Skip to main content
Log in

Realization of Enhanced Mechanical Properties of Solid-State Welded Ti Alloy with Commercial Purity

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In this study, we investigated the solid-state weldability of Ti alloys with commercial purity (grade 2). First, as a solid-state welding approach, we conducted friction welding at a rotation speed of 1600 rpm and a friction pressure of 15 kgf on rod-type specimens with a size of 15 mm (dia.) × 50 mm (length). Subsequently, the grain boundary characteristic distributions such as the grain size, shape, orientation, and misorientation angle of the welds were clarified by means of the electron backscatter diffraction method. To study the mechanical properties of the welds, we conducted Vickers microhardness and tensile tests. We found that the application of friction welding to Ti alloy led to a significantly refined grain size in the weld zone (0.84 μm) relative to that in the base material (11.4 μm), accompanied by an orientation change from <0001> in the base material to <2–1–10> in the weld zone. In addition, the mechanical properties of the welds were more enhanced than those of the base material: the microhardness and yield strength of the weld were approximately 20% and 2% higher, respectively, than those of base material. These enhanced mechanical properties are mainly due to grain refinement and orientation development during welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Del Pero, F., Berzi, L., Antonacci, A., & Delogu, M. (2020). Automotive lightweight design: Simulation modeling of mass-related consumption for electric vehicles. Machines. https://doi.org/10.3390/machines8030051

    Article  Google Scholar 

  2. Hideki, F., Kazuhir, T., & Yoshito, Y. (2003). Application of titanium and its alloys for automobile parts (Special Issue on Materials for Automotive Use, Issue). https://www.nipponsteel.com/en/tech/report/nsc/pdf/n8815.pdf.

  3. Shi, J., Song, G., & Chi, J. (2018). Effect of active gas on weld appearance and performance in laser-TIG hybrid welded titanium alloy. International Journal of Lightweight Materials and Manufacture, 1(1), 47–53. https://doi.org/10.1016/j.ijlmm.2018.03.002

    Article  Google Scholar 

  4. Li, J., Liu, Y., Zhen, Z., Jin, P., Sun, Q., & Feng, J. (2019). Weld formation mechanism and microstructural evolution of TC4/304 stainless steel joint with Cu-based filler wire and preheating. Materials (Basel). https://doi.org/10.3390/ma12193071

    Article  Google Scholar 

  5. Mo, D., Wang, Y., Fang, Y., Song, T., & Jiang, X. (2018). Influence of welding speed on the microstructure and mechanical properties of electron beam-welded joints of TC4 and 4J29 sheets using Cu/Nb multi-interlayers. Metals. https://doi.org/10.3390/met8100810

    Article  Google Scholar 

  6. Choi, J.-W., Aoki, Y., Ushioda, K., & Fujii, H. (2021). Linear friction welding of Ti–6Al–4V alloy fabricated below β-phase transformation temperature. Scripta Materialia, 191, 12–16. https://doi.org/10.1016/j.scriptamat.2020.09.013

    Article  Google Scholar 

  7. Karami, S., Jafarian, H., Eivani, A. R., & Kheirandish, S. (2016). Engineering tensile properties by controlling welding parameters and microstructure in a mild steel processed by friction stir welding. Materials Science and Engineering A, 670, 68–74. https://doi.org/10.1016/j.msea.2016.06.008

    Article  Google Scholar 

  8. Mashinini, P. M., Dinaharan, I., David Raja Selvam, J., & Hattingh, D. G. (2018). Microstructure evolution and mechanical characterization of friction stir welded titanium alloy Ti–6Al–4V using lanthanated tungsten tool. Materials Characterization, 139(1), 328–336. https://doi.org/10.1016/j.matchar.2018.03.020

    Article  Google Scholar 

  9. Uday, M. B., Ahmad Fauzi, M. N., Zuhailawati, H., & Ismail, A. B. (2013). Advances in friction welding process: A review. Science and Technology of Welding and Joining, 15(7), 534–558. https://doi.org/10.1179/136217110x12785889550064

    Article  Google Scholar 

  10. Palanivel, R., Laubscher, R. F., Dinaharan, I., & Hattingh, D. G. (2017). Microstructure and mechanical characterization of continuous drive friction welded grade 2 seamless titanium tubes at different rotational speeds. International Journal of Pressure Vessels and Piping, 154, 17–28. https://doi.org/10.1016/j.ijpvp.2017.06.005

    Article  Google Scholar 

  11. Stütz, M., Buzolin, R., Pixner, F., Poletti, C., & Enzinger, N. (2019). Microstructure development of molybdenum during rotary friction welding. Materials Characterization, 151, 506–518. https://doi.org/10.1016/j.matchar.2019.03.024

    Article  Google Scholar 

  12. Liu, Y. H., Zhao, Z. B., Zhang, C. B., Wang, Q. J., Sun, H., & Li, N. (2020). Thermal and mechanical induced texture evolution of inertia friction welding in α + β titanium alloy. Materials Letters. https://doi.org/10.1016/j.matlet.2020.128329

    Article  Google Scholar 

  13. Zhang, J., Hu, R., Pang, S., & Huang, A. (2019). Distribution of Al element of Ti–6Al–4V joints by fiber laser welding. Coatings. https://doi.org/10.3390/coatings9090566

    Article  Google Scholar 

  14. Kabir, A. S. H., Cao, X., Wanjara, P., Cuddy, J., Birur, A., & Medraj, M. (2013). Use of filler wire for laser welding of Ti–6Al–4V. Canadian Metallurgical Quarterly, 51(3), 320–327. https://doi.org/10.1179/1879139512y.0000000016

    Article  Google Scholar 

  15. Xu, P.-Q., Li, L., & Zhang, C. (2014). Microstructure characterization of laser welded Ti–6Al–4V fusion zones. Materials Characterization, 87, 179–185. https://doi.org/10.1016/j.matchar.2013.11.005

    Article  Google Scholar 

  16. Gao, F., Cui, Y., Lv, Y., Yu, W., & Jiang, P. (2021). Microstructure and properties of Ti–6Al–4V alloy welded joint by keyhole gas tungsten arc welding. Materials Science and Engineering: A. https://doi.org/10.1016/j.msea.2021.142024

    Article  Google Scholar 

  17. Xu, X., Song, G., Zhao, S., & Liu, L. (2020). Effect of distance between the heat sources on energy transfer behavior in keyhole during laser-GTA welding titanium alloy. Journal of Manufacturing Processes, 55, 317–325. https://doi.org/10.1016/j.jmapro.2020.04.041

    Article  Google Scholar 

  18. Maalekian, M. (2013). Friction welding—Critical assessment of literature. Science and Technology of Welding and Joining, 12(8), 738–759. https://doi.org/10.1179/174329307x249333

    Article  Google Scholar 

  19. Liang, Z., Qin, G., Geng, P., Yang, F., & Meng, X. (2017). Continuous drive friction welding of 5A33 Al alloy to AZ31B Mg alloy. Journal of Manufacturing Processes, 25, 153–162. https://doi.org/10.1016/j.jmapro.2016.11.004

    Article  Google Scholar 

  20. Li, W., Vairis, A., Preuss, M., & Ma, T. (2016). Linear and rotary friction welding review. International Materials Reviews, 61(2), 71–100. https://doi.org/10.1080/09506608.2015.1109214

    Article  Google Scholar 

  21. McNelley, T. R., Swaminathan, S., & Su, J. Q. (2008). Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scripta Materialia, 58(5), 349–354. https://doi.org/10.1016/j.scriptamat.2007.09.064

    Article  Google Scholar 

  22. Liu, F. C., & Nelson, T. W. (2018). Twining and dynamic recrystallization in austenitic Alloy 718 during friction welding. Materials Characterization, 140, 39–44. https://doi.org/10.1016/j.matchar.2018.03.035

    Article  Google Scholar 

  23. Rollett, A., Humphreys, F. J., Rohrer, G. S., & Hatherly, M. (2004). Recrystallization and related annealing phenomena (2nd ed.). New York: Elsevier.

    Google Scholar 

  24. Fujii, H., Cui, L., Tsuji, N., Maeda, M., Nakata, K., & Nogi, K. (2006). Friction stir welding of carbon steels. Materials Science and Engineering: A, 429(1–2), 50–57. https://doi.org/10.1016/j.msea.2006.04.118

    Article  Google Scholar 

  25. Song, K. H., Kim, H. S., & Kim, W. Y. (2012). Improvement of mechanical properties in severely plastically deformed Ni–Cr alloy. Materials & Design, 35, 685–690. https://doi.org/10.1016/j.matdes.2011.10.029

    Article  Google Scholar 

  26. Song, K. H., Lee, H. J., & Kim, W. Y. (2012). Enhanced mechanical properties and formability of cross-roll rolled Ni–10Cr alloy. Materials Transactions, 53(5), 1011–1016. https://doi.org/10.2320/matertrans.M2011392

    Article  Google Scholar 

  27. Kimura, M., Kusaka, M., Seo, K., & Muramatsu, Y. (2013). Properties and improvement of super fine grained steel friction welded joint. Science and Technology of Welding and Joining, 11(4), 448–454. https://doi.org/10.1179/174329306x120741

    Article  Google Scholar 

  28. Mendoza, M. Y., Quintana, M. J., & Collins, P. C. (2020). Microstructure Characterization and mechanical properties in individual zones of linear friction welded Ti–6Al–4V alloy. Metallurgical and Materials Transactions A, 51(12), 6294–6306. https://doi.org/10.1007/s11661-020-06043-1

    Article  Google Scholar 

  29. Wang, X. Y., Li, W. Y., Ma, T. J., & Vairis, A. (2017). Characterisation studies of linear friction welded titanium joints. Materials & Design, 116, 115–126. https://doi.org/10.1016/j.matdes.2016.12.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Min Jeong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, GW., Song, KH. & Jeong, SM. Realization of Enhanced Mechanical Properties of Solid-State Welded Ti Alloy with Commercial Purity. Int. J. Precis. Eng. Manuf. 23, 471–477 (2022). https://doi.org/10.1007/s12541-022-00633-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00633-2

Keywords

Navigation