 10791-6. (2014). Test conditions for machining centres—Part 6: Accuracy of speeds and interpolations. ISO.

  34. Li, Q., Wang, W., Zhang, J., Shen, R., Li, H., & Jiang, Z. (2019). Measurement method for volumetric error of five-axis machine tool considering measurement point distribution and adaptive identification process. International Journal of Machine Tools and Manufacture, 147, 103465. https://doi.org/10.1016/j.ijmachtools.2019.103465

    Article  Google Scholar 

  35. Sepahi-Boroujeni, S., Mayer, J. R. R., & Khameneifar, F. (2021). Efficient uncertainty estimation of indirectly measured geometric errors of five-axis machine tools via Monte-Carlo validated GUM framework. Precision Engineering, 67, 160–171. https://doi.org/10.1016/j.precisioneng.2020.09.027

    Article  Google Scholar 

  36. ISO/IEC Guide 98-3. (2008). Uncertainty of measurement—Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). ISO.

  37. Yang, S. H., & Lee, K. I. (2021). Identification of 11 Position-independent geometric errors of a five-axis machine tool using 3D geometric sensitivity analysis. The International Journal of Advanced Manufacturing Technology, 113, 3271–3282. https://doi.org/10.1007/s00170-021-06844-7

    Article  Google Scholar 

  38. Yang, S. H., & Lee, K. I. (2021). Machine tool analyzer: A device for identifying 13 position-independent geometric errors for five-axis machine tools. The International Journal of Advanced Manufacturing Technology, 115, 2945–2957. https://doi.org/10.1007/s00170-021-07341-7

    Article  Google Scholar 

  39. Zha, J., Wang, T., Li, L., & Chen, Y. (2020). Volumetric error compensation of machine tool using laser tracer and machining verification. The International Journal of Advanced Manufacturing Technology, 108, 2467–2481. https://doi.org/10.1007/s00170-020-05556-8

    Article  Google Scholar 

  40. ISO 230-7. (2015). Test code for machine tools—Part 7: Geometric accuracy of axes of rotation. ISO.

  41. Lee, K. I., Lee, J. C., & Yang, S. H. (2018). Optimal on-machine measurement of position-independent geometric errors for rotary axes in five-axis machines with a universal head. International Journal of Precision Engineering and Manufacturing, 19, 545–551. https://doi.org/10.1007/s12541-018-0066-3

    Article  Google Scholar 

  42. Lee, K. I., & Yang, S. H. (2014). Circular tests for accurate performance evaluation of machine tools via an analysis of eccentricity. International Journal of Precision Engineering and Manufacturing, 15, 2499–2506. https://doi.org/10.1007/s12541-014-0620-6

    Article  MathSciNet  Google Scholar 

  43. ISO 230-4. (2022). Test code for machine tools—Part 4: Circular tests for numerically controlled machine tools. ISO.

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.NRF-2023R1A2C2003189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Il Lee.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SH., Lee, KI. Adaptive Identification of the Position-independent Geometric Errors for the Rotary Axis of Five-axis Machine Tools to Directly Improve Workpiece Geometric Errors. Int. J. Precis. Eng. Manuf. 25, 995–1010 (2024). https://doi.org/10.1007/s12541-024-00966-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-024-00966-0

Keywords

Navigation