Skip to main content
Log in

Study on the Formation of the Crater and Modified Layer in EDM Titanium Alloys Based on Fluid–Solid Coupled Temperature Field Model

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Electric discharge machining (EDM) is used widely in machining titanium alloys, but the modified layer formed can weaken the mechanical properties of the parts. The present study examined the formation of craters and the evolution of the modified layer (melting layer + heat-affected layer) in RC-type EDM using a fluid–solid coupled temperature field model. This model adopts the level set method to track the liquid–solid two-phase and the driving force equation to control the recoil pressure. The results showed that the discharge energy has a significant effect on the formation of the modified layer. The formation of the modified layer showed phased characteristics with time. The variation law and formation mechanism of the modified layer are described in detail. A verification experiment showed that the diameter and depth of the crater were in good agreement with the simulation results. These results can provide an important reference for EDM to formulate the machining parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kumar, P. A., & Kumar, D. A. (2012). Simultaneous optimization of multiple quality characteristics in laser cutting of titanium alloy sheet. Optics & Laser Technology, 44(6), 1858–1865. https://doi.org/10.1016/j.optlastec.2012.01.019

    Article  Google Scholar 

  2. Pushp, P., Dasharath, S. M., & Arati, C. (2022). Classification and applications of titanium and its alloys. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.01.008

    Article  Google Scholar 

  3. Li, C. P., Qiu, X. Y., Yu, Z., Li, S. J., Li, P. N., Niu, Q. L., Kurniawan, R., & Ko, T. J. (2020). Novel environmentally friendly manufacturing method for micro-textured cutting tools. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(1), 193–204. https://doi.org/10.1007/s40684-020-00256-w

    Article  Google Scholar 

  4. Xu, M. R., Wei, R., Li, C. P., Kurniawan, R., Chen, J. L., & Ko, T. J. (2022). Comprehensive study on the cutting force modeling and machinability of high frequency electrical discharge assisted milling process using a novel tool. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-022-00462-8

    Article  Google Scholar 

  5. Ribeiro, M. V., Moreira, M. R. V., & Ferreira, J. R. (2003). Optimization of titanium alloy (6Al–4V) machining. Journal of Materials Processing Technology, 143–144, 458–463. https://doi.org/10.1016/S0924-0136(03)00457-6

    Article  Google Scholar 

  6. Chen, X., Wang, Z., Wang, Y., & Chi, G. (2019). Investigation on MRR and machining gap of micro reciprocated wire-EDM for SKD11. International Journal of Precision Engineering and Manufacturing, 21(1), 11–22. https://doi.org/10.1007/s12541-019-00233-7

    Article  Google Scholar 

  7. Liu, J. W., Wu, Y. Z., & Yue, T.-M. (2015). High speed abrasive electrical discharge machining of particulate reinforced metal matrix composites. International Journal of Precision Engineering and Manufacturing, 16(7), 1399–1404. https://doi.org/10.1007/s12541-015-0184-0

    Article  Google Scholar 

  8. He, J., Guo, Z., Lian, H., Wang, J., Chen, X., & Liu, J. (2019). Improving the machining quality of micro structures by using electrophoresis-assisted ultrasonic micromilling machining. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 151–161. https://doi.org/10.1007/s40684-019-00124-2

    Article  Google Scholar 

  9. Nguyen-Tran, H.-D., Oh, H.-S., Hong, S.-T., Han, H. N., Cao, J., Ahn, S.-H., & Chun, D.-M. (2015). A review of electrically-assisted manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(4), 365–376. https://doi.org/10.1007/s40684-015-0045-4

    Article  Google Scholar 

  10. Kim, Y. S., & Song, K. Y. (2018). The effect of graphite-powder-mixed kerosene on tool wear in micro ED milling. International Journal of Precision Engineering and Manufacturing, 22(11), 1799–1816.

    Article  Google Scholar 

  11. Pramanik, A., Basak, A. K., Dixit, A. R., & Chattopadhyaya, S. (2018). Processing of duplex stainless steel by WEDM. Materials and Manufacturing Processes, 33(14), 1559–1567. https://doi.org/10.1080/10426914.2018.1453165

    Article  Google Scholar 

  12. Xu, M. R., Li, C. P., Kurniawan, R., Chen, J. L., & Ko, T. J. (2022). Influence of different dielectrics and machining parameters for electrical discharge-assisted milling of titanium alloy. International Journal of Precision Engineering and Manufacturing. https://doi.org/10.1007/s12541-022-00689-0

    Article  Google Scholar 

  13. Li, C. J., Xu, X., Li, Y., Tong, H., Ding, S. L., Kong, Q. C., Zhao, L., & Ding, J. (2019). Effects of dielectric fluids on surface integrity for the recast layer in high speed EDM drilling of nickel alloy. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2018.12.283

    Article  Google Scholar 

  14. Kumar, S. S., Varol, T., Canakci, A., Kumaran, S. T., & Uthayakumar, M. (2021). A review on the performance of the materials by surface modification through EDM. International Journal of Lightweight Materials and Manufacture, 4(1), 127–144. https://doi.org/10.1016/j.ijlmm.2020.08.002

    Article  Google Scholar 

  15. Dong, T., Gao, C., Li, L., Pei, Y., Li, S., & Gong, S. (2017). Effect of substrate orientations on microstructure evolution and stability for single crystal superalloys in rapid solidification process. Materials & Design, 128, 218–230. https://doi.org/10.1016/j.matdes.2017.04.102

    Article  Google Scholar 

  16. Dong, S., Wang, Z., Wang, Y., & Zhang, J. (2017). Micro-EDM drilling of high aspect ratio micro-holes and in situ surface improvement in C17200 beryllium copper alloy. Journal of Alloys and Compounds, 727, 1157–1164. https://doi.org/10.1016/j.jallcom.2017.08.162

    Article  Google Scholar 

  17. Das, S., Klotz, M., & Klocke, F. (2003). EDM simulation: Finite element-based calculation of deformation, microstructure and residual stresses. Journal of Materials Processing Technology, 142(2), 434–451. https://doi.org/10.1016/s0924-0136(03)00624-1

    Article  Google Scholar 

  18. Kuriachen, B., Varghese, A., Somashekhar, K. P., Panda, S., & Mathew, J. (2015). Three-dimensional numerical simulation of microelectric discharge machining of Ti–6Al–4V. The International Journal of Advanced Manufacturing Technology, 79(1–4), 147–160. https://doi.org/10.1007/s00170-015-6794-y

    Article  Google Scholar 

  19. Joshi, S. N., & Pande, S. S. (2009). Development of an intelligent process model for EDM. The International Journal of Advanced Manufacturing Technology, 45(3–4), 300–317. https://doi.org/10.1007/s00170-009-1972-4

    Article  Google Scholar 

  20. Joshi, S. N., & Pande, S. S. (2010). Thermo-physical modeling of die-sinking EDM process. Journal of Manufacturing Processes, 12(1), 45–56. https://doi.org/10.1016/j.jmapro.2010.02.001

    Article  Google Scholar 

  21. Weingärtner, E., Kuster, F., & Wegener, K. (2012). Modeling and simulation of electrical discharge machining. Procedia CIRP. https://doi.org/10.1016/j.procir.2012.05.043

    Article  Google Scholar 

  22. Yang, J., Han, J., Yu, H., Yin, J., Gao, M., Wang, Z., & Zeng, X. (2016). Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti–6Al–4V alloy. Materials & Design. https://doi.org/10.1016/j.matdes.2016.08.036

    Article  Google Scholar 

  23. Kojima, A., Natsu, W., & Kunieda, M. (2008). Spectroscopic measurement of arc plasma diameter in EDM. CIRP Annals, 57(1), 203–207. https://doi.org/10.1016/j.cirp.2008.03.097

    Article  Google Scholar 

  24. Zhang, T., Li, H., Liu, S., Shen, S. N., Xie, H. M., Shi, W. X., Zhang, G. Q., Shen, B. N., Chen, L. W., Xiao, B., & Wei, M. M. (2019). Evolution of molten pool during selective laser melting of Ti–6Al–4V. Journal of Physics D: Applied Physics. https://doi.org/10.1088/1361-6463/aaee04

    Article  Google Scholar 

  25. Li, C. P., Huang, L., Xu, M. R., Chen, Y. N., Chen, J. L., Li, S. J., Li, P. N., Choi, Y.-S., & Ko, T. J. (2022). Processing mechanism of electrical discharge-assisted milling titanium alloy based on 3D thermal-mechanical coupling cutting model. Journal of Manufacturing Processes. https://doi.org/10.1016/j.jmapro.2022.04.012

    Article  Google Scholar 

  26. Tang, L., Ji, Y., Ren, L., Zhai, K. G., Huang, T. Q., Fan, Q. M., Zhang, J. J., & Liu, J. (2019). Thermo-electrical coupling simulation of powder mixed EDM SiC/Al functionally graded materials. The International Journal of Advanced Manufacturing Technology, 105(5–6), 2615–2628. https://doi.org/10.1007/s00170-019-04445-z

    Article  Google Scholar 

  27. Yeo, S. H., Kurnia, W., & Tan, P. C. (2007). Electro-thermal modelling of anode and cathode in micro-EDM. Journal of Physics D: Applied Physics, 40(8), 2513–2521. https://doi.org/10.1088/0022-3727/40/8/015

    Article  Google Scholar 

  28. Murali, M. S., & Yeo, S.-H. (2005). Process simulation and residual stress estimation of micro-electrodischarge machining using finite element method. Japanese Journal of Applied Physics, 44(7A), 5254–5263. https://doi.org/10.1143/jjap.44.5254

    Article  Google Scholar 

  29. Lips, T., & Fritsche, B. (2005). A comparison of commonly used re-entry analysis tools. Acta Astronautica, 57(2–8), 312–323. https://doi.org/10.1016/j.actaastro.2005.03.010

    Article  Google Scholar 

  30. Mills, X., & Kenneth, C. (2002). Recommended values of thermophysical properties for selected commercial alloys. Ti Pure Titanium. https://doi.org/10.1533/9781845690144.205

    Article  Google Scholar 

  31. Sharma, S., Pachaury, Y., Akhtar, S. N. & Ramkumar, J. (2015). A study on hydrodynamics of melt expulsion in pulsed Nd: YAG laser drilling of titanium. In COMSOL conference 2015 Pune.

  32. Allmen, M. V., & Blatter, A. (2013). Laser-beam interactions with materials: physical principles and applications. Springer.

    Google Scholar 

  33. Shankar, P., Jain, V. K., & Sundararajan, T. (1997). Analysis of spark profiles during Edm process. Machining Science and Technology, 1(2), 195–217. https://doi.org/10.1080/10940349708945647

    Article  Google Scholar 

  34. Bhaumik, M., & Maity, K. (2018). Effect of deep cryotreated tungsten carbide electrode and SiC powder on EDM performance of AISI 304. Particulate Science and Technology: An International Journal, 37(1/8), 1–12. https://doi.org/10.1007/s12633-018-9844-x

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 51905169) and the Natural Science Foundation of Hunan Province of China (2021jj40203). Also, the authors gratefully acknowledge the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (2020R1A2B5B02001755).

Author information

Authors and Affiliations

Authors

Contributions

YC: Software and Writing original draft preparation; CL: Conceptualization and Methodology; SL: Measurement and Data analysis; MX & LH: Experiments and Data curation; SL & PL: Review; XQ: Supervision; TJK: Supervision, Funding Acquisition. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Changping Li or Tae Jo Ko.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, C., Li, S. et al. Study on the Formation of the Crater and Modified Layer in EDM Titanium Alloys Based on Fluid–Solid Coupled Temperature Field Model. Int. J. Precis. Eng. Manuf. 24, 337–351 (2023). https://doi.org/10.1007/s12541-022-00753-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00753-9

Keywords

Navigation