Skip to main content
Log in

Grain Growth Behavior and Improved Mathematical Model of a New-Type Superalloy

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The grain growth at high temperature significantly affects the ultimate grain sizes and mechanical properties of superalloy. To study the grain growth behavior of a new-type nickel-base superalloy, GH4065 alloy, a series of grain growth tests within the holding temperature range of 1100–1350 K and holding time range of 0–14,400 s were conducted. Via the morphology analysis, it was concluded that the grains of GH4065 alloy normally grow during the temperature range of 1100–1250 K and abnormally grow during the temperature range of 1300–1350 K. The average grain sizes at different experimental conditions were counted and the influences of holding temperature and holding time on the average grain sizes of GH4065 alloy were investigated. It was revealed that the grain sizes increase but the grain growth rates gradually slow down with the increase of holding time; the grain sizes increase with the holding temperature increase and higher temperature further promotes the grain growth degree. Based on the Sellar-type and Anelli-type grain growth mathematics model, an improved two-segment grain growth model was developed and computed to describe the grain growth behavior of GH4065 alloy at high temperature. The evaluation results show that the constructed grain growth model possesses high prediction precision in grain growth behavior characterization of GH4065 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Rai, R. K., Sahu, J. K., Das, S. K., Paulose, N., Fernando, D. C., & Srivastava, C. (2018). Cyclic plastic deformation behaviour of a directionally solidified nickel base superalloy at 850 °c: Damage micromechanisms. Materials Characterization, 141, 120–128. https://doi.org/10.1016/j.matchar.2018.04.039

    Article  Google Scholar 

  2. Zhang, P., Zhu, Q., Hu, C., Wang, C., Chen, G., & Qin, H. (2015). Cyclic deformation behavior of a nickel-base superalloy under fatigue loading. Materials & Design, 69(Mar), 12–21. https://doi.org/10.1016/j.matdes.2014.12.047

    Article  Google Scholar 

  3. Belyaev, M. S., & Petrushin, N. V. (2018). High-cycle fatigue of single crystals of nickel-base superalloy vzhm4. Inorganic Materials: Applied Research, 9(4), 655–662. https://doi.org/10.1134/S2075113318040044

    Article  Google Scholar 

  4. Yu, Q. Y., Yao, Z. H., & Dong, J. X. (2015). Deformation and recrystallization behavior of a coarse-grain, nickel-base superalloy udimet720li ingot material. Materials Characterization. https://doi.org/10.1016/j.matchar.2015.07.035

    Article  Google Scholar 

  5. Turner, T. J., & Semiatin, S. L. (2011). Modeling large-strain deformation behavior and neighborhood effects during hot working of a coarse-grain nickel-base superalloy. Modelling & Simulation in Materials Science & Engineering, 19(6), 065010. https://doi.org/10.1088/0965-0393/19/6/065010

    Article  Google Scholar 

  6. Tian, G., Jia, C., Liu, J., & Hu, B. (2009). Experimental and simulation on the grain growth of p/m nickel-base superalloy during the heat treatment process. Materials & Design, 30(3), 433–439. https://doi.org/10.1016/j.matdes.2008.06.007

    Article  Google Scholar 

  7. Huda, Z., & Ralph, B. (1990). Kinetics of grain growth in powder-formed in-792: A nickel-base superalloy. Materials Characterization, 25(2), 211–220. https://doi.org/10.1016/1044-5803(90)90011-8

    Article  Google Scholar 

  8. Ning, Y., Yao, Z., Fu, M. W., & Guo, H. (2011). Recrystallization of the hot isostatic pressed nickel-base superalloy fgh4096: i. Microstructure and mechanism. Materials Science and Engineering A, 528(28), 8065–8070. https://doi.org/10.1016/j.msea.2011.07.053

    Article  Google Scholar 

  9. Poelt, P., Sommitsch, C., Mitsche, S., & Walter, M. (2006). Dynamic recrystallization of ni-base alloys—Experimental results and comparisons with simulations. Materials Science & Engineering A, 420(1/2), 306–314. https://doi.org/10.1016/j.msea.2006.01.076

    Article  Google Scholar 

  10. Semiatin, S. L., Mcclary, K. E., Rollett, A. D., Roberts, C. G., & Gabb, T. P. (2013). Plastic flow and microstructure evolution during thermomechanical processing of a pm nickel-base superalloy. Metallurgical & Materials Transactions A. https://doi.org/10.1007/s11661-013-1675-1

    Article  Google Scholar 

  11. Zhou, W. L., Chen, W. H., & Zhang, F. J. (2014). Forming process simulation and optimization of nickel-base superalloy turbine disk. Advanced Materials Research, 1004–1005, 1156–1161. https://doi.org/10.4028/www.scientific.net/AMR.1004-1005.1156

    Article  Google Scholar 

  12. Chen, L., Cheng, Q., Zhu, F., & Zhao, Y. (2013). Grain growth behavior of a ni-cr based superalloy gh4033 in reheating process prior to hot rolling. Hoboken: Wiley. https://doi.org/10.1007/978-3-319-48764-9_45

    Book  Google Scholar 

  13. Kai, S., & Aindow, M. (2008). Grain growth and particle pinning in a model ni-based superalloy. Materials Science and Engineering A, 479(1–2), 365–372. https://doi.org/10.1016/j.msea.2007.09.055

    Article  Google Scholar 

  14. Collins, D. M., Conduit, B. D., Stone, H. J., Hardy, M. C., Conduit, G. J., & Mitchell, R. J. (2013). Grain growth behaviour during near-γ′ solvus thermal exposures in a polycrystalline nickel-base superalloy. Acta Materialia, 61(9), 3378–3391. https://doi.org/10.1016/j.actamat.2013.02.028

    Article  Google Scholar 

  15. Sellars, C. M., & Whiteman, J. A. (1979). Recrystallization and grain growth in hot rolling. Metal Science, 13(3–4), 187–194. https://doi.org/10.1179/msc.1979.13.3-4.187

    Article  Google Scholar 

  16. Lan, Y. J., Li, D. Z., & Li, Y. Y. (2006). A mesoscale cellular automaton model for curvature-driven grain growth. Metallurgical & Materials Transactions B, 37(1), 119–129. https://doi.org/10.1007/s11663-006-0091-y

    Article  MathSciNet  Google Scholar 

  17. Cho, J. R., Jeong, H. S., Cha, D. J., Bae, W. B., & Lee, J. W. (2005). Prediction of microstructural evolution and recrystallization behaviors of a hot working die steel by fem. Journal of Materials Processing Technology., 160(1), 1–8. https://doi.org/10.1016/j.jmatprotec.2004.01.001

    Article  Google Scholar 

  18. Wen, D. X., Lin, Y. C., & Zhou, Y. (2017). A new dynamic recrystallization kinetics model for a nb containing ni-fe-cr-base superalloy considering influences of initial δ phase. Vacuum, 141, 316–327. https://doi.org/10.1016/j.vacuum.2017.04.030

    Article  Google Scholar 

  19. Park, S. M., Oh, Y. S., Kim, S. J., Kim, H. R., & Kang, S. H. (2019). Effect of ecap on change in microstructure and critical current density of low temperature super-conducting monowire. International Journal of Precision Engineering and Manufacturing, 20(2), 1–10. https://doi.org/10.1007/s12541-019-00164-3

    Article  Google Scholar 

  20. Chen, X.-M., Lin, Y. C., & Wu, F. (2017). Ebsd study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy. Journal of Alloys & Compounds, 724, 198–207. https://doi.org/10.1016/j.jallcom.2017.07.027

    Article  Google Scholar 

  21. Chen, M. S., Zou, Z. H., Lin, Y. C., Li, H. B., & Wang, G. Q. (2019). Formation mechanism of large grains inside annealed microstructure of gh4169 superalloy by cellular automation method. Journal of Materials Science & Technology., 35(7), 1403–1411. https://doi.org/10.1016/j.jmst.2018.11.026

    Article  Google Scholar 

  22. Randle, V., Rios, P. R., & Hu, Y. (2008). Grain growth and twinning in nickel. Scripta Materialia, 58(2), 130–133. https://doi.org/10.1016/j.scriptamat.2007.09.016

    Article  Google Scholar 

  23. Anelli, E. (1992). Application of mathematical modelling to hot rolling and controlled cooling of wire rods and bars. ISIJ International, 32(3), 440–449. https://doi.org/10.2355/isijinternational.32.440

    Article  Google Scholar 

  24. Berdichevsky, V. L. (2012). Thermodynamics of microstructure evolution: Grain growth. International Journal of Engineering Science, 57, 50–78. https://doi.org/10.1016/j.ijengsci.2012.03.038

    Article  Google Scholar 

  25. Yu, B. Z., Godfrey, A., Miodownik, M. A., Wei, L., & Liu, Q. (2007). Generation of initial microstructures for Monte Carlo potts model simulations of quasi-binary grain growth. Materials ence Forum, 558–559, 821–824. https://doi.org/10.4028/www.scientific.net/MSF.558-559.821

    Google Scholar 

  26. Chai, R., Guo, C., & Yu, L. (2012). Two flowing stress models for hot deformation of xc45 steel at high temperature. Materials Science & Engineering A., 534(Feb.1), 101–110. https://doi.org/10.1016/j.msea.2011.11.047

    Article  Google Scholar 

  27. Lin, Y. C., Nong, F. Q., Chen, X. M., Chen, D. D., & Chen, M. S. (2017). Microstructural evolution and constitutive models to predict hot deformation behaviors of a nickel-based superalloy. Vacuum, 137, 104–114. https://doi.org/10.1016/j.vacuum.2016.12.022

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangxi Natural Science Foundation (No. 2020GXNSFBA159036) and Guangxi key R & D plan (No. Guike AB20297022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Haoqiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haoqiang, Z., Juanatas, R., Niguidula, J. et al. Grain Growth Behavior and Improved Mathematical Model of a New-Type Superalloy. Int. J. Precis. Eng. Manuf. 23, 99–109 (2022). https://doi.org/10.1007/s12541-021-00607-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00607-w

Keywords

Navigation