Skip to main content
Log in

Biomechanical Role of Nucleotomy in Vibration Characteristics of Human Spine

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Nucleotomy is a common surgical procedure for the treatment of lumbar diseases. It may accelerate degeneration in the operated disc and decreased segmental stability, and this has been widely concerned by scholars for many years. However, under whole-body vibration, nucleotomy how to affect the vibration characteristics of the lumbar spine and complications is urgent to know. A three-dimensional nonlinear osteoligamentous finite element model of the intact L1-sacrum lumbar spine with muscles was established, and the nucleus of the L4–L5 disc was removed in the nucleotomy model. The lower surface of the sacrum was fully constrained for all models. A 5 Hz, 40 N sinusoidal vertical load supplemented with a 400 N preload was applied at L1 to simulate the vertical vibration of the human body. The results showed that nucleotomy increased the dynamic responses of the discs such as stress in the annulus ground substance and intradiscal pressure both in the maximum value and vibration amplitude. The maximum endplate stresses and corresponding vibration amplitudes of the denucleated L4–L5 level increased because of nucleotomy. Nucleotomy decreased the maximum response values of disc height and segmental lordosis but increased the corresponding amplitudes. Therefore, these findings imply that nucleotomy may increase the risk of developing complications such as disc degeneration, adjacent segment disease, endplate degeneration, lumbar instability, nerve root compress, isthmic spondylolisthesis, and lumbar disc herniation under whole-body vibration. This study reveals insights into the effect of the nucleotomy on the vibration characteristics of the lumbar spine and provides new information toward the relationship between nucleotomy and complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vaccaro, A. R. (2005). Spine: Core knowledge in orthopaedics. . Mosby Publishing.

    Google Scholar 

  2. Buckwalter, J. A. (1995). Spine update: Aging and degeneration of the human intervertebral disc. Spine, 20(11), 1307–1314.

    Google Scholar 

  3. Cannella, M., Isaacs, J. L., Allen, S., Orana, A., Vresilovic, E., & Marcolongo, M. (2014). Nucleus implantation: The biomechanics of augmentation versus replacement with varying degrees of nucleotomy. Journal of Biomechanical Engineering, 136(5), 051001.

    Google Scholar 

  4. Van Ooij, A., Oner, F. C., & Verbout, A. J. (2003). Complications of artificial disc replacement. Journal of Spinal Disorders & Techniques, 16(4), 369–383.

    Google Scholar 

  5. Dunlop, R., Adams, M., & Hutton, W. (1984). Disc space narrowing and the lumbar facet joints. The Journal of Bone and Joint Surgery, British, 66-B(5), 706–710.

    Google Scholar 

  6. O’Connell, G. D., Malhotra, N. R., Vresilovic, E. J., & Elliott, D. M. (2011). The effect of nucleotomy and the dependence of degeneration of human intervertebral disc strain in axial compression. Spine, 36(21), 1765–1771.

    Google Scholar 

  7. Adams, M. A., & Hutton, W. C. (1985). Gradual disc prolapse. Spine, 10(6), 524–531.

    Google Scholar 

  8. Heuer, F., Schmidt, H., Claes, L., & Wilke, H.-J. (2008). A new laser scanning technique for imaging intervertebral disc displacement and its application to modeling nucleotomy. Clinical Biomechanics, 23(3), 260–269.

    Google Scholar 

  9. Choi, H. W., Kim, Y. E., & Chae, S. W. (2016). Effects of the level of mono-segmental dynamic stabilization on the whole lumbar spine. International Journal of Precision Engineering and Manufacturing, 17(5), 603–611.

    Google Scholar 

  10. Bovenzi, M., Schust, M., & Mauro, M. (2017). An overview of low back pain and occupational exposures to whole-body vibration and mechanical shocks. La Medicina Del Lavoro, 108(6), 419–433.

    Google Scholar 

  11. Griffin, M. J., & Erdreich, J. (1990). Handbook of human vibration. Journal of the Acoustical Society of America, 4, 2213.

    Google Scholar 

  12. Burström, L., Nilsson, T., & Wahlström, J. (2014). Whole-body vibration and the risk of low back pain and sciatica: A systematic review and meta-analysis. International Archives of Occupational and Environmental Health, 88(4), 403–418.

    Google Scholar 

  13. Goel, V. K. (1994). Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach. Journal of Biomechanical Engineering, 116(4), 377–83.

    Google Scholar 

  14. Wilke, H.-J., Kaiser, D., Volkheimer, D., Hackenbroch, C., Püschel, K., & Rauschmann, M. (2016). A pedicle screw system and a lamina hook system provide similar primary and long-term stability: A biomechanical in vitro study with quasi-static and dynamic loading conditions. European Spine Journal, 25(9), 2919–2928.

    Google Scholar 

  15. Vresilovic, E. J., Johannessen, W., & Elliott, D. M. (2006). Disc mechanics with trans-endplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery. Journal of Biomechanical Engineering, 128(6), 823.

    Google Scholar 

  16. Fan, W., & Guo, L. X. (2018). Finite element investigation of the effect of nucleus removal on vibration characteristics of the lumbar spine under a compressive follower preload. Journal of the Mechanical Behavior of Biomedical Materials, 78, 342–351.

    Google Scholar 

  17. Fan, W., & Guo, L. X. (2018). Biomechanical comparison of nucleotomy with lumbar spine fusion versus nucleotomy alone: Vibration analysis of the adjacent spinal segments. International Journal of Precision Engineering and Manufacturing, 19(10), 1561–1568.

    Google Scholar 

  18. Guo, L. X., & Wang, Q. D. (2020). Biomechanical analysis of a new bilateral pedicle screw fixator system based on topological optimization. International Journal of Precision Engineering and Manufacturing. https://doi.org/10.1007/s12541-020-00336-6.

    Article  Google Scholar 

  19. Goel, V. K., Mehta, A., Jangra, J., Faizan, A., Kiapour, A., Hoy, R. W., & Fauth, A. R. (2007). Anatomic facet replacement system (AFRS) restoration of lumbar segment mechanics to intact: A finite element study and in vitro cadaver investigation. SAS Journal, 1(1), 46–54.

    Google Scholar 

  20. Wu, H.-C., & Yao, R.-F. (1976). Mechanical behavior of the human annulus fibrosus. Journal of Biomechanics, 9(1), 1–7.

    Google Scholar 

  21. Kim, Y. H., Jung, T. G., Park, E. Y., Kang, G. W., Kim, K. A., & Lee, S. J. (2015). Biomechanical efficacy of a combined interspinous fusion system with a lumbar interbody fusion cage. International Journal of Precision Engineering and Manufacturing, 16(5), 997–1001.

    Google Scholar 

  22. Lim, J. W. (2018). Age-related stability for artificial disc fixators inserted into a lumbar vertebra: Finite element analysis. International Journal of Precision Engineering and Manufacturing, 19(2), 271–280.

    Google Scholar 

  23. Masni-Azian, & Tanaka, M. . (2018). Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study. Computers in Biology and Medicine, 98, 26–38.

    Google Scholar 

  24. Cheung, K., Karppinen, J., Chan, D., Ho, D., Song, Y., Sham, P., Cheah, K. S. E., Leong, J. C. Y., & Luk, K. D. K. (2009). Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine, 34(9), 934–940.

    Google Scholar 

  25. Ruberté, L. M., Natarajan, R. N., & Andersson, G. B. (2009). Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments-a finite element model study. Journal of Biomechanics, 42(3), 341–348.

    Google Scholar 

  26. Shirazi-Adl, A., Sadouk, S., Parnianpour, M., Pop, D., & El-Rich, M. (2002). Muscle force evaluation and the role of posture in human lumbar spine under compression. European Spine Journal, 11(6), 519–526.

    Google Scholar 

  27. Chuang, W.-H., Lin, S.-C., Chen, S.-H., Wang, C.-W., Tsai, W.-C., Chen, Y.-J., & Hwang, J.-R. (2012). Biomechanical Effects of Disc Degeneration and Hybrid Fixation on the Transition and Adjacent Lumbar Segments. Spine, 37(24), E1488–E1497.

    Google Scholar 

  28. Bazrgari, B., Shirazi-Adl, A., & Arjmand, N. (2006). Analysis of squat and stoop dynamic liftings: Muscle forces and internal spinal loads. European Spine Journal, 16(5), 687–699.

    Google Scholar 

  29. Chen, S.-H., Zhong, Z.-C., Chen, C.-S., Chen, W.-J., & Hung, C. (2009). Biomechanical comparison between lumbar disc arthroplasty and fusion. Medical Engineering & Physics, 31(2), 244–253.

    Google Scholar 

  30. Zhong, Z.-C., Chen, S.-H., & Hung, C.-H. (2008). Load- and displacement-controlled finite element analyses on fusion and non-fusion spinal implants. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 223(2), 143–157.

    Google Scholar 

  31. Chuang, W.-H., Kuo, Y.-J., Lin, S.-C., Wang, C.-W., Chen, S.-H., Chen, Y.-J., & Hwang, J.-R. (2013). Comparison among load-, ROM-, and displacement-controlled methods used in the lumbosacral nonlinear finite-element analysis. Spine, 38(5), E276–E285. https://doi.org/10.1097/brs.0b013e31828251f9.

    Article  Google Scholar 

  32. Naveen, R. R., & Krishnapillai, S. (2020). An improved spinal injury parameter model for underbody impulsive loading scenarios. International Journal for Numerical Methods in Biomedical Engineering, 36(3), e3307.

    MathSciNet  Google Scholar 

  33. Shirazi-Adl, A., & Parnianpour, M. (1996). Role of posture in mechanics of the lumbar spine in compression. Journal of Spinal Disorders, 9(4), 277–286.

    Google Scholar 

  34. Xu, M., Yang, J., Lieberman, I., & Haddas, R. (2017). Finite element method-based study for effect of adult degenerative scoliosis on the spinal vibration characteristics. Computers in Biology and Medicine, 84, 53–58.

    Google Scholar 

  35. Guo, L. X., Zhang, Y. M., & Zhang, M. (2011). Finite element modeling and modal analysis of the human spine vibration configuration. IEEE Transactions on Biomedical Engineering, 58(10), 2987–2990.

    Google Scholar 

  36. Tsouknidas, A., Savvakis, S., Asaniotis, Y., Anagnostidis, K., Lontos, A., & Michailidis, N. (2013). The effect of kyphoplasty parameters on the dynamic load transfer within the lumbar spine considering the response of a bio-realistic spine segment. Clinical Biomechanics, 28(9–10), 949–955.

    Google Scholar 

  37. Renner, S. M., Natarajan, R. N., Patwardhan, A. G., Havey, R. M., Voronov, L. I., Guo, B. Y., et al. (2007). Novel model to analyze the effect of a large compressive follower preload on range of motions in a lumbar spine. Journal of Biomechanics, 40(6), 1326–1332.

    Google Scholar 

  38. Dreischarf, M., Zander, T., Shirazi-Adl, A., Puttlitz, C. M., Adam, C. J., Chen, C. S., Goel, V. K., et al. (2014). Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together. Journal of Biomechanics, 47(8), 1757–1766.

    Google Scholar 

  39. Drain, O., Lenoir, T., Dauzac, C., Rillardon, L., & Guigui, P. (2008). Influence of disc height on outcome of posterolateral fusion. Revue de Chirurgie Orthopedique et Reparatrice de L’appareil Moteur, 94(5), 472–480.

    Google Scholar 

  40. Xu, M., Yang, J., Lieberman, I.H., Haddas, R. (2016). Finite element method-based analysis for effect of vibration on healthy and scoliotic spines. In: Paper presented at 12th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (Vol. 6). https://doi.org/10.1115/detc2016-59679.

  41. Kasra, M., Shirazi-Adl, A., & Drouin, G. (1992). Dynamics of human lumbar intervertebral joints. Spine, 17(1), 93–102.

    Google Scholar 

  42. Matsumoto, Y., & Griffin, M. J. (2002). Non-linear characteristics in the dynamic responses of seated subjects exposed to vertical whole-body vibration. Journal of Biomechanical Engineering, 124(5), 527.

    Google Scholar 

  43. Benneker, L. M., Heini, P. F., Alini, M., Anderson, S. E., & Ito, K. (2005). 2004 Young investigator award winner: Vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine, 30(2), 167–173.

    Google Scholar 

  44. Gruber, H. E., Ashraf, N., Kilburn, J., Williams, C., Norton, H. J., Gordon, B. E., & Hanley, E. N. (2005). Vertebral endplate architecture and vascularization: Application of micro-computerized tomography, a vascular tracer, and immunocytochemistry in analyses of disc degeneration in the aging sand rat. Spine, 30(23), 2593–2600.

    Google Scholar 

  45. Zhu, Q., Gao, X., Brown, M. D., Chen, S., & Gu, W. (2020). Effect of intervertebral disc degeneration on mechanical and electric signals at the interface between disc and vertebra. Journal of Biomechanics. https://doi.org/10.1016/j.jbiomech.2020.109756.

    Article  Google Scholar 

  46. Lazennec, J. Y., Ramaré, S., Arafati, N., Laudet, C. G., Gorin, M., Roger, B., et al. (2000). Sagittal alignment in lumbosacral fusion: Relations between radiological parameters and pain. European Spine Journal, 9(1), 47–55.

    Google Scholar 

  47. Schwab, F. J., Smith, V. A., Biserni, M., Gamez, L., Farcy, J. P., & Pagala, M. (2002). Adult scoliosis: A quantitative radiographic and clinical analysis. Spine, 27(4), 387.

    Google Scholar 

  48. Boissiere, L., Perrin, G., Rigal, J., Michel, F., & Barrey, C. (2013). Lumbar-sacral fusion by a combined approach using interbody PEEK cage and posterior pedicle-screw fixation: Clinical and radiological results from a prospective study. Orthopaedics & Traumatology: Surgery & Research, 99(8), 945–951.

    Google Scholar 

  49. Brinckmann, P., & Grootenboer, H. (1991). Change of disc height, radial disc bulge, and intradiscal pressure from discectomy an in vitro investigation on human lumbar discs. Spine, 16(6), 641–646.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51875096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Xin Guo.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QD., Guo, LX. Biomechanical Role of Nucleotomy in Vibration Characteristics of Human Spine. Int. J. Precis. Eng. Manuf. 22, 1323–1334 (2021). https://doi.org/10.1007/s12541-021-00519-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00519-9

Keywords

Navigation