Abstract
Arteries, which carry blood from the heart to the peripheral tissues, are continuously stressed by pressure pulsation. Pathological changes in arterial walls could cause high-risk cardiovascular diseases, such as heart attack and stroke. Once established, vascular diseases progress by the continual remodeling of the arterial wall, which includes changes in the composition and function of the wall tissues. An arterial wall has both elastic and viscous characteristics, and pathological and degenerative changes in the wall tissue affect the viscoelastic behavior of the artery wall. The arterial viscoelasticity may provide useful information regarding the development and progression of arterial diseases. However, only the wall stiffness has been considered as a clinical diagnostic index for atherosclerosis. Only a few studies have assessed the viscoelasticity of an intact artery, and further studies are necessary to employ the wall viscoelasticity as a physical marker for diagnosing vascular diseases. Accordingly, this study focuses on arterial wall viscosity assessment and its possible clinical applications. In vitro and in vivo tissue viscoelasticity measurement techniques are reviewed, and constitutive models used to assess viscoelastic artery wall behaviors are summarized. Because wall viscoelasticity depends on the tissue composition and function, pathological changes in the arterial wall during atherosclerosis and the contribution of vascular cells to viscoelasticity are discussed. Finally, the recent progress in clinical tools for measuring arterial viscoelasticity is reviewed.
This is a preview of subscription content, access via your institution.


Similar content being viewed by others
References
Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., Bittencourt, M. S., & Lewis, E. F. (2019). Atherosclerosis (Primer). Nature Reviews: Disease Primers, 5(1), 56
Naghavi, M., Libby, P., Falk, E., Casscells, S. W., Litovsky, S., Rumberger, J., & Willerson, J. T. (2003). From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation, 108(14), 1664–1672
Spagnoli, L. G., Mauriello, A., Sangiorgi, G., Fratoni, S., Bonanno, E., Schwartz, R. S., & Holmes, D. R. (2004). Extracranial thrombotically active carotid plaque as a risk factor for ischemic stroke. JAMA, 292(15), 1845–1852
Akyildiz, A. C., Speelman, L., & Gijsen, F. J. (2014). Mechanical properties of human atherosclerotic intima tissue. Journal of Biomechanics, 47(4), 773–783
Chai, C. K., Speelman, L., Oomens, C. W., & Baaijens, F. P. (2014). Compressive mechanical- properties of atherosclerotic plaques–indentation test to characterise the local anisotropic behaviour. Journal of Biomechanics, 47(4), 784–792
Lee, R. T., Grodzinsky, A. J., Frank, E. H., Kamm, R. D., & Schoen, F. J. (1991). Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation, 83(5), 1764–1770
Lee, R. T., Richardson, S. G., Loree, H. M., Grodzinsky, A. J., Gharib, S. A., Schoen, F. J., & Pandian, N. (1992). Prediction of mechanical properties of human atherosclerotic tissue by high-frequency intravascular ultrasound imaging an in vitro study. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 12(1), 1–5
Walraevens, J., Willaert, B., De Win, G., Ranftl, A., De Schutter, J., & Vander Sloten, J. (2008). Correlation between compression, tensile and tearing tests on healthy and calcified aortic tissues. Medical Engineering & Physics, 30(9), 1098–1104
Maher, E., Creane, A., Sultan, S., Hynes, N., Lally, C., & Kelly, D. J. (2009). Tensile and compressive properties of fresh human carotid atherosclerotic plaques. Journal of Biomechanics, 42(16), 2760–2767
Maher, E., Creane, A., Sultan, S., Hynes, N., Lally, C., & Kelly, D. J. (2011). Inelasticity of human carotid atherosclerotic plaque. Annals of Biomedical Engineering, 39(9), 2445–2455
Barrett, S. R. H., Sutcliffe, M. P. F., Howarth, S., Li, Z. Y., & Gillard, J. H. (2009). Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. Journal of Biomechanics, 42(11), 1650–1655
Chai, C. K., Akyildiz, A. C., Speelman, L., Gijsen, F. J., Oomens, C. W., van Sambeek, M. R., & Baaijens, F. P. (2013). Local axial compressive mechanical properties of human carotid atherosclerotic plaques—characterisation by indentation test and inverse finite element analysis. Journal of Biomechanics, 46(10), 1759–1766
Topoleski, L. D. T., Salunke, N. V., Humphrey, J. D., & Mergner, W. J. (1997). Composition-and history-dependent radial compressive behavior of human atherosclerotic plaque. Journal of Biomedical Materials Research, 35(1), 117–127
Salunke, N. V., Topoleski, L. D. T., Humphrey, J. D., & Mergner, W. J. (2001). Compressive stress-relaxation of human atherosclerotic plaque. Journal of Biomedical Materials Research, 55(2), 236–241
Cox, M. A., Driessen, N. J., Boerboom, R. A., Bouten, C. V., & Baaijens, F. P. (2008). Mechanical characterization of anisotropic planar biological soft tissues using finite indentation: experimental feasibility. Journal of Biomechanics, 41(2), 422–429
Gasser, T. C., & Forsell, C. (2011). The numerical implementation of invariant-based viscoelastic formulations at finite strains. An Anisotropic Model for the Passive Myocardium, Computer Methods in Applied Mechanics and Engineering, 200(49–52), 3637–3645
Heiland, V. M., Forsell, C., Roy, J., Hedin, U., & Gasser, T. C. (2013). Identification of carotid plaque tissue properties using an experimental-numerical approach. Journal of the Mechanical Behavior of Biomedical Materials, 27, 226–238
Yao, W., Yoshida, K., Fernandez, M., Vink, J., Wapner, R. J., Ananth, C. V., et al. (2014). Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation. Journal of the Mechanical Behavior of Biomedical Materials., 34, 18–26
Chhai, P., & Rhee, K. (2020). Computational study on phase lag of arterial-wall motion for assessment of plaque vulnerability. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 234(5), 517–526
Bergel, D. H. (1961). The dynamic elastic properties of the arterial wall. The Journal of Physiology, 153(3), 458–469
Bia, D., Armentano, R. L., Zócalo, Y., Barmak, W., Migliaro, E., & Cabrera Fischer, E. I. (2005). In vitro model to study arterial wall dynamics through pressure-diameter relationship analysis. Latin American Applied Research, 35(3), 217–224
Balocco, S., Basset, O., Courbebaisse, G., Boni, E., Frangi, A. F., Tortoli, P., et al. (2010). Estimation of the viscoelastic properties of vessel walls using a computational model and Doppler ultrasound. Physics in Medicien & Biology, 55(12), 3557–3575
Peterson, L. H., Jensen, R. E., & Parnell, J. (1960). Mechanical properties of arteries in vivo. Circulation Research, 8(3), 622–639
Armentano, R. L., Barra, J. G., Levenson, J., Simon, A., & Pichel, R. H. (1995). Arterial wall mechanics in conscious dogs: Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circulation Research, 76(3), 468–478
Ghigo, A. R., Wang, X. F., Armentano, R., Fullana, J. M., & Lagrée, P. Y. (2017). Linear and nonlinear viscoelastic arterial wall models: Application on animals. Journal of Biomechanical Engineering, 139(1), 011003
Shau, Y.-W., Wang, C.-L., Shieh, J.-Y., & Hsu, T.-C. (1999). Noninvasive assessment of the viscoelasticity of peripheral arteries. Ultrasound in Medicine & Biology, 25(9), 1377–1388
Lénárd, Z., Fülöp, D., Visontai, Z., Jokkel, G., Reneman, R., & Kollai, M. (2000). Static versus dynamic distensibility of the carotid artery in humans. Journal of Vascular Research, 37(2), 103–111
Hasegawa, H., & Kanai, H. (2004). Measurement of elastic moduli of the arterial wall at multiple frequencies by remote actuation for assessment of viscoelasticity. Japanese Journal of Applied Physics, 43(5), 3197–3203
Sakai, Y., Taki, H., & Kanai, H. (2016). Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement. Japanese Journal of Applied Physics, 55(7S1), 07KF11
Saito, T., Mori, S., Arakawa, M., Ohba, S., Kobayashi, K., & Kanai, H. (2020). Estimation of viscoelasticity of radial artery via simultaneous measurement of changes in pressure and diameter using a single ultrasound probe. Japanese Journal of Applied Physics, 59, SSKE04
Learoyd, B. M., & Taylor, M. G. (1966). Alterations with age in the viscoelastic properties of human arterial walls. Circulation Research, 18(3), 278–292
Tanaka, T. T., & Fung, Y.-C. (1974). Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. Journal of Biomechanics, 7(4), 357–370
Xie, J., Zhou, J., & Fung, Y. C. (1995). Bending of blood vessel wall: Stress-strain laws of the intima-media and adventitia layers. Journal of Biomechanical Engineering, 117(1), 136–145
Dobrin, P. B. (1999). Distribution of lamellar deformations: Implications for properties of the arterial media. Hypertension, 33(3), 806–810
Holzapfel, G. A., Gasser, T. C., & Stadler, M. (2002). A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. European Journal of Mechanics-A/Solids, 21(3), 441–463
Fung, Y. C. (1993). Biomechanics: Mechanical properties of living tissues. (2nd ed.). New York: Springer-Verlag.
Holzapfel, G. A. (2000). Nonlinear solid mechanics.A continuum approach for engineering. Chichester: Wiley.
Forsell, C., & Gasser, T. C. (2011). Numerical simulation of the failure of ventricular tissue due to deep penetration: The impact of constitutive properties. Journal of Biomechanics, 44(1), 45–51
Zareh, M., Fradet, G., Naser, G., & Mohammadi, H. (2015). Are two-dimensional images sufficient to assess the atherosclerotic plaque vulnerability: A viscoelastic and anisotropic finite element model. Cardiovascular System, 3(1), 3
Yao, W., Yoshida, K., Fernandez, M., Vink, J., Wapner, R. J., Ananth, C. V., & Myers, K. M. (2014). Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation. Journal of the Mechanical Behavior of Biomedical Materials, 34, 18–26
Park, M. H., Chhai, P., & Rhee, K. (2019). Analysis of flow and wall deformation in a stenotic flexible channel containing a soft core, simulating atherosclerotic arteries. International Journal of Precision Engineering and Manufacturing, 20(6), 1047–1056
Valdez-Jasso, D., Banks, H. T., Haider, M. A., Bia, D., Zocalo, Y., Armentano, R. L., et al. (2009). Viscoelastic models for passive arterial wall dynamics. Advances in Applied Mathematics and Mechanics, 1(2), 151–165
Salunke, N. V., & Topoleski, L. D. (1997). Biomechanics of atherosclerotic plaque. Critical Reviews in Biomedical Engineering, 25(3), 43–285
Lillie, M. A., & Gosline, J. M. (2007). Mechanical properties of elastin along the thoracic aorta in the pig. Journal of Biomechanics, 40(10), 2214–2221
Gasser, T. C., Ogden, R. W., & Holzapfel, G. A. (2006). Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society Interface, 3(6), 15–35
Elliott, D. M., Robinson, P. S., Gimbel, J. A., Sarver, J. J., Abboud, J. A., & Iozzo, R. V. (2003). Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Annals of Biomedical Engineering, 31(5), 599–605
Li, L. P., Herzog, W., Korhonen, R. K., & Jurvelin, J. S. (2005). The role of viscoelasticity of collagen fibers in articular cartilage: Axial tension versus compression. Medical Engineering & Physics, 27(1), 51–57
Lujan, T. J., Underwood, C. J., Jacobs, N. T., & Weiss, J. A. (2009). Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament. Journal of Applied Physiology, 106(2), 423–431
Wang, Z., Lakes, R. S., Golob, M., Eickhoff, J. C., & Chesler, N. C. (2013). Changes in large pulmonary arterial viscoelasticity in chronic pulmonary hypertension. PLoS ONE, 8(11), e78569
GarcÃa, A., MartÃnez, M. A., & Peña, E. (2012). Viscoelastic properties of the passive mechanical behavior of the porcine carotid artery: Influence of proximal and distal positions. Biorheology, 49(4), 271–288
Miyazaki, H., Hayashi, K., & Hasegawa, Y. (2003). Tensile properties of fibroblasts and vascular smooth muscle cells. Biorheology, 40(1–3), 207–212
Nagayama, K., Nagano, Y., Sato, M., & Matsumoto, T. (2006). Effectofactin filament distribution on tensile properties of smooth muscle cells obtained from rat thoracic aortas. Journal of Biomechanics, 39(2), 293–301
Bia, D., Zócalo, Y., Cabrera-Fischer, E. I., Wray, S., & Armentano, R. (2014). Quantitative analysis of the relationship between blood vessel wall constituents and viscoelastic properties: Dynamic biomechanical and structural in vitro studies in aorta and carotid arteries. Hindawi Physiology Journal, 2014, 9
Santana, D. B., Barra, J. G., Grignola, J. C., Ginés, F. F., & Armentano, R. L. (2005). Pulmonary artery smooth muscle activation attenuates arterial dysfunction during acute pulmonary hypertension. Journal of Applied Physiology, 98(2), 605–613
Armentano, R. L., Barra, J. G., Santana, D. B., Pessana, F. M., Graf, S., & Craiem, D. (2006). Smart damping modulation of carotid wall energetics in human hypertension: Effects of angiotensin converting enzyme inhibition. Hypertension, 47(3), 384–390
Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84(3), 767–801
Orr, A. W., Hastings, N. E., Blackman, B. R., & Wamhoff, B. R. (2010). Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. Journal of Vascular Research, 47(2), 168–180
Kothapalli, D., Liu, S. L., Bae, Y. H., Monslow, J., Xu, T., Hawthorne, E. A., Byfield, F. J., et al. (2012). Cardiovascular protection by ApoE and ApoE-HDL linked to suppression of ECM gene expression and arterial stiffening. Cell Reports, 2(5), 1259–1271
Rodriguez, C., Martinez-Gonzalez, J., Raposo, B., Alcudia, J. F., Guadall, A., & Badimon, L. (2008). Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases. Cardiovascualr Research, 79(1), 7–13
Bennett, M. R. (1999). Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovascular Research, 41(2), 361–368
Wal, A. C., & Becker, A. E. (1999). Atherosclerotic plaque rupture – pathologic basis of plaque stability and instability. Cardiovascular Research, 41(2), 334–344
Taniguchi, R., Hosaka, A., Miyahara, T., Hoshina, K., Okamoto, H., & Shigematsu, K. (2015). Viscoelastic deterioration of the carotid artery vascular wall is a possible predictor of coronary artery disease. Journal of Atherosclerosis and Thrombosis, 22(4), 415–423
Yokobori, A. T., Watanabe, K., Saiki, Y., Nishikawa, Y., Kudo, K., Ohmi, T., et al. (2019). Frequency and chaotic analysis of pulsatile motion of blood vessel wall related to aneurysm. Bio-Medical Materials and Engineering, 30(2), 243–253
Langewouters, G. J., Wesseling, K. H., & Goedhard, W. J. (1985). The pressure dependent dynamic elasticity of 35 thoracic and 16 abdominal human aortas in vitro described by a five components model. Journal of Biomechanics, 18(8), 613–620
Callaghan, F. J., Geddes, L. A., Babbs, C. F., & Bourland, J. D. (1986). Relationship between pulse-wave velocity and arterial elasticity. Medical and Biological Engineering and Computing, 24(3), 248–254
Asmar, R., Benetos, A., Topouchian, J., Laurent, P., Pannier, B., Brisac, A., et al. (1995). Assessment of arterial distensibility by automatic pulse wave velocity measurement: Validation and clinical application studies. Hypertension, 26(3), 485–490
Safar, H., Mourad, J. J., Safar, M., & Blacher, J. (2002). Aortic pulse wave velocity, an independent marker of cardiovascular risk. Archives des Maladies du Coeur et des Vaisseaux, 95(12), 1215–1218
Safar, M. E., Henry, O., & Meaume, S. (2002). Aortic pulse wave velocity: an independent marker of cardiovascular risk. The American Journal of Geriatric Cardiology, 11(5), 295–298
Eriksson, A., Greiff, E., Loupas, T., Persson, M., & Pesque, P. (2002). Arterial pulse wave velocity with tissue Doppler imaging. Ultrasound in Medicine and Biology, 28(5), 571–580
Bolster, B. D., Jr., Atalar, E., Hardy, C. J., & McVeigh, E. R. (2005). Accuracy of arterial pulse-wave velocity measurement using MR. Journal of Magnetic Resonance Imaging, 8(4), 878–888
Brands, P. J., Willigers, J. M., Ledoux, L. A., Reneman, R. S., & Hoeks, A. P. (1998). A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound. Ultrasound in Medicine & Biology, 24(9), 1325–1335
Hoeks, A. P., Brands, P. J., Willigers, J. M., & Reneman, R. S. (1999). Non-invasive measurement of mechanical properties of arteries in health and disease. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 213(3), 195–202
Brands, P. J., Hoeks, A. P., Willigers, J., Willekes, C., & Reneman, R. S. (1999). An integrated system for the non-invasive assessment of vessel wall and hemodynamic properties of large arteries by means of ultrasound. European Journal of Ultrasound, 9(3), 257–266
Messas, E., Pernot, M., & Couade, M. (2013). Arterial wall elasticity: State of the art and future Prospects. Diagnostic and Interventional Imaging, 94(5), 561–569
Schaar, J. A., de Korte, C. L., Mastik, F., Strijder, C., Pasterkamp, G., Boersma, E., et al. (2003). Characterizing vulnerable plaque features with intravascular elastography. Circulation, 108(21), 2636–2641
Ribbers, H., Lopata, R. G., Holewijn, S., Pasterkamp, G., Blankensteijn, J. D., & de Korte, C. L. (2007). Noninvasive two-dimensional Strain Imaging of arteries: validation in phantoms and preliminary experience in carotid arteries in vivo. Ultrasound in Medicine & Biology, 33(4), 530–540
Hansen, H. H., Lopata, R. G., & de Korte, C. L. (2009). Noninvasive carotid strain imaging using angular compounding at large beam steered angles: validation in vessel phantoms. IEEE Transactions on Medical Imaging, 28(6), 872–880
de Korte, C. L., Hansen, H. H., & van der Steen, A. F. (2011). Vascular ultrasound for atherosclerosis imaging. Interface Focus, 1(4), 565–575
Shi, H., Mitchell, C. C., McCormick, M., Kliewer, M. A., Dempsey, R. J., & Varghese, T. (2008). Preliminary in vivo atherosclerotic carotid plaque characterization using the accumulated axial strain and relative lateral shift strain indices. Physics in Medicine & Biology, 53(22), 6377–6394
Zahnd, G., Vray, D., Sérusclat, A., Bartold, M., Brown, A., Durand, M., et al. (2012). Longitudinal displacement of the carotid wall and cardiovascular risk factors: Associations with aging, adiposity, blood pressure and periodontal disease independent of cross-sectional distensibility and intima-media thickness. Ultrasound in Medicine & Biology, 38(10), 1705–1715
Naim, C., Cloutier, G., Mercure, E., Destrempes, F., Qin, Z., El-Abyad, W., et al. (2013). Characterisation of carotid plaques with ultrasound elastography: Feasibility and correlation with high-resolution magnetic resonance imaging. European Radiology, 23(7), 2030–2041
Wan, J., He, F., Zhao, Y., Zhang, H., Zhou, X., & Wan, M. (2014). Non-invasive vascular radial/circumferential strain imaging and wall shear rate estimation using video images of diagnostic ultrasound. Ultrasound in Medicine & Biology, 40(3), 622–636
Huang, C., Pan, X., He, Q., Huang, M., Huang, L., Zhao, X., et al. (2016). Ultrasound-based carotid elastography for detection of vulnerable atherosclerotic plaques validated by magnetic resonance imaging. Ultrasound in Medicine & Biology, 42(2), 365–377
Roy Cardinal, M. H., Heusinkveld, M. H. G., Qin, Z., Lopata, R. G. P., Naim, C., Soulez, G., et al. (2017). Carotid artery plaque vulnerability assessment using noninvasive ultrasound elastography: Validation With MRI. American Journal of Roentgenology., 209(1), 142–151
Ramnarine, K. V., Garrard, J. W., Kanber, B., Nduwayo, S., Hartshorne, T. C., & Robinson, T. G. (2014). Shear wave elastography imaging of carotid plaques: Feasible, reproducible and of clinical potential. Cardiovascular Ultrasound, 12, 49
Zhang, L., Yong, Q., Pu, T. N., & Lin, J. (2016). Quantitative assessment of carotid atherosclerotic plaque: Initial clinical results using Shear wave elastography. International Journal of Clinical and Experimental Medicine, 9(6), 9347–9355
Marlevi, D., Mulvagh, S. L., Huang, R., DeMarco, J. K., Ota, H., Huston, J., 3rd., et al. (2020). Combined spatiotemporal and frequency-dependent shear wave elastography enables detection of vulnerable carotid plaques as validated by MRI. Scientific Reports, 10, 403
Pruijssen, J. T., de Korte, C. L., Voss, I., & Hansen, H. H. G. (2020). Vascular shear wave elastography in atherosclerotic arteries: A systematic review. Ultrasound in Medicine & Biology, 46(9), 2145–2163
V, RK., Nabeel, P,. M., Joseph, J., Frese, H., Sivaprakasam, M. (2019). Multimodal Image-Free Ultrasound Technique for Evaluation of Arterial Viscoelastic Properties: A Feasibility Study. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, 5034–5037.
Liu, Z., Bai, Z., Huang, C., Huang, M., Huang, L., Xu, D., et al. (2019). Interoperator reproducibility of carotid elastography for identification of vulnerable atherosclerotic plaques. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 66(3), 505–516
Schmitt, C., Hadj Henni, A., & Cloutier, G. (2010). Ultrasound dynamic micro-elastography applied to the viscoelastic characterization of soft tissues and arterial walls. Ultrasound in Medicine & Biology, 36(9), 1492–1503
Acknowledgements
This work was supported by the National Research Foundation of Korea (Grant Number: NRF-2020R1A2C1004354).
Funding
NRF-2020R1A2C1004354
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The author declare that they don’t have conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This paper is an invited paper (Invited Review).
Rights and permissions
About this article
Cite this article
Rhee, K., Cho, Y. Artery Wall Viscoelasticity: Measurement, Assessment, and Clinical Implications. Int. J. Precis. Eng. Manuf. 22, 1157–1168 (2021). https://doi.org/10.1007/s12541-021-00533-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12541-021-00533-x