Skip to main content
Log in

Disturbance Suppression and Contour Following Accuracy Improvement: An Adaptive PI-Type Sliding Mode Nonlinear Extended State Observer Approach

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The main idea behind the conventional extended state observer is that the total disturbance including nonlinearity, modeling error, and external disturbance, etc., is regarded as an augmented state variable which can be estimated using system input/output, system parameters and a nonlinear function. In order to further improve estimation accuracy, this paper proposes an adaptive PI-type sliding mode nonlinear extended state observer (APISMESO). In particular, a nonlinear function that contains an integral term is used in the proposed observer structure to reduce estimation error, especially when dealing with static friction and high-frequency noise often existing in servomechanisms. Moreover, an adaptive law is designed to provide on-line estimation of system parameters. In addition, the stability of the complementary sliding mode control scheme with the proposed APISMESO is investigated using the Lyapunov stability theory. Several contour following experiments are performed to compare the performance of the proposed APISMESO with that of several existing variants of extended state observers. Experimental results reveal that the proposed APISMESO outperforms the other variants of extended state observers also tested in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Yoo, S. J., & Ahn, H. J. (2020). Software-based integral product architecture for modular motion control system of a RFC linear motor motion stage: Model-based DOB for residual vibration suppression. International Journal of Precision Engineering and Manufacturing., 20, 203–209. https://doi.org/10.1007/s12541-019-00212-y

    Article  Google Scholar 

  2. Chen, C., Zhang, S., Zhu, X., Shen, J., & Xu, Z. (2020). Disturbance observer-based patient-cooperative control of a lower extremity rehabilitation exoskeleton. International Journal of Precision Engineering and Manufacturing., 21, 957–968. https://doi.org/10.1007/s12541-019-00312-9

    Article  Google Scholar 

  3. Liu, X., Wei, W., Yuan, J., Tao, Y., Li, Y., & Huang, Y. (2021). A high accuracy method for the field dynamic balancing of rigid spindles in the ultra-precision turning machine. International Journal of Precision Engineering and Manufacturing., 22, 1829–1840. https://doi.org/10.1007/s12541-021-00585-z

    Article  Google Scholar 

  4. Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906. https://doi.org/10.1109/TIE.2008.2011621

    Article  Google Scholar 

  5. Astolfi, D., & Marconi, L. (2015). A high-gain nonlinear observer with limited gain power. IEEE Transactions on Automatic Control, 60(11), 3059–3064. https://doi.org/10.1109/TAC.2015.2408554

    Article  MathSciNet  MATH  Google Scholar 

  6. Gao, Z., Huang, Y., & Han, J. (2001). An alternative paradigm for control system design. In Proceedings of the 40th IEEE conference on decision and control (pp. 4578–4585). IEEE, Orlando, FL, USA.

  7. Gao, Z. (2003). Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the 2003 American control conference (pp. 4989–4996). IEEE, Denver, CO, USA.

  8. Guo, B. Z., & Zhao, Z. L. (2011). On the convergence of an extended state observer for nonlinear systems with uncertainty. Systems & Control Letters, 60(6), 420–430. https://doi.org/10.1016/j.sysconle.2011.03.008

    Article  MathSciNet  MATH  Google Scholar 

  9. Guo, B. Z., & Zhao, Z. L. (2012). On convergence of non-linear extended state observer for multi-input multi-output systems with uncertainty. IET Control Theory & Applications, 6(15), 2375–2386. https://doi.org/10.1049/iet-cta.2012.0123

    Article  MathSciNet  Google Scholar 

  10. Liu, B., Zhu, C. A., & Jin, Y. (2018). Speed control for the lateral swing of aerial cameras based on an improved extended state observer. Journal of the Chinese Institute of Engineers, 41(2), 124–131. https://doi.org/10.1080/02533839.2018.1437369

    Article  Google Scholar 

  11. Pu, Z., Yuan, R., Yi, J., & Tan, X. (2015). A class of adaptive extended state observers for nonlinear disturbed systems. IEEE Transactions on Industrial Electronics, 62(9), 5858–5869. https://doi.org/10.1109/TIE.2015.2448060

    Article  Google Scholar 

  12. Sahu, U. K., Subudhi, B., & Patra, P. (2019). Sampled-data extended state observer-based backstepping control of two-link flexible manipulator. Transactions of the Institute of Measurement and Control, 41(13), 3581–3599. https://doi.org/10.1177/0142331219832954

    Article  Google Scholar 

  13. Tang, J., Wei, T., Lv, Q., & Cui, X. (2020). Stable control of the high-speeding magnetically suspended rotor based on extended state observer and two-degree freedom internal model control for control moment gyros with serious moving-gimbal effects. Transactions of the Institute of Measurement and Control, 42(14), 2733–2743. https://doi.org/10.1177/0142331220929808

    Article  Google Scholar 

  14. Wang, X., Liao, R., Shi, C., & Wang, S. (2017). Linear extended state observer-based motion synchronization control for hybrid actuation system of more electric aircraft. Sensors, 17(11), 2444. https://doi.org/10.3390/s17112444

    Article  Google Scholar 

  15. Yoo, D., Yau, S. S. T., & Gao, Z. (2006). On convergence of the linear extended state observer. In Proceedings of the 2006 IEEE conference on computer aided control system design (pp. 1645–1650). IEEE, Munich, Germany.

  16. Yoo, D., Yau, S. S. T., & Gao, Z. (2007). Optimal fast tracking observer bandwidth of the linear extended state observer. International Journal of Control, 80(1), 102–111. https://doi.org/10.1080/00207170600936555

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhao, L., Zhang, B., Hon, G. Y., & Wang, Y. G. (2017). Finite-time tracking control for pneumatic servo system via extended state observer. IET Control Theory & Applications, 11(16), 2808–2816. https://doi.org/10.1049/iet-cta.2017.0327

    Article  MathSciNet  Google Scholar 

  18. Zhang, Z., Guo, Y., & Song, X. (2022). Improved nonlinear extended state observer-based sliding-mode rotary control for the rotation system of a hydraulic roofbolter. Entropy, 24(41), 1–21. https://doi.org/10.3390/e2401004

    Article  MathSciNet  Google Scholar 

  19. Tran, D. T., Do, T. C., & Ahn, K. K. (2019). Extended high gain observer-based sliding mode control for an electro-hydraulic system with a variant payload. International Journal of Precision Engineering and Manufacturing., 20, 2089–2100. https://doi.org/10.1007/s12541-019-00256-0

    Article  Google Scholar 

  20. Drakunov, S.V. (1992). Sliding-mode observers based on equivalent control method. In Proceedings of the 31st IEEE conference on decision and control (pp. 2368–2369). IEEE, Tucson, AZ, USA.

  21. Drakunov, S., & Utkin, V. (1995). Sliding mode observers. Tutorial. In Proceedings of the 34th IEEE conference on decision and control (pp. 3376–3378). IEEE, New Orleans, LA, USA.

  22. Spurgeo, S. K. (2008). Sliding mode observers: A survey. International Journal of Systems Science, 39(8), 751–764. https://doi.org/10.1080/00207720701847638

    Article  MathSciNet  Google Scholar 

  23. Tran, D. T., Truong, H. V. A., & Ahn, K. K. (2021). Adaptive nonsingular fast terminal sliding mode control of robotic manipulator based neural network approach. International Journal of Precision Engineering and Manufacturing, 22, 417–429. https://doi.org/10.1007/s12541-020-00427-4

    Article  Google Scholar 

  24. Abdul-Adheem, W. R., & Ibraheem, I. K. (2016). Improved sliding mode nonlinear extended state observer based active disturbance rejection control for uncertain systems with unknown total disturbance. International Journal of Advanced Computer Science and Applications, 7(12), 80–93. https://doi.org/10.14569/IJACSA.2016.071211

    Article  Google Scholar 

  25. Freidovich, L. B., & Khalil, H. K. (2008). Performance recovery of feedback-linearization-based designs. IEEE Transactions on Automatic Control, 53(10), 2324–2334. https://doi.org/10.1109/TAC.2008.2006821

    Article  MathSciNet  MATH  Google Scholar 

  26. Khalil, H. K. (2008). High-gain observers in nonlinear feedback control. In Proceedings of the 2008 international conference on control, automation and systems. IEEE, Seoul, South Korea.

  27. Yaagoub, E. H. E. I., Assoudi, A. E. I., & Hammouri, H. (2004). High gain observer: Attenuation of the peak phenomena. In Proceedings of the 2004 American control conference (pp. 4393–4397). IEEE, Boston, MA, USA.

  28. Li, X., & Li, S. (2014). Extended state observer based adaptive control scheme for PMSM system. In Proceedings of the 33rd Chinese control conference (pp. 8074–8079). IEEE, Nanjing, China.

  29. Xia, Y., Zhu, Z., & Fu, M. (2011). Back-stepping sliding mode control for missile systems based on an extended state observer. IET Control Theory & Applications, 5(1), 93–102. https://doi.org/10.1049/iet-cta.2009.0341

    Article  MathSciNet  Google Scholar 

  30. Haimo, V. T. (1986). Finite time controllers. SIAM Journal on Control and Optimization, 24(4), 760–770. https://doi.org/10.1137/0324047

    Article  MathSciNet  MATH  Google Scholar 

  31. Egardt, B. (1979). Stability of adaptive controllers. Springer-Verlag.

    Book  MATH  Google Scholar 

  32. Landau, L. D., Lozano, R., & M’Saad, M. (1998). Adaptive control. Springer-Verlag.

    Book  MATH  Google Scholar 

  33. Nicosia, S., & Tomei, P. (1984). Model reference adaptive control algorithms for industrial robots. Automatica, 20(5), 635–644. https://doi.org/10.1016/0005-1098(84)90013-X

    Article  MATH  Google Scholar 

  34. Sai, H., Xu, Z., Li, Y., & Wang, K. (2021). Adaptive nonsingular fast terminal sliding mode impedance control for uncertainty robotic manipulators. International Journal of Precision Engineering and Manufacturing, 22, 1947–1961. https://doi.org/10.1007/s12541-021-00589-9

    Article  Google Scholar 

  35. Su, J. P., & Wang, C. C. (2002). Complementary sliding control of non-linear systems. International Journal of Control, 75(5), 360–368. https://doi.org/10.1080/00207170110112250

    Article  MathSciNet  MATH  Google Scholar 

  36. Utkin, V. (1977). Survey paper variable structure systems with sliding modes. IEEE Transactions on Automatic Control, 22(2), 212–222. https://doi.org/10.1109/TAC.1977.1101446

    Article  MathSciNet  MATH  Google Scholar 

  37. Chicone, C. (1999). Ordinary differential equations with applications. Springer-Verlag.

    MATH  Google Scholar 

  38. Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control. Prentice-Hall.

    MATH  Google Scholar 

  39. Johnson, C. T., & Lorenz, R. D. (1992). Experimental identification of friction and its compensation in precise, position controlled mechanisms. IEEE Transactions on Industry Applications, 28(6), 1392–1398. https://doi.org/10.1109/28.175293

    Article  Google Scholar 

  40. Piegl, L. (1991). On NURBS: A survey. IEEE Computer Graphics and Applications, 11(1), 55–71. https://doi.org/10.1109/38.67702

    Article  Google Scholar 

  41. Cheng, M. Y., Tsai, M. C., & Kuo, J. C. (2002). Real-time NURBS command generators for CNC servo controllers. International Journal of Machine Tools and Manufacture, 42(7), 801–813. https://doi.org/10.1016/S0890-6955(02)00015-9

    Article  Google Scholar 

  42. Fu, K. S., Gonzalez, R. C., & Lee, C. S. G. (1987). Robotics: Control, sensing, vision and intelligence. McGraw-Hill Education.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Science and Technology, Taiwan, for support of this research under Grant No. MOST 105-2221-E-006-105-MY3.

Funding

This paper is supported in part by the Ministry of Science and Technology, Taiwan, under Grant No. MOST 105-2221-E-006-105-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Yang Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YC., Cai, YR., Cheng, MY. et al. Disturbance Suppression and Contour Following Accuracy Improvement: An Adaptive PI-Type Sliding Mode Nonlinear Extended State Observer Approach. Int. J. Precis. Eng. Manuf. 24, 353–370 (2023). https://doi.org/10.1007/s12541-022-00754-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00754-8

Keywords

Navigation