Skip to main content
Log in

Robotic Platform for Automatic Alignment and Placement of Fabric Patterns for Smart Manufacturing in Garment Industry

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

We propose a robotic platform that autonomously manipulates templates that hold fabric patterns during a pattern-forming process without human intervention. The platform performs key functions for preprocessing of pattern-forming such as opening, closing, placing, and aligning templates made of large and flexible plastic sheets, and is designed to seamlessly connect and operate with a commercial pattern-forming machine. The main contribution of the proposed system is the design of the centering mechanism, which adaptively aligns templates with different sizes placed on the stage. In this paper, we first describe the design of the proposed device and analyze its vibration characteristics to optimize the input parameters of the main actuator. We then characterize the component of the centering mechanism and test the alignment function of the device. Finally, We demonstrate the performance of our device by integrating it with a commercial pattern-forming machine for an automated sewing process. The device shows an operation time of nine seconds shorter than the duration needed by a trained human worker for the same task in the field. We believe the proposed system will be the first step towards realizing a smart garment factory in the apparel industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bertola, P., & Teunissen, J. (2018). Fashion 4.0. innovating fashion industry through digital transformation. Research Journal of Textile and Apparel, 22(4), 352–369. https://doi.org/10.1108/RJTA-03-2018-0023

    Article  Google Scholar 

  2. Remko, V. H. (2020). Research opportunities for a more resilient post-covid-19 supply chain-closing the gap between research findings and industry practice. International Journal of Operations & Production Management, 40(4), 341–355. https://doi.org/10.1108/IJOPM-03-2020-0165

    Article  Google Scholar 

  3. McMaster, M., Nettleton, C., Tom, C., Xu, B., Cao, C., & Qiao, P. (2020). Risk management: Rethinking fashion supply chain management for multinational corporations in light of the covid-19 outbreak. Journal of Risk and Financial Management. https://doi.org/10.3390/jrfm13080173

    Article  Google Scholar 

  4. Javorcik, B. (2021). Reshaping of global supply chains will take place, but it will not happen fast. Journal of Chinese Economic and Business Studies. https://doi.org/10.1080/14765284.2020.1855051

    Article  Google Scholar 

  5. Jung, W.-K., Kim, D.-R., Lee, H., Lee, T.-H., Yang, I., Youn, B. D., Zontar, D., Brockmann, M., Brecher, C., & Ahn, S.-H. (2021). Appropriate smart factory for SMEs: Concept, application and perspective. International Journal of Precision Engineering and Manufacturing, 22, 201–215. https://doi.org/10.1007/s12541-020-00445-2

    Article  Google Scholar 

  6. de Mattos, F. B., Eisenbraun, J., Kucera, D., & Rossi, A. (2020). Automation, employment and reshoring in the apparel industry: Long-term disruption or a storm in a teacup? Geneva: ILO.

    Google Scholar 

  7. Sun, B., & Zhang, X. (2019). A new electrostatic gripper for flexible handling of fabrics in automated garment manufacturing. In 2019 IEEE 15th international conference on automation science and engineering (CASE) (pp. 879–884). IEEE. https://doi.org/10.1109/COASE.2019.8843149.

  8. Donaire, S., Borras, J., Alenya, G., & Torras, C. (2020). A versatile gripper for cloth manipulation. IEEE Robotics and Automation Letters, 5(4), 6520–6527. https://doi.org/10.1109/LRA.2020.3015172

    Article  Google Scholar 

  9. Ku, S., Myeong, J., Kim, H.-Y., & Park, Y.-L. (2020). Delicate fabric handling using a soft robotic gripper with embedded microneedles. IEEE Robotics and Automation Letters, 5(3), 4852–4858. https://doi.org/10.1109/LRA.2020.3004327

    Article  Google Scholar 

  10. Digumarti, K. M., Cacucciolo, V., & Shea, H. (2021). Dexterous textile manipulation using electroadhesive fingers. In 2021 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 6104–6109). IEEE. https://doi.org/10.1109/IROS51168.2021.9636095.

  11. He, H., Saunders, G., & Wen, J. T. (2022). Robotic fabric fusing using a novel electroadhesion gripper. In 2022 IEEE 18th international conference on automation science and engineering (CASE) (pp. 2407–2414). IEEE. https://doi.org/10.1109/CASE49997.2022.9926477.

  12. Su, J., Wang, N., & Zhang, F. (2022). A design of bionic soft gripper for automatic fabric grasping in apparel manufacturing. Textile Research Journal. https://doi.org/10.1177/00405175221134963

    Article  Google Scholar 

  13. Su, J., Shen, J., & Zhang, F. (2021). Grasping model of fabric cut pieces for robotic soft fingers. Textile Research Journal. https://doi.org/10.1177/0040517520988118

    Article  Google Scholar 

  14. Liu, Y., & Jin, G. (2022). Grasping and placing strategy of flexible fabric with soft robot grippers. In 2022 International Conference on Mechanical, Automation and Electrical Engineering (CMAEE) (pp. 111–115). IEEE. https://doi.org/10.1109/CMAEE58250.2022.00027.

  15. Lee, S., Rho, S. H., Lee, S., Lee, J., Lee, S. W., Lim, D., & Jeong, W. (2021). Implementation of an automated manufacturing process for smart clothing: The case study of a smart sports bra. Processes, 9, 289. https://doi.org/10.3390/pr9020289

    Article  Google Scholar 

  16. OHara, J., Higgins, J., Fleger, S., & Barnes, V. (2010). Human-system interfaces for automatic systems. Technical report, Brookhaven National Lab.(BNL), Upton.

  17. Blendea, H. (2006). Mechanical fuse and method of use. US Patent 7,080,572.

  18. van der Horst, A. J. J., & Aalders, A. (2014). Mechanical fuse, a neck cord comprising a mechanical fuse and a method of connecting a mechanical fuse to a neck cord. US Patent 8,869,359.

  19. Rees, D. W. (2009). Mechanics of optimal structural design: Minimum weight structures. John Wiley & Sons.

    Book  Google Scholar 

  20. Dumitru, D., & Străjescu, E. (2009). Theoretical considerations concerning the determination of value for the critical speed of the ball screws from numerical axes structure. RECENT, 10(27), 255–258.

    Google Scholar 

  21. MISUMI (2014). Ball screws selection guide. Technical report, MISUMI USA. http://my.misumi-ec.com/pdf/fa/2014/p1_681_683_685_2223_2225_2227_2229.pdf.

  22. Ha, J.-L., Fung, R.-F., Chen, K.-Y., & Hsien, S.-C. (2006). Dynamic modeling and identification of a Slider-Crank mechanism. Journal of sound and vibration, 289(4–5), 1019–1044. https://doi.org/10.1016/j.jsv.2005.03.011

    Article  Google Scholar 

  23. Khemili, I., & Romdhane, L. (2008). Dynamic analysis of a flexible Slider-Crank mechanism with clearance. European Journal of Mechanics-A/Solids, 27(5), 882–898. https://doi.org/10.1016/j.euromechsol.2007.12.004

    Article  MATH  Google Scholar 

  24. Demirel, B., Emirler, M. T., Sönmez, Ü., & Yörükoğlu, A. (2010). Semicompliant force generator mechanism design for a required impact and contact forces. Journal of Mechanisms and Robotics, 2(4), 1–11. https://doi.org/10.1115/1.4002076

    Article  Google Scholar 

  25. Erkaya, S., & Uzmay, İ. (2010). Experimental investigation of joint clearance effects on the dynamics of a Slider-Crank mechanism. Multibody System Dynamics, 24, 81–102. https://doi.org/10.1007/s11044-010-9192-0

    Article  MATH  Google Scholar 

  26. Qu, E. G., & Zhang, H. P. (2012). Optimization design and motion simulation of offset Slider-Crank mechanism. Advanced Materials Research, 403, 4216–4220. https://doi.org/10.4028/www.scientific.net/AMR.403-408.4216

    Article  Google Scholar 

  27. Kwon, H.-C., Cho, D.-H., & Kim, K.-H. (2021). Underactuated three-finger robot hand with human-like flexion. International Journal of Precision Engineering and Manufacturing, 22, 791–798. https://doi.org/10.1007/s12541-020-00461-2

    Article  Google Scholar 

  28. Dilibal, S., Sahin, H., Danquah, J. O., Emon, M. O. F., & Choi, J.-W. (2021). Additively manufactured custom soft gripper with embedded soft force sensors for an industrial robot. International Journal of Precision Engineering and Manufacturing, 22, 709–718. https://doi.org/10.1007/s12541-021-00479-0

    Article  Google Scholar 

  29. Yoon, S. J., Choi, M., & Park, Y.-L. (2022). Elongatable gripper fingers with integrated stretchable tactile sensors for underactuated grasping and dexterous manipulation. IEEE Transactions on Robotics, 38(4), 2179–2197. https://doi.org/10.1109/TRO.2022.3144949

    Article  Google Scholar 

  30. Kim, S. W., Kong, J. H., Lee, S. W., & Lee, S. (2022). Recent advances of artificial intelligence in manufacturing industrial sectors: A review. International Journal of Precision Engineering and Manufacturing. https://doi.org/10.1007/s12541-021-00600-3

    Article  Google Scholar 

  31. Han, Y., Varadarajan, A., Kim, T., Kitani, G. Z. K., Rikakis, T., Kelliher, A., & Park, Y.-L. (2023). Smart skin: Vision-based soft pressure sensing system for in-home hand rehabilitation. Soft Robotics, 9(3), 473–485. https://doi.org/10.1089/soro.2020.0083

    Article  Google Scholar 

  32. Yun, H., Kim, E., Kim, D. M., Park, H. W., & Jun, M.B.-G. (2023). Machine learning for object recognition in manufacturing applications. International Journal of Precision Engineering and Manufacturing, 24(4), 683–712. https://doi.org/10.1007/s12541-022-00764-6

    Article  Google Scholar 

  33. Ku, S., Choi, H., Kim, H.-Y., & Park, Y.-L. (2023). Automated sewing system enabled by machine vision for smart garment manufacturing. IEEE Robotics and Automation Letters, 8(9), 5680–5687. https://doi.org/10.1109/LRA.2023.3300284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Lae Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Video 1: Demonstration of the alignment function of the proposed robotic platform for the centering mechanism.

Supplementary Video 2: Demonstration of automatic sewing of a commercial pattern former integrated with the proposed robotic.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Park, YL. Robotic Platform for Automatic Alignment and Placement of Fabric Patterns for Smart Manufacturing in Garment Industry. Int. J. Precis. Eng. Manuf. 24, 1549–1561 (2023). https://doi.org/10.1007/s12541-023-00878-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-023-00878-5

Keywords

Navigation