Fabrication of Hollow Polymer Microchannels Using the MIMIC Technique with Subsequent Heat Treatment


The hollow polymer microchannels with different shapes and dimensions have been fabricated by the MIMIC method and the heating process for the first time. The smallest cross-sectional dimensions of hollow polymer microchannels were about 2.6 μm in the vertical direction and 3.5 μm in the horizontal direction. The length of hollow polymer microchannels increased parabolically with the heating temperature in the range of 30–135 °C. And the influence of the PDMS mold cross-sectional areas on the length of the microchannels was invetigated. Furthermore, the forming mechanism of hollow polymer microchannels was disscussed in detail. This technique provides a cheap, simple and controllable way for the preparation of microchannels.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Sugino, H., Ozaki, K., Shirasaki, Y., Arakawa, T., Shoji, S., et al. (2009). On-chip microfluidic sorting with fluorescence spectrum detection and multiway separation. Lab on a Chip, 9(9), 1254–1260. https://doi.org/10.1039/b815765k

    Article  Google Scholar 

  2. 2.

    Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y., et al. (2010). Reconstituting organ-level lung functions on a chip. Science, 328(5986), 1662–1668. https://doi.org/10.1126/science.1188302

    Article  Google Scholar 

  3. 3.

    Fikar, P., Lissorgues, G., Rousseau, L., Francais, O., Pioufle, B. L., et al. (2015). SU-8 microchannels for live cell dielectrophoresis improvements. Microsystem Technologies, 23(9), 3901–3908. https://doi.org/10.1007/s00542-015-2725-y

    Article  Google Scholar 

  4. 4.

    Zhou, L., Zhuang, G., & Li, G. (2018). A facile method for the fabrication of glass-PDMS-glass sandwich microfluidic devices by sacrificial molding. Sensors and Actuators B: Chemical., 261, 364–371. https://doi.org/10.1016/j.snb.2018.01.158

    Article  Google Scholar 

  5. 5.

    Lim, K. S., Baptista, M., Moon, S., Woodfield, T. B. F., & Rnjak-Kovacina, J. (2019). Microchannels in development, survival, and vascularisation of tissue analogues for regenerative medicine. Trends in Biotechnology, 37(11), 1189–1201. https://doi.org/10.1016/j.tibtech.2019.04.004

    Article  Google Scholar 

  6. 6.

    Xie, R., Zheng, W., Guan, L., Ai, Y., & Liang, Q. (2020). Engineering of hydrogel materials with perfusable microchannels for building vascularized tissues. Small (Weinheim an der Bergstrasse, Germany), 16(15), e1902838. https://doi.org/10.1002/smll.201902838

    Article  Google Scholar 

  7. 7.

    Lee, M., Lee, Y.-K., & Zohar, Y. (2012). Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels. Journal of Micromechanics and Microengineering. https://doi.org/10.1088/0960-1317/22/3/035015

    Article  Google Scholar 

  8. 8.

    Deng, D., Chen, R., Tang, Y., Lu, L., Zeng, T., et al. (2015). A comparative study of flow boiling performance in reentrant copper microchannels and reentrant porous microchannels with multi-scale rough surface. International Journal of Multiphase Flow, 72, 275–287. https://doi.org/10.1016/j.ijmultiphaseflow.2015.01.004

    Article  Google Scholar 

  9. 9.

    Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A., & Quake, S. R. (2000). Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 288(5463), 113–116. https://doi.org/10.1126/science.288.5463.113

    Article  Google Scholar 

  10. 10.

    Zhou, K., Yan, Z., Zhang, L., & Bennion, I. (2011). Refractometer based on fiber Bragg grating Fabry-Pérot cavity embedded with a narrow microchannel. Optics Express, 19(12), 11769–11779. https://doi.org/10.1364/oe.19.011769

    Article  Google Scholar 

  11. 11.

    Yu, Y., Chen, X., Huang, Q., Du, C., Ruan, S., et al. (2015). Enhancing the pressure sensitivity of a Fabry-Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel. Applied Physics B, 120(3), 461–467. https://doi.org/10.1007/s00340-015-6155-4

    Article  Google Scholar 

  12. 12.

    Miao, F., Miao, R., Yu, Z., Shi, C., Zhu, L., et al. (2019). A stacked structure comprising 3-dimensional nitrogen-doped graphene, silicon microchannel plate, and TiO2 for high-performance anode in lithium-ion battery. Materials Express, 9(6), 629–634. https://doi.org/10.1166/mex.2019.1533

    Article  Google Scholar 

  13. 13.

    Jin, J., Li, X., Li, X., Di, S., & Wang, X. (2012). Nano/microchannel fabrication based on SU-8 using sacrificial resist etching method. Micro & Nano Letters, 7(12), 1320–1323. https://doi.org/10.1049/mnl.2012.0775

    Article  Google Scholar 

  14. 14.

    Tatikonda, A., Jokinen, V. P., Evard, H., & Franssila, S. (2018). Sacrificial layer technique for releasing metallized multilayer SU-8 devices. Micromachines. https://doi.org/10.3390/mi9120673

    Article  Google Scholar 

  15. 15.

    Hamilton, E. S., Ganjalizadeh, V., Wright, J. G., Schmidt, H., & Hawkins, A. R. (2020). 3D hydrodynamic focusing in microscale optofluidic channels formed with a single sacrificial layer. Micromachines. https://doi.org/10.3390/mi11040349

    Article  Google Scholar 

  16. 16.

    Wu, G.-W., Shih, W.-P., Hui, C.-Y., Chen, S.-L., & Lee, C.-Y. (2010). Bonding strength of pressurized microchannels fabricated by polydimethylsiloxane and silicon. Journal of Micromechanics and Microengineering. https://doi.org/10.1088/0960-1317/20/11/115032

    Article  Google Scholar 

  17. 17.

    Yu, J., Kang, S.-W., Kwon, T.-S., & Banerjee, D. (2018). In situ characterization of enhanced thermal performance by periodic nanostructures on the surface of a microchannel. International Journal of Heat and Mass Transfer, 124, 414–422. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.074

    Article  Google Scholar 

  18. 18.

    Fekete, Z., Pongrácz, A., Fürjes, P., & Battistig, G. (2012). Improved process flow for buried channel fabrication in silicon. Microsystem Technologies, 18(3), 353–358. https://doi.org/10.1007/s00542-012-1430-3

    Article  Google Scholar 

  19. 19.

    Piekiel, N. W., Morris, C. J., Currano, L. J., Lunking, D. M., Isaacson, B., et al. (2014). Enhancement of on-chip combustion via nanoporous silicon microchannels. Combustion and Flame, 161(5), 1417–1424. https://doi.org/10.1016/j.combustflame.2013.11.004

    Article  Google Scholar 

  20. 20.

    Cao, Z., & Yobas, L. (2014). Induced hydraulic pumping via integrated submicrometer cylindrical glass capillaries. Electrophoresis, 35(16), 2353–2360. https://doi.org/10.1002/elps.201400099

    Article  Google Scholar 

  21. 21.

    Lee, H. J., Son, Y., Kim, D., Kim, Y. K., Choi, N., et al. (2015). A new thin silicon microneedle with an embedded microchannel for deep brain drug infusion. Sensors and Actuators B: Chemical, 209, 413–422. https://doi.org/10.1016/j.snb.2014.11.132

    Article  Google Scholar 

  22. 22.

    Won, Y., Kim, S., & Kim, S. E. (2016). Experimental assessment of on-chip liquid cooling through microchannels with de-ionized water and diluted ethylene glycol. Japanese Journal of Applied Physics. https://doi.org/10.7567/jjap.55.06jb02

    Article  Google Scholar 

  23. 23.

    Mulloni, V., Capuano, A., Adami, A., Quaranta, A., & Lorenzelli, L. (2018). A dry film technology for the manufacturing of 3-D multi-layered microstructures and buried channels for lab-on-chip. Microsystem Technologies, 25(8), 3219–3233. https://doi.org/10.1007/s00542-018-4177-7

    Article  Google Scholar 

  24. 24.

    Lao, Z. X., Hu, Y. L., Pan, D., Wang, R. Y., Zhang, C. C., et al. (2017). Self-sealed bionic long microchannels with thin walls and designable nanoholes prepared by line-contact capillary-force assembly. Small (Weinheim an der Bergstrasse, Germany). https://doi.org/10.1002/smll.201603957

    Article  Google Scholar 

  25. 25.

    Mehboudi, A., & Yeom, J. (2018). A two-step sealing-and-reinforcement SU8 bonding paradigm for the fabrication of shallow microchannels. Journal of Micromechanics and Microengineering. https://doi.org/10.1088/1361-6439/aa9eb1

    Article  Google Scholar 

  26. 26.

    Chen, X., Li, T., & Gao, Q. I. (2019). A novel method for rapid fabrication of Pmma microfluidic chip by laser cutting and sealing integration. Surface Review and Letters. https://doi.org/10.1142/s0218625x19500422

    Article  Google Scholar 

  27. 27.

    Lee, S. H., Kang, D. H., Kim, H. N., & Suh, K. Y. (2010). Use of directly molded poly(methyl methacrylate) channels for microfluidic applications. Lab on a Chip, 10(23), 3300–3306. https://doi.org/10.1039/c0lc00127a

    Article  Google Scholar 

  28. 28.

    Chen, H., Yu, W., Cargill, S., Patel, M. K., Bailey, C., et al. (2012). Self-encapsulated hollow microstructures formed by electric field-assisted capillarity. Microfluidics and Nanofluidics, 13(1), 75–82. https://doi.org/10.1007/s10404-012-0942-6

    Article  Google Scholar 

  29. 29.

    Um, H. S., Chae, J. J., Lee, S. H., Rahmawan, Y., & Suh, K. Y. (2012). Pitch reduction lithography by pressure-assisted selective wetting and thermal reflow. Journal of Colloid and Interface Science, 376(1), 250–254.

    Article  Google Scholar 

  30. 30.

    Parekh, D. P., Ladd, C., Panich, L., Moussa, K., & Dickey, M. D. (2016). 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab on a Chip, 16(10), 1812–1820. https://doi.org/10.1039/c6lc00198j

    Article  Google Scholar 

  31. 31.

    Xu, J., Li, X., Zhong, Y., Qi, J., Wang, Z., et al. (2018). Glass-channel molding assisted 3D printing of metallic microstructures enabled by femtosecond laser internal processing and microfluidic electroless plating. Advanced Materials Technologies. https://doi.org/10.1002/admt.201800372

    Article  Google Scholar 

  32. 32.

    Mishra, D. K., Pawar, K., & Dixit, P. (2020). Effect of tool electrode-workpiece gap in the microchannel formation by electrochemical discharge machining. ECS Journal of Solid State Science and Technology. https://doi.org/10.1149/2162-8777/ab80b1

    Article  Google Scholar 

  33. 33.

    Dolega, M. E., Wagh, J., Gerbaud, S., Kermarrec, F., Alcaraz, J. P., et al. (2014). Facile bench-top fabrication of enclosed circular microchannels provides 3D confined structure for growth of prostate epithelial cells. PLoS ONE, 9(6), e99416. https://doi.org/10.1371/journal.pone.0099416

    Article  Google Scholar 

  34. 34.

    Nguyen, T. Q., & Park, W.-T. (2020). Fabrication method of multi-depth circular microchannels for investigating arterial thrombosis-on-a-chip. Sensors and Actuators B: Chemical, 321, 128590. https://doi.org/10.1016/j.snb.2020.128590

    Article  Google Scholar 

  35. 35.

    Kim, E., Xia, Y., & Whitesides, G. M. (1995). Polymer microstructures formed by moulding in capillaries. Nature, 376(6541), 581–584.

    Article  Google Scholar 

  36. 36.

    Kim, E., Xia, Y., & Whitesides, G. M. (1996). Micromolding in capillaries: Applications in materials science. Journal of the American Chemical Society, 118(24), 5722–5731. https://doi.org/10.1021/ja960151v

    Article  Google Scholar 

  37. 37.

    Xia, Y., & Whitesides, G. M. (1998). Soft lithography. Annual Review of Materials Science, 28(1), 153–184.

    Article  Google Scholar 

  38. 38.

    Kudruk, S., Villani, E., Polo, F., Lamping, S., Korsgen, M., et al. (2018). Solid state electrochemiluminescence from homogeneous and patterned monolayers of bifunctional spirobifluorene. Chemical Communications, 54(39), 4999–5002. https://doi.org/10.1039/c8cc02066c

    Article  Google Scholar 

  39. 39.

    Kim, H., Bae, C., Kook, Y. M., Koh, W. G., Lee, K., et al. (2019). Mesenchymal stem cell 3D encapsulation technologies for biomimetic microenvironment in tissue regeneration. Stem Cell Research & Therapy, 10(1), 51. https://doi.org/10.1186/s13287-018-1130-8

    Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Nos. 61705096 and 61675093), A Project of Shandong Province Higher Educational Science and Technology Program (No. J17KA176), the China Postdoctoral Science Foundation funded project (No. 2018M631385), and the Startup Foundation for Doctors of Ludong University (No. LY2014005).

Author information



Corresponding author

Correspondence to Dengying Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, W., Xing, W., Zhao, F. et al. Fabrication of Hollow Polymer Microchannels Using the MIMIC Technique with Subsequent Heat Treatment. Int. J. Precis. Eng. Manuf. 22, 1453–1460 (2021). https://doi.org/10.1007/s12541-021-00553-7

Download citation


  • Hollow microchannels
  • The MIMIC method
  • Capillary action
  • Through holes
  • S1813 photoresist