Skip to main content
Log in

Defect Modelling and Tool Selection for Ultrasonic Machining Process Using Finite Element Analysis

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The machining performance of an ultrasonic machine mainly depends on the ability of the design of ultrasonic tool. A tool is a significant component in the ultrasonic machining process that contacts the abrasive particles to remove the material from the workpiece. The present investigation has considered the design of three different tool profiles as cylindrical, conical and stepped. A defect is introduced in three different orientations namely longitudinal, perpendicular and inclined about the vibration axis in all the respective tool profiles. The effect of vibration frequency during the machining on the defective and non-defective tools is analysed using numerical simulation technique. The study also presents the modal analysis to obtain the mode shapes and natural frequencies of the tool profiles with and without the defect. The induced stress is computed by performing the harmonic analysis for the defective and non-defective tools. Out of the three profiles analysed in this investigation, the conical tool profile without defect results in a maximum stress of 133 MPa and the same in presence of the internal defect in the inclined orientation is 537 MPa, which is 35% higher than the ultimate tensile strength of the tool material. The comparison of the tool profiles demonstrates that the stepped tool results in maximum Eigen frequency of 134.24 kHz with maximum stress of 453 MPa with the defect in the inclined axis at 30 kHz excitation frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lin, S., Xu, L., & Wenxu, H. (2011). A new type of high power composite ultrasonic transducer. Journal of Sound and Vibration, 330(7), 1419–1431.

    Article  Google Scholar 

  2. Yadava, V., & Deoghare, A. (2008). Design of horn for rotary ultrasonic machining using the finite element method. The International Journal of Advanced Manufacturing Technology, 39(1), 9–20.

    Article  Google Scholar 

  3. Rai, P. K., Patel, R. K., & Yadava, V. (2017). Modal analysis of horns used in ultrasonic machine. ELK Asia Pacific Journals – 978-93-85537-06-6.

  4. Hunter, G., Lucas, M., Watson, I., & Parton, R. (2008). A radial mode ultrasonic horn for the inactivation of Escherichia coli K12. Ultrasonics sonochemistry, 15(2), 101–109.

    Article  Google Scholar 

  5. Lin, S. (2007). Coupled vibration of isotropic metal hollow cylinders with large geometrical dimensions. Journal of sound and vibration, 305(1–2), 308–316.

    Article  Google Scholar 

  6. Iula, A., Parenti, L., Fabrizi, F., & Pappalardo, M. (2006). A high displacement ultrasonic actuator based on a flexural mechanical amplifier. Sensors and Actuators A: Physical, 125(2), 118–123.

    Article  Google Scholar 

  7. Sinn, G., Zettl, B., Mayer, H., & Stanzl-Tschegg, S. (2005). Ultrasonic-assisted cutting of wood. Journal of Materials Processing Technology, 170(1–2), 42–49.

    Article  Google Scholar 

  8. Bängtsson, E., Noreland, D., & Berggren, M. (2003). Shape optimization of an acoustic horn. Computer Methods in Applied Mechanics and Engineering, 192(11–12), 1533–1571.

    Article  MATH  Google Scholar 

  9. Cardoni, A., & Lucas, M. (2002). Enhanced vibration performance of ultrasonic block horns. Ultrasonics, 40(1–8), 365–369.

    Article  Google Scholar 

  10. Zhou, M., Wang, X. J., Ngoi, B. K. A., & Gan, J. G. K. (2002). Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. Journal of Materials Processing Technology, 121(2–3), 243–251.

    Article  Google Scholar 

  11. Iula, A., Vazquez, F., Pappalardo, M., & Gallego, J. A. (2002). Finite element three-dimensional analysis of the vibrational behaviour of the Langevin-type transducer. Ultrasonics, 40(1–8), 513–517.

    Article  Google Scholar 

  12. Lee, C. H., & Lal, A. (2001). Silicon ultrasonic horns for thin film accelerated stress testing. In 2001 IEEE ultrasonics symposium. Proceedings. An international symposium (Cat. No. 01CH37263) (Vol. 2, pp. 867–870). IEEE.

  13. Watanabe, Y., & Mori, E. (1996). A study on a new flexural-mode transducer-solid horn system and its application to ultrasonic plastics welding. Ultrasonics, 34(2–5), 235–238.

    Article  Google Scholar 

  14. Amir, N., Pagneux, V., & Kergomard, J. (1970). Wave propagation in acoustic horns through modal decomposition. WIT Transactions on the Built Environment11, 37–44.

  15. Amin, S. G., Ahmed, M. H. M., & Youssef, H. A. (1995). Computer-aided design of acoustic horns for ultrasonic machining using finite-element analysis. Journal of Materials Processing Technology, 55(3–4), 254–260.

    Article  Google Scholar 

  16. Bangviwat, A., Ponnekanti, H. K., & Finch, R. D. (1991). Optimizing the performance of piezoelectric drivers that use stepped horns. The Journal of the Acoustical Society of America, 90(3), 1223–1229.

    Article  Google Scholar 

  17. Engquist, B., & Majda, A. (1977). Absorbing boundary conditions for numerical simulation of waves. Proceedings of the National Academy of Sciences, 74(5), 1765–1766.

    Article  MATH  Google Scholar 

  18. Nagarkar, B. N., & Finch, R. D. (1971). Sinusoidal horns. The Journal of the Acoustical Society of America, 50(1A), 23–31.

    Article  Google Scholar 

  19. Eisner, E. (1963). Design of sonic amplitude transformers for high magnification. The Journal of the Acoustical Society of America, 35(9), 1367–1377.

    Article  Google Scholar 

  20. Grabalosa, J., Ferrer, I., Martínez-Romero, O., Elías-Zúñiga, A., Plantá, X., & Rivillas, F. (2016). Assessing a stepped sonotrode in ultrasonic molding technology. Journal of Materials Processing Technology, 229, 687–696.

    Article  Google Scholar 

  21. Lee, S. I., & Hong, S. H. (2007). Nonlinear vibration analysis of ultrasonic horn model for flip-chip bonding. In 2007 International conference on control, automation and systems (pp. 2804–2807). IEEE.

  22. Seah, K. H. W., Wong, Y. S., & Lee, L. C. (1993). Design of tool holders for ultrasonic machining using FEM. Journal of Materials Processing Technology, 37(1–4), 801–816.

    Article  Google Scholar 

  23. Mughal, K. H., Qureshi, M. A. M., & Raza, S. F. (2021). Novel ultrasonic horn design for machining advanced brittle composites: A step forward towards green and sustainable manufacturing. Environmental Technology and Innovation, 23, 101652.

    Article  Google Scholar 

  24. Banerjee, B., Pradhan, S., Das, S., Chakraborty, A., & Dhupal, D. (2021). Horn design and analysis in ultrasonic machining process using ANSYS. Advances in Materials and Processing Technologies, 1–14.

  25. Sun, J., Kang, R., Qin, Y., Wang, Y., Feng, B., & Dong, Z. (2021). Simulated and experimental study on the ultrasonic cutting mechanism of aluminum honeycomb by disc cutter. Composite Structures, 275, 114431.

    Article  Google Scholar 

  26. Tamang, S., & Aravindan, S. (2019). 3D numerical modelling of microwave heating of SiC susceptor. Applied Thermal Engineering, 162, 114250.

    Article  Google Scholar 

  27. Jingsi, W., Keita, S., Masayoshi, M., & Tsunemoto, K. (2018). Tool wear mechanism and its relation to material removal in ultrasonic machining. Wear, 394–395, 96–108.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Condition Monitoring Laboratory at Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar – 788010, Assam, India for providing the necessary facilities for carrying out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bipul Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirad, M.M., Das, B. Defect Modelling and Tool Selection for Ultrasonic Machining Process Using Finite Element Analysis. Int. J. Precis. Eng. Manuf. 24, 251–263 (2023). https://doi.org/10.1007/s12541-022-00719-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00719-x

Keywords

Navigation