Skip to main content
Log in

Mathematical Model to Predict the Moduli of Wet-Laid Pulp/Fiber/Resin Composite Materials

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In this study, a new wet-laid composite material composed of an aramsid pulp, P-aramid fibers, M-aramid fibers, and a phenol resin has been fabricated to examine the applicability of transmission gears in weight and vibration reduction. Aramid pulps produced via fibrillation on the surface of P-aramid fibers are used to enhance the interfacial bonding between the fibers and resin. Mathematical models to predict the moduli of the wet-laid composite material and a specific relationship between the fibrils and matrix in pulps are additionally proposed. Based on the models, we analyze the variation in the moduli of the composites with two different fiber lengths, when the aramid pulp and P-aramid fiber mass fractions are varied. Moreover, four composite specimens with different phenol and aramid pulp contents (wt%) are fabricated and subjected to tensile tests. The model can well predict the tensile modulus within the error range of the test results. Based on a finite element analysis using the obtained moduli, the soaring out-of-plane stress components at a composite plate edge can be calculated accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Sim, E., Kim, C., Kwak, K., & Kim, B. (2020). Optimum interface shape and vibration test for a new transmission helical gear composed of steel and aramid/phenol composite. Journal of Mechanical Science and Technology, 34(4), 1629–1634. https://doi.org/10.1007/s12206-020-0325-y

    Article  Google Scholar 

  2. Hubbe, M. A., & Koukoulas, A. A. (2016). Wet-laid nonwovens manufacture—Chemical approaches using synthetic and cellulosic fibers. BioResources, 11(2), 5500–5552. https://doi.org/10.15376/BIORES.11.2.HUBBE

    Article  Google Scholar 

  3. Halpin, J. C. (1969). Stiffness and expansion estimates for oriented short fiber composites. Journal of Composite Materials, 3(4), 732–734. https://doi.org/10.1177/002199836900300419

    Article  Google Scholar 

  4. Kahl, C., Feldmann, M., Sälzer, P., & Heim, H. P. (2018). Advanced short fiber composites with hybrid reinforcement and selective fiber-matrix-adhesion based on polypropylene-characterization of mechanical properties and fiber orientation using high-resolution X-ray tomography. Composites Part A, 111, 54–61. https://doi.org/10.1016/j.compositesa.2018.05.014

    Article  Google Scholar 

  5. Rajthilak, K. R., Ramesh, S., Lokesh, G. N., & Boppana, S. B. (2021). Date palm fibre reinforced composite by multiple resin to enhance the properties of a composite—A review. IOP Conference Series: Materials Science and Engineering, 1013, 012034. https://doi.org/10.1088/1757-899X/1013/1/012034

    Article  Google Scholar 

  6. Inbakumar, P. J., Ramesh, S., & Boppana, S. B. (2021). Influence of mechanical properties in the surface modification of palm fiber/epoxy matrix composite. Journal of Natural Fibers. https://doi.org/10.1080/15440478.2021.1993409

    Article  Google Scholar 

  7. Wenbin, L., Jianfeng, H., Jie, F., Zhenhai, L., Liyun, C., & Chunyan, Y. (2016). Effect of aramid pulp on improving mechanical and wet tribological properties of carbon fabric/phenolic composites. Tribology International, 104, 237–246. https://doi.org/10.1016/j.triboint.2016.09.005

    Article  Google Scholar 

  8. Feng, Q. P., Shen, X. J., Yang, J. P., Fu, S. Y., Mai, Y. W., & Friedrich, K. (2011). Synthesis of epoxy composites with high carbon nanotube loading and effects of tubular and wavy morphology on composite strength and modulus. Polymer, 52(26), 6037–6045. https://doi.org/10.1016/j.polymer.2011.10.049

    Article  Google Scholar 

  9. Yeh, M. K., Tai, N. H., & Liu, J. H. (2006). Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon, 44(1), 1–9. https://doi.org/10.1016/j.carbon.2005.07.005

    Article  Google Scholar 

  10. Shokrieh, M. M., & Moshrefzadeh-Sani, H. (2016). On the constant parameters of Halpin-Tsai equation. Polymer, 106, 14–20. https://doi.org/10.1016/j.polymer.2016.10.049

    Article  Google Scholar 

  11. Yan, H., Li, J., Tian, W., He, L., Tuo, X., & Teng, Q. (2016). A new approach to the preparation of poly(p-phenylene terephthalamide) nanofibers. RSC Advances, 6(32), 26599–26605. https://doi.org/10.1039/C6RA01602B

    Article  Google Scholar 

  12. Yao, J., Jin, J., Lepore, E., Pugno, N. M., Bastiaansen, C., & Peijs, T. (2015). Electrospinning of p-aramid fibers. Macromolecular Materials and Engineering, 300(12), 1238–1245. https://doi.org/10.1002/mame.201500130

    Article  Google Scholar 

  13. Ifuku, S., Maeta, H., Izawa, H., Morimoto, M., & Saimoto, H. (2014). Facile preparation of aramid nanofibers from Twaron fibers by a downsizing process. RSC Advances, 4(76), 40377–40380. https://doi.org/10.1039/C4RA06924B

    Article  Google Scholar 

  14. Yang, M., Cao, K., Sui, L., Qi, Y., Zhu, J., Waas, A., Arruda, E. M., Kieffer, J., Thouless, M. D., & Kotov, N. A. (2011). Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano, 5(9), 6945–6954. https://doi.org/10.1021/nn2014003

    Article  Google Scholar 

  15. Halpin Affdl, J. C., & Kardos, J. L. (1976). The Halpin-Tsai equations: A review. Polymer Engineering and Science, 16, 344–352. https://doi.org/10.1002/pen.760160512

    Article  Google Scholar 

  16. Al Malaika, S., Golovoy, A., & Wilkie, C. A. (2001). Specialty polymer additives: Principles and applications. Blackwell Science.

    Google Scholar 

  17. Trigo-López, M., García, J. M., Ruiz, J. A. R., García, F. C., & Ferrer R. (2018). Aromatic polyamides. In Mark H. F. (Eds.), Encyclopedia of polymer science and technology (pp. 21–23). Wiley.

  18. Pipes, R. B., & Pagano, N. J. (1970). Interlaminar stresses in composite laminates under uniform axial extension. Journal of Composite Materials, 4, 538–548. https://doi.org/10.1177/002199837000400409

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant (R&D, P0002124) from the Great Regional Industry Cooperative Research Program of the Ministry of Trade, Industry and Energy, and KIAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Yun, MG., Kim, S. et al. Mathematical Model to Predict the Moduli of Wet-Laid Pulp/Fiber/Resin Composite Materials. Int. J. Precis. Eng. Manuf. 23, 1315–1324 (2022). https://doi.org/10.1007/s12541-022-00700-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00700-8

Keywords

Navigation